1
|
García-Ariza LL, González-Rivillas N, Díaz-Aguirre CJ, Rocha-Roa C, Padilla-Sanabria L, Castaño-Osorio JC. Antiviral Activity of an Indole-Type Compound Derived from Natural Products, Identified by Virtual Screening by Interaction on Dengue Virus NS5 Protein. Viruses 2023; 15:1563. [PMID: 37515249 PMCID: PMC10384440 DOI: 10.3390/v15071563] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2023] [Revised: 07/07/2023] [Accepted: 07/08/2023] [Indexed: 07/30/2023] Open
Abstract
Dengue is an acute febrile illness caused by the Dengue virus (DENV), with a high number of cases worldwide. There is no available treatment that directly affects the virus or the viral cycle. The objective of this study was to identify a compound derived from natural products that interacts with the NS5 protein of the dengue virus through virtual screening and evaluate its in vitro antiviral effect on DENV-2. Molecular docking was performed on NS5 using AutoDock Vina software, and compounds with physicochemical and pharmacological properties of interest were selected. The preliminary antiviral effect was evaluated by the expression of the NS1 protein. The effect on viral genome replication and/or translation was determined by NS5 production using DENV-2 Huh-7 replicon through ELISA and viral RNA quantification using RT-qPCR. The in silico strategy proved effective in finding a compound (M78) with an indole-like structure and with an effect on the replication cycle of DENV-2. Treatment at 50 µM reduced the expression of the NS5 protein by 70% and decreased viral RNA by 1.7 times. M78 is involved in the replication and/or translation of the viral genome.
Collapse
Affiliation(s)
| | | | | | - Cristian Rocha-Roa
- Grupo de Parasitología Molecular GEPAMOL, Universidad del Quindío, Armenia 630001, Quindío, Colombia
| | | | | |
Collapse
|
2
|
Wu J, Lin H, Moss DJ, Loh KP, Jia B. Graphene oxide for photonics, electronics and optoelectronics. Nat Rev Chem 2023; 7:162-183. [PMID: 37117900 DOI: 10.1038/s41570-022-00458-7] [Citation(s) in RCA: 61] [Impact Index Per Article: 30.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/01/2022] [Indexed: 01/19/2023]
Abstract
Graphene oxide (GO) was initially developed to emulate graphene, but it was soon recognized as a functional material in its own right, addressing an application space that is not accessible to graphene and other carbon materials. Over the past decade, research on GO has made tremendous advances in material synthesis and property tailoring. These, in turn, have led to rapid progress in GO-based photonics, electronics and optoelectronics, paving the way for technological breakthroughs with exceptional performance. In this Review, we provide an overview of the optical, electrical and optoelectronic properties of GO and reduced GO on the basis of their chemical structures and fabrication approaches, together with their applications in key technologies such as solar energy harvesting, energy storage, medical diagnosis, image display and optical communications. We also discuss the challenges of this field, together with exciting opportunities for future technological advances.
Collapse
|
3
|
Nalewaj M, Szabat M. Examples of Structural Motifs in Viral Genomes and Approaches for RNA Structure Characterization. Int J Mol Sci 2022; 23:ijms232415917. [PMID: 36555559 PMCID: PMC9784701 DOI: 10.3390/ijms232415917] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2022] [Revised: 12/04/2022] [Accepted: 12/13/2022] [Indexed: 12/23/2022] Open
Abstract
The relationship between conserved structural motifs and their biological function in the virus replication cycle is the interest of many researchers around the world. RNA structure is closely related to RNA function. Therefore, technological progress in high-throughput approaches for RNA structure analysis and the development of new ones are very important. In this mini review, we discuss a few perspectives on the structural elements of viral genomes and some methods used for RNA structure prediction and characterization. Based on the recent literature, we describe several examples of studies concerning the viral genomes, especially severe acute respiratory syndrome coronavirus 2 (SARS-CoV-2) and influenza A virus (IAV). Herein, we emphasize that a better understanding of viral genome architecture allows for the discovery of the structure-function relationship, and as a result, the discovery of new potential antiviral therapeutics.
Collapse
|
4
|
Zhao W, Yan Y, Chen X, Wang T. Combining printing and nanoparticle assembly: Methodology and application of nanoparticle patterning. Innovation (N Y) 2022; 3:100253. [PMID: 35602121 PMCID: PMC9117940 DOI: 10.1016/j.xinn.2022.100253] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/20/2022] [Accepted: 04/24/2022] [Indexed: 11/18/2022] Open
Abstract
Functional nanoparticles (NPs) with unique photoelectric, mechanical, magnetic, and chemical properties have attracted considerable attention. Aggregated NPs rather than individual NPs are generally required for sensing, electronics, and catalysis. However, the transformation of functional NP aggregates into scalable, controllable, and affordable functional devices remains challenging. Printing is a promising additive manufacturing technology for fabricating devices from NP building blocks because of its capabilities for rapid prototyping and versatile multifunctional manufacturing. This paper reviews recent advances in NP patterning based on the combination of self-assembly and printing technologies (including two-, three-, and four-dimensional printing), introduces the basic characteristics of these methods, and discusses various fields of NP patterning applications. Nanoparticles (NPs) printing assembly is a good solution for patterned devices NPs assembly can be combined with 2D, 3D, and 4D printing technologies A variety of ink-dispersed NPs are available for printing assembly NPs printing assembly technology is applied for nanosensing, energy storage, photodetector
Collapse
Affiliation(s)
- Weidong Zhao
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Yanling Yan
- National Engineering Research Center for Advanced Polymer Processing Technology, College of Materials Science and Engineering, Henan Province Industrial Technology Research Institute of Resources and Materials, Key Laboratory of Advanced Material Processing & Mold (Ministry of Education), Zhengzhou University, Zhengzhou 450002, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Xiangyu Chen
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
| | - Tie Wang
- Beijing National Laboratory for Molecular Sciences, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Life and Health Research Institute, School of Chemistry and Chemical Engineering, Tianjin University of Technology, Tianjin 300384, China
- Corresponding author
| |
Collapse
|
5
|
Inhibitory effect and mechanism of gelatin stabilized ferrous sulfide nanoparticles on porcine reproductive and respiratory syndrome virus. J Nanobiotechnology 2022; 20:70. [PMID: 35123507 PMCID: PMC8817501 DOI: 10.1186/s12951-022-01281-4] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2021] [Accepted: 01/21/2022] [Indexed: 12/16/2022] Open
Abstract
Background The infection and spread of porcine reproductive and respiratory syndrome virus (PRRSV) pose a serious threat to the global pig industry, and inhibiting the viral infection process is a promising treatment strategy. Nanomaterials can interact with viruses and have attracted much attention due to their large specific surface area and unique physicochemical properties. Ferrous sulfide nanoparticles (FeS NPs) with the characteristics of high reactivity, large specific surface area, and low cost are widely applied to environmental remediation, catalysis, energy storage and medicine. However, there is no report on the application of FeS NPs in the antiviral field. In this study, gelatin stabilized FeS nanoparticles (Gel-FeS NPs) were large-scale synthesized rapidly by the one-pot method of co-precipitation of Fe2+ and S2‒. Results The prepared Gel-FeS NPs exhibited good stability and dispersibility with an average diameter of 47.3 nm. Additionally, they were characterized with good biocompatibility and high antiviral activity against PRRSV proliferation in the stages of adsorption, invasion, and replication. Conclusions We reported for the first time the virucidal and antiviral activity of Gel-FeS NPs. The synthesized Gel-FeS NPs exhibited good dispersibility and biocompatibility as well as effective inhibition on PRRSV proliferation. Moreover, the Fe2+ released from degraded Gel-FeS NPs still displayed an antiviral effect, demonstrating the advantage of Gel-FeS NPs as an antiviral nanomaterial compared to other nanomaterials. This work highlighted the antiviral effect of Gel-FeS NPs and provided a new strategy for ferrous-based nanoparticles against PRRSV. Graphical Abstract ![]()
Supplementary Information The online version contains supplementary material available at 10.1186/s12951-022-01281-4.
Collapse
|
6
|
Raja IS, Hong SW, Han DW. Reflections and Outlook on Multifaceted Biomedical Applications of Graphene. ADVANCES IN EXPERIMENTAL MEDICINE AND BIOLOGY 2022; 1351:253-264. [DOI: 10.1007/978-981-16-4923-3_12] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
|
7
|
Ma L, Zheng Y, Wang J, Li Q, Zeng J, Wang Z, Hou T, Zhang Y, Li M, Shen R, Chen X, Qin J, Lei L, Xia Q, Wang Q, Qiao Y, Wu Z. Development of MIF/IL-1β biosensors for discovery of critical quality attributes and potential allergic rhinitis targets from clinical real-world data by intelligent algorithm coupled with in vitro and vivo mechanism validation. Biosens Bioelectron 2021; 194:113608. [PMID: 34500224 DOI: 10.1016/j.bios.2021.113608] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2021] [Revised: 08/23/2021] [Accepted: 08/29/2021] [Indexed: 10/20/2022]
Abstract
There are still huge challenges from clinical real-world data to accurate targets and critical quality attributes (CQAs) for effective treatment of allergic rhinitis (AR). Here, we present a novel integrated strategy that biosensors and intelligent algorithms were used to angle AR targets and CQAs from clinical real world. Firstly, bagging and boosting partial least squares discrimination analysis (PLS-DA) and Monte-Carlo sampling were proposed to screen accurate AR targets. Macrophage migration inhibitory factor (MIF) and Interleukin-1beta (IL-1β) potential targets were obtained based on large-scale analysis of one thousand proteins and in-depth precise screening of seventy proteins. Furthermore, high electron mobility transistor (HEMT) biosensors were fabricated and successfully modified by MIF and IL-1β potential targets with a low detection concentration as 1 pM and quantitative range from 1 pM to 10 nM. Surprisingly, through MIF/IL-1β biosensors, we angled 5-O-methylvisammioside, amygdalin, and cimicifugoside three CQAs. The strong interaction was discovered among three CQAs and MIF/IL-1β biosensors with almost all KD up to 10-11 M. Finally, interaction among three CQAs and MIF/IL-1β biosensors were evaluated by in vitro and vivo experiments. In this paper, two critical potential targets and three effective CQAs for AR treatment were discovered and validated by biosensor and advanced algorithms. It provides a superior integrated idea for angling critical targets and CQAs from clinical real-world data by biosensors and informatics.
Collapse
Affiliation(s)
- Lijuan Ma
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China
| | - Yanfei Zheng
- Beijing University of Chinese Medicine, School of Traditional Chinese Medicine, Beijing, 102488, China
| | - Ji Wang
- Beijing University of Chinese Medicine, School of Traditional Chinese Medicine, Beijing, 102488, China
| | - Qianqian Li
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China
| | - Jingqi Zeng
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China
| | - Zijian Wang
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China
| | - Tingjun Hou
- Zhejiang University, College of Pharmaceutical Sciences, Zhejiang, 310058, China
| | - Yang Zhang
- Chinese Academy of Sciences, Institute of Semiconductors, Beijing, 100083, China
| | - Mingshuang Li
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China
| | - Rongmin Shen
- Beijing University of Chinese Medicine, School of Traditional Chinese Medicine, Beijing, 102488, China
| | - Xuemei Chen
- Beijing University of Chinese Medicine, School of Traditional Chinese Medicine, Beijing, 102488, China
| | - Jingbo Qin
- Beijing University of Chinese Medicine, School of Traditional Chinese Medicine, Beijing, 102488, China
| | - Leting Lei
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China
| | - Qing Xia
- Biology Institute of Shandong Academy of Sciences, Shandong, 250014, China
| | - Qi Wang
- Beijing University of Chinese Medicine, School of Traditional Chinese Medicine, Beijing, 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing, 102488, China.
| | - Yanjiang Qiao
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing, 102488, China.
| | - Zhisheng Wu
- Beijing University of Chinese Medicine, School of Chinese Materia Medica, Beijing, 102488, China; Pharmaceutical Engineering and New Drug Development of TCM of Ministry of Education, Beijing, 102488, China.
| |
Collapse
|
8
|
Wu X, Manickam S, Wu T, Pang CH. Insights into the Role of Graphene/Graphene‐hybrid Nanocomposites in Antiviral Therapy. CHEMBIOENG REVIEWS 2021. [DOI: 10.1002/cben.202100018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Affiliation(s)
- Xinyun Wu
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
| | - Sivakumar Manickam
- University of Technology Brunei Department of Petroleum and Chemical Engineering BE1410 Bandar Seri Begawan Brunei Darussalam
| | - Tao Wu
- University of Nottingham Ningbo China Key Laboratory for Carbonaceous Wastes Processing and Process Intensification Research of Zhejiang Province 315100 Ningbo China
- University of Nottingham Ningbo China New Materials Institute 315100 Ningbo China
| | - Cheng Heng Pang
- University of Nottingham Ningbo China Department of Chemical and Environmental Engineering 315100 Ningbo China
- University of Nottingham Ningbo China Municipal Key Laboratory of Clean Energy Conversion Technologies 315100 Ningbo China
| |
Collapse
|
9
|
Yim Y, Shin H, Ahn SM, Min DH. Graphene oxide-based fluorescent biosensors and their biomedical applications in diagnosis and drug discovery. Chem Commun (Camb) 2021; 57:9820-9833. [PMID: 34494621 DOI: 10.1039/d1cc02157e] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/11/2022]
Abstract
Graphene oxide (GO), an oxidized derivative of graphene, has received much attention for developing novel fluorescent bioanalytic platforms due to its remarkable optical properties and biocompatibility. The reliable performance and robustness of GO-based biosensors have enabled various applications in the biomedical field including diagnosis and drug discovery. Here, recent advances in the development of GO-based fluorescent biosensors are overviewed, particularly nucleic acid detection and enzyme activity assay. In addition, practical applications in biomarker detection and high-throughput screening are also examined. Lastly, basic design principles and remaining challenges of these types of biosensors are discussed for further progress.
Collapse
Affiliation(s)
- Yeajee Yim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Seong Min Ahn
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea.
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea. .,Department of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea.,Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
10
|
Kim J, Park SJ, Park J, Shin H, Jang YS, Woo JS, Min DH. Identification of a Direct-Acting Antiviral Agent Targeting RNA Helicase via a Graphene Oxide Nanobiosensor. ACS APPLIED MATERIALS & INTERFACES 2021; 13:25715-25726. [PMID: 34036784 DOI: 10.1021/acsami.1c04641] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Dengue virus (DENV), an arbovirus transmitted by mosquitoes, causes infectious diseases such as dengue fever, dengue hemorrhagic fever, and dengue shock syndrome. Despite the dangers posed by DENV, there are no approved antiviral drugs for treatment of DENV infection. Considering the potential for a global dengue outbreak, rapid development of antiviral agents against DENV infections is crucial as a preemptive measure; thus, the selection of apparent drug targets, such as the viral enzymes involved in the viral life cycle, is recommended. Helicase, a potential drug target in DENV, is a crucial viral enzyme that unwinds double-stranded viral RNA, releasing single-stranded RNA genomes during viral replication. Therefore, an inhibitor of helicase activity could serve as a direct-acting antiviral agent. Here, we introduce an RNA helicase assay based on graphene oxide, which enables fluorescence-based analysis of RNA substrate-specific helicase enzyme activity. This assay demonstrated high reliability and ability for high-throughput screening, identifying a new helicase inhibitor candidate, micafungin (MCFG), from an FDA-approved drug library. As a direct-acting antiviral agent targeting RNA helicase, MCFG inhibits DENV proliferation in cells and an animal model. Notably, in vivo, MCFG treatment reduced viremia, inflammatory cytokine levels, and viral loads in several tissues and improved survival rates by up to 40% in a lethal mouse model. Therefore, we suggest MCFG as a potential direct-acting antiviral drug candidate.
Collapse
Affiliation(s)
- Jungho Kim
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Se-Jin Park
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Jisang Park
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
| | - Yong-Suk Jang
- Department of Bioactive Material Sciences and Institute of Bioactive Materials, Jeonbuk National University, Jeonju 54896, Republic of Korea
- Department of Molecular Biology and the Institute for Molecular Biology and Genetics, Jeonbuk National University, Jeonju 54896, Republic of Korea
| | - Jae-Sung Woo
- Center for RNA Research, Institute for Basic Science (IBS), Seoul National University, Seoul 08826, Republic of Korea
- Department of Life Sciences, Korea University, Seoul 02841, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul 08826, Republic of Korea
- School of Biological Sciences, Seoul National University, Seoul 08826, Republic of Korea
- Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul 06683, Republic of Korea
| |
Collapse
|
11
|
Sharma T, Abohashrh M, Baig MH, Dong JJ, Alam MM, Ahmad I, Irfan S. Screening of drug databank against WT and mutant main protease of SARS-CoV-2: Towards finding potential compound for repurposing against COVID-19. Saudi J Biol Sci 2021; 28:3152-3159. [PMID: 33649700 PMCID: PMC7901282 DOI: 10.1016/j.sjbs.2021.02.059] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2020] [Revised: 02/09/2021] [Accepted: 02/16/2021] [Indexed: 01/07/2023] Open
Abstract
Although several pharmacological agents are under investigation to be repurposed as therapeutic against COVID-19, not much success has been achieved yet. So, the search for an effective and active option for the treatment of COVID-19 is still a big challenge. The Spike protein (S), RNA-dependent RNA polymerase (RdRp), and Main protease (Mpro) are considered to be the primary therapeutic drug target for COVID-19. In this study we have screened the drugbank compound library against the Main Protease. But our search was not limited to just Mpro. Like other viruses, SARS-CoV-2, have also acquired unique mutations. These mutations within the active site of these target proteins may be an important factor hindering effective drug candidate development. In the present study we identified important active site mutations within the SARS-CoV-2 Mpro (Y54C, N142S, T190I and A191V). Further the drugbank database was computationally screened against Mpro and the selected mutants. Finally, we came up with the common molecules effective against the wild type (WT) and all the selected Mpro. The study found Imiglitazar, was found to be the most active compound against the wild type of Mpro. While PF-03715455 (Y54C), Salvianolic acid A (N142S and T190I), and Montelukast (A191V) were found to be most active against the other selected mutants. It was also found that some other compounds such as Acteoside, 4-Amino-N- {4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide, PF-00610355, 4-Amino-N-4-[2-(2,6-Dimethyl-Phenoxy)-Acetylamino]-3-Hydroxy-1-Isobutyl-5-Phenyl-Pentyl}-Benzamide and Atorvastatin were showing high efficacy against the WT as well as other selected mutants. We believe that these molecules will provide a better and effective option for the treatment of COVID-19 clinical manifestations.
Collapse
Affiliation(s)
- Tanuj Sharma
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammed Abohashrh
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Mohammad Hassan Baig
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Jae-June Dong
- Department of Family Medicine, Yonsei University College of Medicine, Seoul, Republic of Korea
| | - Mohammad Mahtab Alam
- Department of Basic Medical Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Irfan Ahmad
- Department of Clinical Laboratory Sciences, College of Applied Medical Sciences, King Khalid University, Abha, Saudi Arabia
| | - Safia Irfan
- Department of Physiology, College of Medicine, King Khalid University, Abha, Saudi Arabia
| |
Collapse
|
12
|
Shin H, Park SJ, Kim J, Lee JS, Min DH. A graphene oxide-based fluorescent nanosensor to identify antiviral agents via a drug repurposing screen. Biosens Bioelectron 2021; 183:113208. [PMID: 33839535 DOI: 10.1016/j.bios.2021.113208] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2020] [Revised: 03/23/2021] [Accepted: 03/28/2021] [Indexed: 10/21/2022]
Abstract
Currently, there are no approved therapeutics for Dengue virus (DENV) infection, even though it can cause fatal complications. Understanding DENV infection and its propagation process in host cells is necessary to develop specific antiviral therapeutics. Here, we developed a graphene oxide-based fluorescent system (Graphene Oxide-based Viral RNA Analysis system, GOViRA) that enables sensitive and quantitative real-time monitoring of the intracellular viral RNA level in living cells. The GOViRA system consists of a fluorescent dye-labeled peptide nucleic acid (PNA) with a complementary sequence to the DENV genome and a dextran-coated reduced graphene oxide nanocolloid (DRGON). When the dye labeled PNA is adsorbed onto DRGON, the fluorescence of the dye is effectively quenched. The quenched fluorescence signal is recovered when the dye labeled PNA forms interaction with intracellular viral RNA in DENV infected host cells. We demonstrated the successful use of the GOViRA platform for high-throughput screening to discover novel antiviral compounds. Through a cell-based high-throughput screening of FDA-approved small-molecule drugs, we identified ulipristal, a selective progesterone receptor modulator (SPRM), as a potent inhibitor against DENV infection. The anti-DENV activity of ulipristal was confirmed both in vitro and in vivo. Moreover, we suggest that the mode of action of ulipristal is mediated by inhibiting viral entry into the host cells.
Collapse
Affiliation(s)
- Hojeong Shin
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Se-Jin Park
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Jungho Kim
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Ji-Seon Lee
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea
| | - Dal-Hee Min
- Department of Chemistry, Seoul National University, Seoul, 08826, Republic of Korea; Department of Biological Sciences, Seoul National University, Seoul, 08826, Republic of Korea; Institute of Biotherapeutics Convergence Technology, Lemonex Inc., Seoul, 08826, Republic of Korea.
| |
Collapse
|