1
|
Yan HY, Zhou DY, Ge SJ, Yu YJ, Yuan HT, Liu RH, Yang YJ, Wang Y, Liao LS, Jiang ZQ. Engineering Nitrogen/Carbonyl MR-TADF Emitters: Spiro-Lock and Tert-Butyl Synergy in Narrowband Blue Emission. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2502915. [PMID: 40159798 DOI: 10.1002/smll.202502915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/05/2025] [Revised: 03/20/2025] [Indexed: 04/02/2025]
Abstract
Multi-resonance thermally activated delayed fluorescence (MR-TADF) emitters with rigid planar structures are promising for their exceptional color purity and outstanding device efficiency. However, as an important MR unit, rigidly interlocked nitrogen/carbonyl-based blue materials often face challenges like spectral broadening, red-shifting, and reduced efficiency compared to nitrogen/boron system. Herein, a peripheral modification strategy incorporating tert-butyl groups via a spiro-lock framework is used to synthesize four molecules: QAO-TF, TQAO-TF, TQAO-F, and TSOQ. The spiro-lock structure solidifies the molecular framework, narrows the emission bandwidth, and elevates the photoluminescence quantum yield to over 96%. Meanwhile, the peripheral tert-butyl groups introduce steric hindrance, isolating the luminescent core and suppressing intermolecular interactions in the solid state, thereby improving device efficiency while maintaining narrowband emission. Notably, TQAO-F shows an electroluminescence peak at 476 nm with a 25 nm full width at half maximum (FWHM) and an external quantum efficiency (EQE) of 31.7%. TSOQ, with its oxygen-induced charge effect, achieves narrowband pure blue emission with an FWHM of 20 nm, surpassing 30% EQE without sensitizers. This overall performance suggests its potential to rival the classic nitrogen/boron system.
Collapse
Affiliation(s)
- Hong-Yan Yan
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Dong-Ying Zhou
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Shi-Jie Ge
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - You-Jun Yu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Hai-Tian Yuan
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Rui-Hong Liu
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yue-Jian Yang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Yu Wang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| | - Liang-Sheng Liao
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
- Macao Institute of Materials Science and Engineering, Macau University of Science and Technology, Taipa, Macau, 999078, P. R. China
| | - Zuo-Quan Jiang
- State Key Laboratory of Bioinspired Interfacial Materials Science, Institute of Functional Nano & Soft Materials (FUNSOM), Soochow University, Suzhou, Jiangsu, 215123, P. R. China
| |
Collapse
|
2
|
Peter BD, Yi Q, Cui C, Biffis A, Yao J, Luo Z. An [Ag 3(dppy) 2(NO 3) 3] n cluster polymer with narrowing fluorescence. iScience 2025; 28:111982. [PMID: 40160422 PMCID: PMC11951024 DOI: 10.1016/j.isci.2025.111982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2024] [Revised: 01/22/2025] [Accepted: 02/05/2025] [Indexed: 04/02/2025] Open
Abstract
Low-dimensional nanomaterials with lattice confinement, including those of nanoclusters (NCs), offer benefits for fluorescence narrowing. Compared to quantum dots of metal NCs, however, one-dimensional structures of such NCs challenge the single-crystal synthesis. Here, we report the synthesis of a novel [Ag3(dppy)2(NO3)3] n cluster polymer through the reduction of AgNO3 with NaBH4 in a dark environment. This cluster polymer incorporates the coordination and passivation of both diminished nitro groups (NO3) and diphenyl-2-pyridylphosphine (dppy) ligands. The weak Ag-Ag metallic bonds within this cluster polymer are governed by argentophilic interactions, with each Ag3 unit connected by a NO3 group. This cluster polymer exhibits photoluminescence with three emission bands at 308, 352, and 620 nm, aligned with the purple (308/352 nm) and red (620 nm) regions, respectively. We synthesized microfibers of this cluster polymer using reprecipitation, resulting in a fluorescence bandwidth reduction to approximately one-tenth in the microfiber samples relative to the diluted solution.
Collapse
Affiliation(s)
- Blessing D. Peter
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Qiuhao Yi
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| | - Chaonan Cui
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Andrea Biffis
- Dipartimento di Scienze Chimiche, Universita degli Studi di Padova, 35131 Padova, Italy
| | - Jiannian Yao
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- Laboratory of Photochemistry, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Zhixun Luo
- Beijing National Laboratory for Molecular Sciences (BNLMS), State Key Laboratory for Structural Chemistry of Unstable and Stable Species, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- School of Chemical Science, University of Chinese Academy of Sciences, Beijing 100049, China
| |
Collapse
|
3
|
Dos Santos JM, Hall D, Basumatary B, Bryden M, Chen D, Choudhary P, Comerford T, Crovini E, Danos A, De J, Diesing S, Fatahi M, Griffin M, Gupta AK, Hafeez H, Hämmerling L, Hanover E, Haug J, Heil T, Karthik D, Kumar S, Lee O, Li H, Lucas F, Mackenzie CFR, Mariko A, Matulaitis T, Millward F, Olivier Y, Qi Q, Samuel IDW, Sharma N, Si C, Spierling L, Sudhakar P, Sun D, Tankelevičiu Tė E, Duarte Tonet M, Wang J, Wang T, Wu S, Xu Y, Zhang L, Zysman-Colman E. The Golden Age of Thermally Activated Delayed Fluorescence Materials: Design and Exploitation. Chem Rev 2024; 124:13736-14110. [PMID: 39666979 DOI: 10.1021/acs.chemrev.3c00755] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2024]
Abstract
Since the seminal report by Adachi and co-workers in 2012, there has been a veritable explosion of interest in the design of thermally activated delayed fluorescence (TADF) compounds, particularly as emitters for organic light-emitting diodes (OLEDs). With rapid advancements and innovation in materials design, the efficiencies of TADF OLEDs for each of the primary color points as well as for white devices now rival those of state-of-the-art phosphorescent emitters. Beyond electroluminescent devices, TADF compounds have also found increasing utility and applications in numerous related fields, from photocatalysis, to sensing, to imaging and beyond. Following from our previous review in 2017 ( Adv. Mater. 2017, 1605444), we here comprehensively document subsequent advances made in TADF materials design and their uses from 2017-2022. Correlations highlighted between structure and properties as well as detailed comparisons and analyses should assist future TADF materials development. The necessarily broadened breadth and scope of this review attests to the bustling activity in this field. We note that the rapidly expanding and accelerating research activity in TADF material development is indicative of a field that has reached adolescence, with an exciting maturity still yet to come.
Collapse
Affiliation(s)
- John Marques Dos Santos
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - David Hall
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Biju Basumatary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Megan Bryden
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dongyang Chen
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Praveen Choudhary
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Thomas Comerford
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ettore Crovini
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Andrew Danos
- Department of Physics, Durham University, Durham DH1 3LE, UK
| | - Joydip De
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Stefan Diesing
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Mahni Fatahi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Máire Griffin
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Abhishek Kumar Gupta
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Hassan Hafeez
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Lea Hämmerling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Emily Hanover
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- EaStCHEM School of Chemistry, The University of Edinburgh, Edinburgh, EH9 3FJ, UK
| | - Janine Haug
- Institute of Organic Chemistry (IOC), Karlsruhe Institute of Technology (KIT), Fritz-Haber-Weg 6, 76131 Karlsruhe, Germany
| | - Tabea Heil
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Durai Karthik
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Shiv Kumar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Department of Chemistry, University of Delhi, Delhi 110007, India
| | - Oliver Lee
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Haoyang Li
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Fabien Lucas
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | | | - Aminata Mariko
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tomas Matulaitis
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Francis Millward
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yoann Olivier
- Laboratory for Computational Modeling of Functional Materials, Namur Institute of Structured Matter, Université de Namur, Rue de Bruxelles, 61, 5000 Namur, Belgium
| | - Quan Qi
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Ifor D W Samuel
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Nidhi Sharma
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Changfeng Si
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Leander Spierling
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Pagidi Sudhakar
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Dianming Sun
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Eglė Tankelevičiu Tė
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Michele Duarte Tonet
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Jingxiang Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Tao Wang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Sen Wu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Yan Xu
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| | - Le Zhang
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
- Organic Semiconductor Centre, SUPA School of Physics and Astronomy, University of St Andrews, St Andrews, Fife KY169SS, UK
| | - Eli Zysman-Colman
- Organic Semiconductor Centre, EaStCHEM School of Chemistry, University of St Andrews, St Andrews, Fife KY169ST, UK
| |
Collapse
|
4
|
An RZ, Sun Y, Chen HY, Liu Y, Privitera A, Myers WK, Ronson TK, Gillett AJ, Greenham NC, Cui LS. Excited-State Engineering Enables Efficient Deep-Blue Light-Emitting Diodes Exhibiting BT.2020 Color Gamut. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313602. [PMID: 38598847 DOI: 10.1002/adma.202313602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/13/2023] [Revised: 04/01/2024] [Indexed: 04/12/2024]
Abstract
Organic luminescent materials that exhibit thermally activated delayed fluorescence (TADF) can convert non-emissive triplet excitons into emissive singlet states through a reverse intersystem crossing (RISC) process. Therefore, they have tremendous potential for applications in organic light-emitting diodes (OLEDs). However, with the development of ultra-high definition 4K/8K display technologies, designing efficient deep-blue TADF materials to achieve the Commission Internationale de l'Éclairage (CIE) coordinates fulfilling BT.2020 remains a significant challenge. Here, an effective approach is proposed to design deep-blue TADF molecules based on hybrid long- and short-range charge-transfer by incorporation of multiple donor moieties into organoboron multiple resonance acceptors. The resulting TADF molecule exhibits deep-blue emission at 414 nm with a full width at half maximum (FWHM) of 29 nm, together with a thousand-fold increase in RISC rate. OLEDs based on the champion material achieve a record maximum external quantum efficiency (EQE) of 22.8% with CIE coordinates of (0.163, 0.046), approaching the coordinates of the BT.2020 blue standard. Moreover, TADF-assisted fluorescence devices employing the designed material as a sensitizer exhibit an exceptional EQE of 33.1%. This work thus provides a blueprint for future development of efficient deep-blue TADF emitters, representing an important milestone towards meeting the blue color gamut standard of BT.2020.
Collapse
Affiliation(s)
- Rui-Zhi An
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuqi Sun
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Hao-Yang Chen
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| | - Yuan Liu
- Key Laboratory of the Ministry of Education for Optoelectronic Measurement Technology and Instrument, Beijing Information Science & Technology University, No. 12 Xiaoying East Road, Beijing, 100192, China
| | - Alberto Privitera
- Department of Industrial Engineering and INSTM Research Unit, University of Florence, Via Santa Marta 3, Firenze, 50139, Italy
| | - William K Myers
- Centre for Advanced Electron Spin Resonance, Inorganic Chemistry Laboratory, University of Oxford, Oxford, OX1 3QR, UK
| | - Tanya K Ronson
- Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Alexander J Gillett
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Neil C Greenham
- Cavendish Laboratory, University of Cambridge, J.J. Thomson Avenue, Cambridge, CB3 0HE, UK
| | - Lin-Song Cui
- Key Laboratory of Precision and Intelligent Chemistry, University of Science and Technology of China, Hefei, Anhui, 230026, China
- CAS Key Laboratory of Soft Matter Chemistry, Department of Polymer Science and Engineering, University of Science and Technology of China, Hefei, Anhui, 230026, China
| |
Collapse
|
5
|
Huang X, Liu J, Xu Y, Chen G, Huang M, Yu M, Lv X, Yin X, Zou Y, Miao J, Cao X, Yang C. B‒N covalent bond-involved π-extension of multiple resonance emitters enables high-performance narrowband electroluminescence. Natl Sci Rev 2024; 11:nwae115. [PMID: 38707202 PMCID: PMC11067958 DOI: 10.1093/nsr/nwae115] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 03/12/2024] [Accepted: 03/15/2024] [Indexed: 05/07/2024] Open
Abstract
Multi-boron-embedded multiple resonance thermally activated delayed fluorescence (MR-TADF) emitters show promise for achieving both high color-purity emission and high exciton utilization efficiency. However, their development is often impeded by a limited synthetic scope and excessive molecular weights, which challenge material acquisition and organic light-emitting diode (OLED) fabrication by vacuum deposition. Herein, we put forward a B‒N covalent bond-involved π-extension strategy via post-functionalization of MR frameworks, leading to the generation of high-order B/N-based motifs. The structurally and electronically extended π-system not only enhances molecular rigidity to narrow emission linewidth but also promotes reverse intersystem crossing to mitigate efficiency roll-off. As illustrated examples, ultra-narrowband sky-blue emitters (full-width at half-maximum as small as 8 nm in n-hexane) have been developed with multi-dimensional improvement in photophysical properties compared to their precursor emitters, which enables narrowband OLEDs with external quantum efficiencies (EQEmax) of up to 42.6%, in company with alleviated efficiency decline at high brightness, representing the best efficiency reported for single-host OLEDs. The success of these emitters highlights the effectiveness of our molecular design strategy for advanced MR-TADF emitters and confirms their extensive potential in high-performance optoelectronic devices.
Collapse
Affiliation(s)
- Xingyu Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jiahui Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Guohao Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Mingxin Yu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaojun Yin
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen 518060, China
- College of Physics and Optoelectronic Engineering, Shenzhen University, Shenzhen 518060, China
| |
Collapse
|
6
|
Du M, Mai M, Zhang D, Duan L, Zhang Y. Stereo effects for efficient synthesis of orange-red multiple resonance emitters centered on a pyridine ring. Chem Sci 2024; 15:3148-3154. [PMID: 38425532 PMCID: PMC10901515 DOI: 10.1039/d3sc06470k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/03/2023] [Accepted: 01/16/2024] [Indexed: 03/02/2024] Open
Abstract
Despite theoretical difficulties, we herein demonstrate an effective strategy for the inaugural synthesis of an orange-red multiple resonance (MR) emitter centered on a pyridine ring via stereo effects. Compared to conventional benzene-centered materials, the pyridine moiety in the novel MR material acts as a co-acceptor. This results in a significant spectral redshift and a narrower spectrum, as well as an improved photoluminescence quantum yield (PLQY) due to the formation of intramolecular hydrogen bonds. As envisioned, the proof-of-concept emitter Py-Cz-BN exhibits bright orange-red emission peaking at 586 nm with a small full width at half maximum (FWHM) of 0.14 eV (40 nm), exceeding both the wavelength and FWHM achieved with benzene-centered BBCz-Y. Benefiting from high PLQYs (>92%) and suppressed chromophore interactions, the optimized organic light-emitting diodes achieved high maximum external quantum efficiencies of 25.3-29.6%, identical small FWHMs of 0.18 eV (54 nm), and long lifetimes over a wide range of dopant concentrations (1-15 wt%). The performance described above demonstrates the effectiveness of this molecular design and synthesis strategy in constructing high performance long-wavelength MR emitters.
Collapse
Affiliation(s)
- Mingxu Du
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Minqiang Mai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University Beijing 100084 P. R. China
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
| | - Yuewei Zhang
- Laboratory of Flexible Electronics Technology, Tsinghua University Beijing 100084 P. R. China
- Applied Mechanics Lab, School of Aerospace Engineering, Tsinghua University Beijing 100084 P. R. China
| |
Collapse
|
7
|
Hodée M, Massue J, Achelle S, Fihey A, Tondelier D, Ulrich G, Guen FRL, Katan C. Styrylpyrimidine chromophores with bulky electron-donating substituents: experimental and theoretical investigation. Phys Chem Chem Phys 2023; 25:32699-32708. [PMID: 38014523 DOI: 10.1039/d3cp03705c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2023]
Abstract
Styrylpyrimidines with bulky 9,9-dimethylacridan, phenoxazine and phenothiazine electron-donating fragments were designed. Thermally activated delayed fluorescence (TADF) properties were expected for these structures. These chromophores exhibit peculiar emission properties. For 9,9-dimethylacridan and phenoxazine derivatives, a single emission highly sensitive to the polarity is observed in solution whereas for phenothiazine derivative a dual emission is observed in solution and is attributed to the coexistence of quasi-axial (Qax) and quasi-equatorial (Qeq) conformers. This study intends to understand through theoretical and experimental works, why the studied chromophores do not exhibit TADF properties, contrary to what was expected. The absence of phosphorescence both at room temperature and 77 K tends to indicate the impossibility to harvest triplet states in these systems. Wave-function based calculations show that for both conformers of the three chromophores the S1-T1 splitting is significantly larger than 0.2 eV. The second triplet state T2 of Qeq conformers is found very close in energy to the singlet S1 state, but S1 and T2 states possess similar charge transfer characters. This prevents efficient spin-orbit coupling between the states, which is consistent with the absence of TADF.
Collapse
Affiliation(s)
- Maxime Hodée
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Julien Massue
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) 25 Rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Sylvain Achelle
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Arnaud Fihey
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Denis Tondelier
- Laboratoire de Physique des Interfaces et des Couches Minces (LPICM), CNRS, Ecole Polytechnique, IP Paris, Palaiseau Cedex, France
- Université Paris-Saclay, CEA, CNRS, NIMBE, LICSEN, Gif-sur-Yvette, France
| | - Gilles Ulrich
- Institut de Chimie et Procédés pour l'Energie, l'Environnement et la Santé (ICPEES), UMR CNRS 7515, Equipe Chimie Organique pour la Biologie, les Matériaux et l'Optique (COMBO) 25 Rue Becquerel, 67087 Strasbourg, Cedex 02, France.
| | - Françoise Robin-le Guen
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| | - Claudine Katan
- Univ Rennes, ENSCR, CNRS, ISCR (Institut des Sciences Chimiques de Rennes) - UMR 6226, F-35000 Rennes, France.
| |
Collapse
|
8
|
Hu Y, Huang M, Liu H, Miao J, Yang C. Narrowband Fluorescent Emitters Based on BN-Doped Polycyclic Aromatic Hydrocarbons for Efficient and Stable Organic Light-Emitting Diodes. Angew Chem Int Ed Engl 2023; 62:e202312666. [PMID: 37775920 DOI: 10.1002/anie.202312666] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2023] [Revised: 09/29/2023] [Accepted: 09/29/2023] [Indexed: 10/01/2023]
Abstract
Organic light-emitting diodes (OLEDs) using conventional fluorescent emitters are currently attracting considerable interests due to outstanding stability and abundant raw materials. To construct high-performance narrowband fluorophores to satisfy requirements of ultra-high-definition displays, a strategy fusing multi-resonance BN-doped moieties to naphthalene is proposed to construct two novel narrowband fluorophores. Green Na-sBN and red Na-dBN, manifest narrow full-width at half-maxima of 31 nm, near-unity photoluminescence quantum yields and molecular horizontal dipole ratios above 90 %. Their OLEDs exhibit the state-of-the-art performances including high external quantum efficiencies (EQE), ultra-low efficiency roll-off and long operational lifetimes. The Na-sBN-based device achieves EQE as high as 28.8 % and remains 19.8 % even at luminance of 100,000 cd m-2 , and Na-dBN-based device acquires a record-high EQE of 25.2 % among all red OLEDs using pure fluorescent emitters.
Collapse
Affiliation(s)
- Yuxuan Hu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Manli Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - He Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
9
|
Fu Y, Liu H, Tang BZ, Zhao Z. Realizing efficient blue and deep-blue delayed fluorescence materials with record-beating electroluminescence efficiencies of 43.4. Nat Commun 2023; 14:2019. [PMID: 37037820 PMCID: PMC10086064 DOI: 10.1038/s41467-023-37687-3] [Citation(s) in RCA: 30] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2022] [Accepted: 03/28/2023] [Indexed: 04/12/2023] Open
Abstract
As promising luminescent materials for organic light-emitting diodes (OLEDs), thermally activated delayed fluorescence materials are booming vigorously in recent years, but robust blue ones still remain challenging. Herein, we report three highly efficient blue and deep-blue delayed fluorescence materials comprised of a weak electron acceptor chromeno[3,2-c]carbazol-8(5H)-one with a rigid polycyclic structure and a weak electron donor spiro[acridine-9,9'-xanthene]. They hold distinguished merits of excellent photoluminescence quantum yields (99%), ultrahigh horizontal transition dipole ratios (93.6%), and fast radiative transition and reverse intersystem crossing, which furnish superb blue and deep-blue electroluminescence with Commission Internationale de I'Eclairage coordinates (CIEx,y) of (0.14, 0.18) and (0.14, 0.15) and record-beating external quantum efficiencies (ηexts) of 43.4% and 41.3%, respectively. Their efficiency roll-offs are successfully reduced by suppressing triplet-triplet and singlet-singlet annihilations. Moreover, high-performance deep-blue and green hyperfluorescence OLEDs are achieved by utilizing these materials as sensitizers for multi-resonance delayed fluorescence dopants, providing state-of-the-art ηexts of 32.5% (CIEx,y = 0.14, 0.10) and 37.6% (CIEx,y = 0.32, 0.64), respectively, as well as greatly advanced operational lifetimes. These splendid results can surely inspire the development of blue and deep-blue luminescent materials and devices.
Collapse
Affiliation(s)
- Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China
| | - Ben Zhong Tang
- School of Science and Engineering, Shenzhen Institute of Aggregate Science and Technology, The Chinese University of Hong Kong, Shenzhen, Guangdong, 518172, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou, 510640, China.
| |
Collapse
|
10
|
Pei R, Xu Y, Miao J, Peng H, Chen Z, Zhou C, Liu H, Yang C. A Tetrahedral Bisacridine Donor Enables Fast Radiative Decay in Thermally Activated Delayed Fluorescence Emitter. Angew Chem Int Ed Engl 2023; 62:e202217080. [PMID: 36722386 DOI: 10.1002/anie.202217080] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/20/2022] [Revised: 01/16/2023] [Accepted: 01/30/2023] [Indexed: 02/02/2023]
Abstract
Achieving high efficiency and low efficiency roll-off simultaneously is of great significance for further application of thermally activated delayed fluorescent (TADF) emitters. A balance between radiative decay and reversed intersystem crossing must be carefully established. Herein, we propose a qunolino-acridine (QAc) donor composing two acridine with both planar (pAc) and bended (bAc) geometries. Combining with triazine, a TADF emitter QAc-TRZ is assembled. The pAc provides a well interaction with triazine which ensures a decent TADF behavior, while the bAc offers a delocalization of highest occupied molecular orbital (HOMO) which guarantees an enhancement of radiative decay. Remarkably, QAc-TRZ enables a highly efficient organic light emitting diode (OLED) with maximum external quantum efficiency (EQE) of 37.3 %. More importantly, the efficiencies under 100/1000 cd m-2 stay 36.3 % and 31.7 %, respectively, and remain 21.5 % even under 10 000 cd m-2 .
Collapse
Affiliation(s)
- Ranran Pei
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Yulin Xu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Hao Peng
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Zhanxiang Chen
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Changjiang Zhou
- College of Chemical Engineering, Zhejiang University of Technology, Hangzhou, 310014, P. R. China
| | - He Liu
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518055, P. R. China
| |
Collapse
|
11
|
Ding D, Wang Z, Duan C, Han C, Zhang J, Chen S, Wei Y, Xu H. White Fluorescent Organic Light-Emitting Diodes with 100% Power Conversion. RESEARCH (WASHINGTON, D.C.) 2022; 2022:0009. [PMID: 39290967 PMCID: PMC11407583 DOI: 10.34133/research.0009] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Accepted: 10/21/2022] [Indexed: 09/19/2024]
Abstract
Energy-efficient lighting sources are desired to provide another solution of carbon emission reduction. White organic light-emitting diodes are promising, because of theoretical internal quantum efficiencies for 100% electric-to-light conversion. However, pure organic fluorescent materials still face a challenge in harvesting triplet excitons for radiation. Herein, we report a white fluorescent organic light-emitting diode having an external quantum efficiency of 30.7% and a power efficiency of 120.2 lm W-1. In the single emissive layers, we use blue thermally activated delayed fluorescent emitters to sensitize a yellow fluorescent emitter. Transient photoluminescence and electroluminescence analyses suggest that a blue thermally activated delayed fluorescent molecule with ~100% reverse intersystem crossing efficiency and negligible triplet nonradiative rate constant completely converts triplet to singlet, suppressing triplet quenching by a yellow fluorescent emitter and ensuring 100% power conversion.
Collapse
Affiliation(s)
- Dongxue Ding
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Zicheng Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Chunbo Duan
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Shuo Chen
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Ying Wei
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, Heilongjiang, China
| |
Collapse
|
12
|
Ali U, Han G, Yi Y. Switching the Luminescence between TADF and RTP for Organic D‐A‐D Emitters: The Role of D‐A Connection Modes. ADVANCED THEORY AND SIMULATIONS 2022. [DOI: 10.1002/adts.202200725] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2022]
Affiliation(s)
- Usman Ali
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| | - Guangchao Han
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
| | - Yuanping Yi
- Beijing National Laboratory for Molecular Sciences, CAS Key Laboratory of Organic Solids Institute of Chemistry, Chinese Academy of Sciences Beijing 100190 China
- School of Chemical Sciences University of Chinese Academy of Sciences Beijing 100049 China
| |
Collapse
|
13
|
Huang Z, Lei B, Yang D, Ma D, Bin Z, You J. Modified Intramolecular‐Lock Strategy Enables Efficient Thermally Activated Delayed Fluorescence Emitters for Non‐Doped OLEDs. Angew Chem Int Ed Engl 2022; 61:e202213157. [DOI: 10.1002/anie.202213157] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/06/2022] [Indexed: 11/17/2022]
Affiliation(s)
- Zhenmei Huang
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| | - Bowen Lei
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Zhengyang Bin
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| | - Jingsong You
- Key Laboratory of Green Chemistry and Technology of Ministry of Education College of Chemistry Sichuan University Chengdu 610064 P. R. of China
| |
Collapse
|
14
|
Effect of host polarity on efficiency of thermally activated delayed fluorescent and hyperfluorescent organic light emitting devices. J IND ENG CHEM 2022. [DOI: 10.1016/j.jiec.2022.09.049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
|
15
|
Yin C, Zhang Y, Huang T, Liu Z, Duan L, Zhang D. Highly efficient and nearly roll-off-free electrofluorescent devices via multiple sensitizations. SCIENCE ADVANCES 2022; 8:eabp9203. [PMID: 35895814 PMCID: PMC9328673 DOI: 10.1126/sciadv.abp9203] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The efficiency roll-off at high luminance has hindered the wide application of organic light-emitting diodes (OLEDs) for decades. To circumvent this issue, both high exciton utilization and short exciton residence should be satisfied, which, however, faces formidable challenges. Here, we propose an advanced approach of phosphor-assisted thermally activated delayed fluorophor (TADF)-sensitized fluorescence, abbreviated as TPSF. It is proved to be a rational strategy that can realize high quantum efficiency and elaborately accelerated radiative exciton consumption simultaneously by breaking singlet-triplet spin-flip cycles on a TADF host via multiple sensitizations. On the basis of a TADF molecule exhibiting anti-accumulation-caused quenching character, a proof-of-concept device exhibits a maximum external quantum efficiency (EQEmax) of 24.2% with an ultrahigh L90% (the luminance at which EQE drops to 90% of its maximum value) of 190,500 cd m-2 and a greatly improved operational stability, unlocking the full potential of OLEDs for ultrahigh-luminance applications.
Collapse
Affiliation(s)
- Chen Yin
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Yuewei Zhang
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Tianyu Huang
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Ziyang Liu
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing 100084, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing 100084, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics, Department of Chemistry, Tsinghua University, Beijing 100084, China
- Corresponding author.
| |
Collapse
|
16
|
Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi-Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 . Angew Chem Int Ed Engl 2022; 61:e202202227. [PMID: 35536020 DOI: 10.1002/anie.202202227] [Citation(s) in RCA: 47] [Impact Index Per Article: 15.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2022] [Indexed: 12/19/2022]
Abstract
Highly efficient circularly polarized luminescence (CPL) emitters with narrowband emission remain a formidable challenge for circularly polarized OLEDs (CP-OLEDs). Here, a promising strategy for developing chiral emitters concurrently featuring multi-resonance thermally activated delayed fluorescence (MR-TADF) and circularly polarized electroluminescence (CPEL) is demonstrated by the integration of molecular rigidity, central chirality and MR effect. A pair of chiral green emitters denoted as (R)-BN-MeIAc and (S)-BN-MeIAc is designed. Benefited by the rigid and quasi-planar MR-framework, the enantiomers not only display mirror-image CPL spectra, but also exhibit TADF properties with a high photoluminescence quantum yield of 96 %, a narrow FWHM of 30 nm, and a high horizontal dipole orientation of 90 % in the doped film. Consequently, the enantiomer-based CP-OLEDs achieved excellent external quantum efficiencies of 37.2 % with very low efficiency roll-off, representing the highest device efficiency of all the reported CP-OLEDs.
Collapse
Affiliation(s)
- Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Ao Ying
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| | - Shaolong Gong
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, P. R. China
| |
Collapse
|
17
|
Yang Y, Li N, Miao J, Cao X, Ying A, Pan K, Lv X, Ni F, Huang Z, Gong S, Yang C. Chiral Multi‐Resonance TADF Emitters Exhibiting Narrowband Circularly Polarized Electroluminescence with an EQE of 37.2 %. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202202227] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2022]
Affiliation(s)
- Yiyu Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Nengquan Li
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Xiaosong Cao
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Ao Ying
- Department of Chemistry Renmin Hospital of Wuhan University Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 China
| | - Ke Pan
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Xialei Lv
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Fan Ni
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Zhongyan Huang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| | - Shaolong Gong
- Department of Chemistry Renmin Hospital of Wuhan University Hubei Key Lab on Organic and Polymeric Optoelectronic Materials Wuhan University Wuhan 430072 China
| | - Chuluo Yang
- Shenzhen Key Laboratory of New Information Display and Storage Materials College of Materials Science and Engineering Shenzhen University Shenzhen 518060 P. R. China
| |
Collapse
|
18
|
Fiodorova I, Serevičius T, Skaisgiris R, Juršėnas S, Tumkevicius S. Substituent effect on TADF properties of 2-modified 4,6-bis(3,6-di- tert-butyl-9-carbazolyl)-5-methylpyrimidines. Beilstein J Org Chem 2022; 18:497-507. [PMID: 35601989 PMCID: PMC9086497 DOI: 10.3762/bjoc.18.52] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2022] [Accepted: 04/28/2022] [Indexed: 11/23/2022] Open
Abstract
The interest in organic materials exhibiting thermally activated delayed fluorescence (TADF) significantly increased in recent years owing to their potential application as emitters in highly efficient organic light emitting diodes (OLEDs). Simple modification of the molecular structure of TADF compounds through the selection of different electron-donating or accepting fragments opens great possibilities to tune the emission properties and rates. Here we present the synthesis of a series of novel pyrimidine-carbazole emitters and their photophysical characterization in view of effects of substituents in the pyrimidine ring on their TADF properties. We demonstrate that electron-withdrawing substituents directly connected to the pyrimidine unit have greater impact on the lowering of the energy gap between singlet and triplet states (ΔE ST) for efficient TADF as compared to those attached through a phenylene bridge. A modification of the pyrimidine unit with CN, SCH3, and SO2CH3 functional groups at position 2 is shown to enhance the emission yield up to 0.5 with pronounced TADF activity.
Collapse
Affiliation(s)
- Irina Fiodorova
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| | - Tomas Serevičius
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Rokas Skaisgiris
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Saulėtekio 3, LT-10257 Vilnius, Lithuania
| | - Sigitas Tumkevicius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225, Vilnius, Lithuania
| |
Collapse
|
19
|
Zhang D, Wada Y, Wang Q, Dai H, Fan T, Meng G, Wei J, Zhang Y, Suzuki K, Li G, Duan L, Kaji H. Highly Efficient and Stable Blue Organic Light-Emitting Diodes based on Thermally Activated Delayed Fluorophor with Donor-Void-Acceptor Motif. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2022; 9:e2106018. [PMID: 35224891 PMCID: PMC9036013 DOI: 10.1002/advs.202106018] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2021] [Revised: 02/04/2022] [Indexed: 05/23/2023]
Abstract
Thermally activated delayed fluorophores (TADF) with donor-acceptor (D-A) structures always face strong conjugation between donor and acceptor segments, rendering delocalized new molecular orbitals that go against blue emission. Developing TADF emitters with blue colors, high efficiencies, and long lifetimes simultaneously is therefore challenging. Here, a D-void-A structure with D and A moieties connected at the void-position where the frontier orbital from donor and acceptor cannot be distributed, resulting in nonoverlap of the orbitals is proposed. A proof-of-the-concept TADF emitter with 3,6-diphenyl-9H-carbazole (D) connected at the 3'3-positions of 9H-xanthen-9-one (A), the void carbon-atom with no distribution of the highest occupied molecular orbital (HOMO) of A-segment, realizes more efficient and blue-shifted emission compared with the contrast D-A isomers. The deeper HOMO-2 of A is found to participate into conjugation rather than HOMO, providing a wider-energy-gap. The corresponding blue device exhibits a y color coordinate (CIEy ) of 0.252 and a maximum external quantum efficiency of 27.5%. The stability of this compound is further evaluated as a sensitizer for a multiple resonance fluorophore, realizing a long lifetime of ≈650 h at an initial luminance of 100 cd m-2 with a CIEy of 0.195 and a narrowband emission with a full-width-at-half-maxima of 21 nm.
Collapse
Affiliation(s)
- Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Yoshimasa Wada
- Institute for Chemical ResearchKyoto UniversityUjiKyoto611‐0011Japan
| | - Qi Wang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Hengyi Dai
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Tianjiao Fan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Guoyun Meng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Jinbei Wei
- Beijing National Laboratory for Molecular SciencesCAS Research/Education Center for Excellence in Molecular SciencesInstitute of ChemistryChinese Academy of SciencesBeijing100190P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Katsuaki Suzuki
- Institute for Chemical ResearchKyoto UniversityUjiKyoto611‐0011Japan
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of EducationDepartment of ChemistryTsinghua UniversityBeijing100084P. R. China
| | - Hironori Kaji
- Institute for Chemical ResearchKyoto UniversityUjiKyoto611‐0011Japan
| |
Collapse
|
20
|
Chen Z, Zhong C, Han J, Miao J, Qi Y, Zou Y, Xie G, Gong S, Yang C. High-Performance Circularly Polarized Electroluminescence with Simultaneous Narrowband Emission, High Efficiency, and Large Dissymmetry Factor. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2022; 34:e2109147. [PMID: 35229379 DOI: 10.1002/adma.202109147] [Citation(s) in RCA: 27] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/11/2021] [Revised: 02/15/2022] [Indexed: 06/14/2023]
Abstract
Organic light-emitting diodes (OLEDs) that can simultaneously achieve narrowband emission, high efficiency, and circularly polarized luminescence remain a formidable challenge. In this study, a simple strategy is developed to address this challenge. A chiral exciplex-forming co-host is first designed by employing a chiral donor and an achiral acceptor molecule. The chiral exciplex host enables an achiral green multiple-resonance thermally activated delayed fluorescence emitter to achieve high-performance circularly polarized electroluminescence (CP-EL) with a high external quantum efficiency of 33.2%, large electroluminescence dissymmetry factor of 2.8 × 10-3 , and a small full-width at half-maximum of 42 nm. This work provides a general approach for realizing CP-EL using easily available achiral emitters and can significantly extend the scope of circularly polarized OLEDs.
Collapse
Affiliation(s)
- Zhanxiang Chen
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Cheng Zhong
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Jianmei Han
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Jingsheng Miao
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yanyu Qi
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Yang Zou
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| | - Guohua Xie
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Shaolong Gong
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
| | - Chuluo Yang
- Department of Chemistry, Renmin Hospital of Wuhan University, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan, 430072, China
- Shenzhen Key Laboratory of Polymer Science and Technology, College of Materials Science and Engineering, Shenzhen University, Shenzhen, 518060, China
| |
Collapse
|
21
|
He JL, Tang Y, Zhang K, Zhao Y, Lin YC, Hsu CK, Chen CH, Chiu TL, Lee JH, Wang CK, Wu CC, Fan J. An extended π-backbone for highly efficient near-infrared thermally activated delayed fluorescence with enhanced horizontal molecular orientation. MATERIALS HORIZONS 2022; 9:772-779. [PMID: 34897349 DOI: 10.1039/d1mh01651b] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
Near-infrared thermally activated delayed fluorescence (NIR-TADF) materials with emission over 700 nm have been insufficiently investigated mainly due to the limited choice of strong donor/acceptor units for molecular construction and the limited electronic coupling between the donors and acceptors. Herein, a novel D-A1-A2-A3 configuration was developed for the design of a NIR-TADF material (TPA-CN-N4-2PY), in which three types of sub-acceptor units (CN: cyano; N4: dipyrido[3,2-a:2',3'-c]phenazine; PY: pyridine) were incorporated into a molecular skeleton to reinforce the electron-accepting strength. The attachment of two pyridine units on TPA-CN-N4 produced TPA-CN-N4-2PY with an extended π-backbone, which shifted the electroluminescence (EL) emission into the NIR region and enhanced the horizontal ratio of emitting dipole orientation (Θ//) simultaneously. TPA-CN-N4-2PY-based OLEDs demonstrated a record-high external quantum efficiency (EQE) of 21.9% with an emission peak at 712 nm and Θ// = 85% at the doping ratio of 9.0 wt%. On the contrary, the parent compound TPA-CN-N4-based OLEDs at the same doping ratio achieved an EQE of 23.4% at 678 nm with Θ// = 75%. This multiple sub-acceptors approach could enrich the design strategy of the NIR-TADF materials, and the large conjugated system could improve the Θ// for achieving efficient emitters.
Collapse
Affiliation(s)
- Jian-Li He
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
| | - Yukun Tang
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.
| | - Kai Zhang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China.
| | - Yue Zhao
- Coordination Chemistry Institute, State Key Laboratory of Coordination Chemistry, School of Chemistry and Chemical Engineering, Nanjing National Laboratory of Microstructures, Nanjing University, Nanjing 210023, China
| | - Yu-Ching Lin
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.
| | - Chih-Kai Hsu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.
| | - Chia-Hsun Chen
- Department of Chemistry, National Taiwan University, Taipei 10617, Taiwan
| | - Tien-Lung Chiu
- Department of Electrical Engineering, Yuan Ze University, Taoyuan 32003, Taiwan
| | - Jiun-Haw Lee
- Graduate Institute of Photonics and Optoelectronics and Department of Electrical Engineering, National Taiwan University, Taipei 10617, Taiwan
| | - Chuan-Kui Wang
- Shandong Province Key Laboratory of Medical Physics and Image Processing Technology, School of Physics and Electronics, Shandong Normal University, 250014 Jinan, China.
| | - Chung-Chih Wu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan.
| | - Jian Fan
- Institute of Functional Nano & Soft Materials (FUNSOM), Jiangsu Key Laboratory for Carbon-Based Functional Materials & Devices, Soochow University, Suzhou, Jiangsu 215123, China.
- State Key Laboratory of Structural Chemistry, Fujian Institute of Research on Structure of Matter, Chinese Academy of Sciences, Fuzhou, Fujian 35002, China
| |
Collapse
|
22
|
Yang H, Zhang M, Zhao J, Pu C, Lin H, Tao S, Zheng C, Zhang X. Improving Efficiency of Red Thermally Activated Delayed Fluorescence Emitter by Introducing
Quasi‐Degenerate
Orbital Distribution. CHINESE J CHEM 2022. [DOI: 10.1002/cjoc.202100776] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/05/2022]
Affiliation(s)
- Hao‐Yu Yang
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Ming Zhang
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| | - Jue‐Wen Zhao
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Chun‐Peng Pu
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Hui Lin
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Si‐Lu Tao
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Cai‐Jun Zheng
- School of Optoelectronic Science and Engineering University of Electronic Science and Technology of China Chengdu Sichuan 610054 China
| | - Xiao‐Hong Zhang
- Institute of Functional Nano & Soft Materials (FUNSOM) Soochow University Suzhou Jiangsu 215123 China
| |
Collapse
|
23
|
Tian Y, Wang H, Man Y, Zhang N, Zhang J, Li Y, Han C, Xu H. Weaving host matrices with intermolecular hydrogen bonds for high-efficiency white thermally activated delayed fluorescence. Chem Sci 2021; 12:14519-14530. [PMID: 34881003 PMCID: PMC8580069 DOI: 10.1039/d1sc04188f] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Accepted: 10/07/2021] [Indexed: 01/14/2023] Open
Abstract
A thermally activated delayed fluorescence (TADF) white organic light-emitting diode (WOLED) holds great promise for low-cost, large-scale lighting applications. Nevertheless, manipulating exciton allocation in a white TADF single layer is still a challenge. Herein, we demonstrate that the exciton kinetic process of dually doped white TADF films is strongly dependent on the grid regularity of the host matrix. Intermolecular hydrogen bonds (IHBs) are used to weave the matrices of two host molecules DPEQPO and DPSQPO featuring four phosphine oxide (PO) groups and different IHB orientations. The DPSQPO matrix forms regular grids to uniformly disperse and separate dopants, while DPEQPO exhibits chaotic IHBs, in turn inducing a heterogeneous dopant distribution. As a consequence, in both photoluminescence and electroluminescence processes, in contrast to DPEQPO hosted systems with comparable singlet Förster resonance energy transfer and triplet Dexter energy transfer, DPSQPO provides a FRET-predominant exciton allocation between blue and yellow dopants, which markedly suppresses triplet quenching and improves the white color purity, resulting in a state-of-the-art external quantum efficiency up to 24.2% of its single-emissive-layer pure-white TADF diode, in contrast to 16.0% for DPEQPO based analogs. These results indicate the significance of host engineering for exciton kinetics and suggest the feasibility of host grid design for developing high-performance TADF lighting. A thermally activated delayed fluorescence (TADF) white organic light-emitting diode (WOLED) holds great promise for low-cost, large-scale lighting applications.![]()
Collapse
Affiliation(s)
- Yuee Tian
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Nan Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Jing Zhang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Ying Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education & School of Chemistry and Material Science, Heilongjiang University 74 Xuefu Road Harbin 150080 P. R. China
| |
Collapse
|
24
|
Chen Y, Zhang D, Zhang Y, Zeng X, Huang T, Liu Z, Li G, Duan L. Approaching Nearly 40% External Quantum Efficiency in Organic Light Emitting Diodes Utilizing a Green Thermally Activated Delayed Fluorescence Emitter with an Extended Linear Donor-Acceptor-Donor Structure. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2103293. [PMID: 34516019 DOI: 10.1002/adma.202103293] [Citation(s) in RCA: 70] [Impact Index Per Article: 17.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/29/2021] [Revised: 07/02/2021] [Indexed: 05/22/2023]
Abstract
Thermally activated delayed fluorescence (TADF) emitters featuring preferential horizontal emitting dipole orientation (EDO) are in urgent demand for enhanced optical outcoupling efficiency in organic light-emitting diodes (OLEDs). However, simultaneously manipulating EDO and optoelectronic properties remains a formidable challenge. Here, an extended linear D-A-D structure with both enlarged donor (D) and acceptor (A) π-systems is established, not only elaborately manipulating parallel horizontal molecular orientation and EDO along its long axis by multi-driving-forces for a high horizontal dipole ratio (Θ// ), but also delocalizing distribution of frontier energy levels for optimized electronic properties. The proof-of-the-concept emitter simultaneously affords a high Θ// of 92%, a high photoluminescence quantum yield of 95%, and a fast reverse intersystem crossing rate of 1.16 × 106 s-1 . The corresponding OLED achieves a champion maximum external quantum efficiency of 39.1% among all green TADF devices without any external light-extraction techniques, together with a maximum power efficiency of 112.0 lm W-1 and alleviated efficiency roll-off. These findings may inspire even better full-color TADF emitters that push the device efficiency toward the theoretical limits.
Collapse
Affiliation(s)
- Yang Chen
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Dongdong Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Yuewei Zhang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Xuan Zeng
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Tianyu Huang
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Ziyang Liu
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Guomeng Li
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
| | - Lian Duan
- Key Lab of Organic Optoelectronics and Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, P. R. China
- Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, P. R. China
| |
Collapse
|
25
|
Huang T, Wang Q, Xiao S, Zhang D, Zhang Y, Yin C, Yang D, Ma D, Wang Z, Duan L. Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Through-space Charge Transfers. Angew Chem Int Ed Engl 2021; 60:23771-23776. [PMID: 34405502 DOI: 10.1002/anie.202109041] [Citation(s) in RCA: 60] [Impact Index Per Article: 15.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2021] [Revised: 08/04/2021] [Indexed: 12/21/2022]
Abstract
Thermally activated delayed fluorescence (TADF) materials with through-space charge transfers (CT) have attracted particularly interest recently. However, the slow reverse intersystem crossing (RISC) and radiative decay always limit their electroluminescence performances. Herein, TADF molecules with ortho-linked multiple donors-acceptor (ortho-Dn -A) motif are developed to create near-degenerate excited states for the reinforcement of spin-orbit coupling. The incorporation of both through-bond and through-space CT enlarges oscillator strength. The optimal ortho-D3 -A compound exhibits a photoluminescence quantum yield of ca. 100 %, a high RISC rate of 2.57×106 s-1 and a high radiative decay rate of 1.00×107 s-1 simultaneously. With this compound as the sensitizer, a TADF-sensitized-fluorescent organic light-emitting diode shows a maximum external quantum efficiency of 31.6 % with an ultrapure green Commission Internationale de L'Eclairage y coordinate value of 0.69.
Collapse
Affiliation(s)
- Tianyu Huang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Qi Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,School of Materials Science and Engineering, Tsinghua University, Beijing, 100084, China
| | - Shu Xiao
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Yuewei Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Chen Yin
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education, Department of Chemistry, Tsinghua University, Beijing, 100084, China.,Center for Flexible Electronics Technology, Tsinghua University, Beijing, 100084, China
| |
Collapse
|
26
|
Fu Y, Liu H, Yang D, Ma D, Zhao Z, Tang BZ. Boosting external quantum efficiency to 38.6% of sky-blue delayed fluorescence molecules by optimizing horizontal dipole orientation. SCIENCE ADVANCES 2021; 7:eabj2504. [PMID: 34669483 PMCID: PMC8528420 DOI: 10.1126/sciadv.abj2504] [Citation(s) in RCA: 35] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/30/2021] [Accepted: 08/30/2021] [Indexed: 06/02/2023]
Abstract
To achieve high electroluminescence efficiency, great efforts are devoted to enhancing photoluminescence quantum yield (ΦPL) and exciton utilization of luminescent molecule, while another important factor, light out-coupling efficiency (ηout), receives less attention in molecule design. Here, we focus on horizontal dipole orientation engineering of the molecule to increase ηout and external quantum efficiency (ηext). A series of tailor-made luminescent molecules consisting of an electron-accepting carbonyl core plus double electron-donating groups of spiro[acridine-9,9′-fluorene] and carbazole derivatives [e.g., 1,3,5-tri(carbazol-9-yl)benzene] are developed and systematically investigated. These molecules hold distinguished merits of strong sky-blue delayed fluorescence with excellent ΦPL values, large horizontal dipole ratios, and balanced bipolar carrier transport, which furnish record-high ηext values of up to 26.1 and 38.6% in nondoped and doped sky-blue organic light-emitting diodes (OLEDs), respectively. Moreover, the state-of-the-art nondoped hybrid white OLED and all-fluorescence single-emitting layer white OLED are also realized, demonstrating great potentials in OLED industry of these molecules.
Collapse
Affiliation(s)
- Yan Fu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Hao Liu
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dezhi Yang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Dongge Ma
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Zujin Zhao
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
| | - Ben Zhong Tang
- State Key Laboratory of Luminescent Materials and Devices, Guangdong Provincial Key Laboratory of Luminescence from Molecular Aggregates, South China University of Technology, Guangzhou 510640, China
- Shenzhen Institute of Aggregate Science and Technology, School of Science and Engineering, Chinese University of Hong Kong, Shenzhen, Guangdong 518172, China
- AIE Institute, Guangzhou Development District, Huangpu, Guangzhou 510530, China
| |
Collapse
|
27
|
Huang T, Wang Q, Xiao S, Zhang D, Zhang Y, Yin C, Yang D, Ma D, Wang Z, Duan L. Simultaneously Enhanced Reverse Intersystem Crossing and Radiative Decay in Thermally Activated Delayed Fluorophors with Multiple Through‐space Charge Transfers. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202109041] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022]
Affiliation(s)
- Tianyu Huang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Qi Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- School of Materials Science and Engineering Tsinghua University Beijing 100084 China
| | - Shu Xiao
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongdong Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Yuewei Zhang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Chen Yin
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 China
| | - Zhaohui Wang
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
| | - Lian Duan
- Key Laboratory of Organic Optoelectronics & Molecular Engineering of Ministry of Education Department of Chemistry Tsinghua University Beijing 100084 China
- Center for Flexible Electronics Technology Tsinghua University Beijing 100084 China
| |
Collapse
|
28
|
Tenopala‐Carmona F, Lee OS, Crovini E, Neferu AM, Murawski C, Olivier Y, Zysman‐Colman E, Gather MC. Identification of the Key Parameters for Horizontal Transition Dipole Orientation in Fluorescent and TADF Organic Light-Emitting Diodes. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2021; 33:e2100677. [PMID: 34338351 PMCID: PMC11468900 DOI: 10.1002/adma.202100677] [Citation(s) in RCA: 50] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/26/2021] [Revised: 04/21/2021] [Indexed: 06/13/2023]
Abstract
In organic light-emitting diodes (OLEDs), horizontal orientation of the emissive transition dipole moment (TDM) can improve light outcoupling efficiency by up to 50% relative to random orientation. Therefore, there have been extensive efforts to identify drivers of horizontal orientation. The aspect ratio of the emitter molecule and the glass-transition temperature (Tg ) of the films are currently regarded as particularly important. However, there remains a paucity of systematic studies that establish the extent to which these and other parameters control orientation in the wide range of emitter systems relevant for state-of-the-art OLEDs. Here, recent work on molecular orientation of fluorescent and thermally activated delayed fluorescent emitters in vacuum-processed OLEDs is reviewed. Additionally, to identify parameters linked to TDM orientation, a meta-analysis of 203 published emitter systems is conducted and combined with density-functional theory calculations. Molecular weight (MW) and linearity are identified as key parameters in neat systems. In host-guest systems with low-MW emitters, orientation is mostly influenced by the host Tg , whereas the length and MW of the emitter become more relevant for systems involving higher-MW emitters. To close, a perspective of where the field must advance to establish a comprehensive model of molecular orientation is given.
Collapse
Affiliation(s)
- Francisco Tenopala‐Carmona
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Humboldt Centre for Nano‐ and BiophotonicsDepartment of ChemistryUniversity of CologneGreinstr. 4‐650939KölnGermany
| | - Oliver S. Lee
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Ettore Crovini
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Ana M. Neferu
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Caroline Murawski
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Present address:
Kurt‐Schwabe‐Institut für Mess‐ und Sensortechnik Meinsberg e.V.Kurt‐Schwabe‐Straße 4Waldheim04736Germany
| | - Yoann Olivier
- Unité de Chimie Physique Théorique et Structurale & Laboratoire de Physique du SolideNamur Institute of Structured MatterUniversité de NamurRue de Bruxelles, 61Namur5000Belgium
| | - Eli Zysman‐Colman
- Organic Semiconductor CentreEaStCHEM School of ChemistryUniversity of St AndrewsSt AndrewsKY16 9STUK
| | - Malte C. Gather
- Organic Semiconductor CentreSUPA School of Physics and AstronomyUniversity of St AndrewsSt AndrewsKY16 9SSUK
- Humboldt Centre for Nano‐ and BiophotonicsDepartment of ChemistryUniversity of CologneGreinstr. 4‐650939KölnGermany
| |
Collapse
|
29
|
Danish M, Ayub H, Sandhu ZA, Shoaib A, Akram S, Najeeb J, Naeem S. Synthesis of cerium oxide/cadmium sulfide nanocomposites using inverse microemulsion methodology for photocatalytic degradation of methylene blue. APPLIED NANOSCIENCE 2021. [DOI: 10.1007/s13204-021-02027-8] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/02/2023]
|
30
|
Balijapalli U, Lee Y, Karunathilaka BSB, Tumen‐Ulzii G, Auffray M, Tsuchiya Y, Nakanotani H, Adachi C. Tetrabenzo[
a
,
c
]phenazine Backbone for Highly Efficient Orange–Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202106570] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Yi‐Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Buddhika S. B. Karunathilaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Ganbaatar Tumen‐Ulzii
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
- International Institute for Carbon Neutral Energy Research, (WPI-I2CNER) Kyushu University 744 Motooka, Nishi Fukuoka 819-0395 Japan
| |
Collapse
|
31
|
Zoh I, Imai-Imada M, Bae J, Imada H, Tsuchiya Y, Adachi C, Kim Y. Visualization of Frontier Molecular Orbital Separation of a Single Thermally Activated Delayed Fluorescence Emitter by STM. J Phys Chem Lett 2021; 12:7512-7518. [PMID: 34342465 DOI: 10.1021/acs.jpclett.1c02140] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
Because the spatial distribution of frontier molecular orbitals (FMOs) regulates the thermally activated delayed fluorescence (TADF) property, researchers synthesize TADF emitters by designing their FMO distribution. However, it remains challenging to clarify how the FMO distribution is altered at molecular interfaces. Thus, visualizing the FMOs at molecular interfaces helps us to understand the working behavior of TADF emitters. Using scanning tunneling microscopy (STM), we investigated the electronic structure of a single TADF emitter, hexamethylazatriangulene-triazine, at molecule-metal and molecule-insulating film interfaces. FMOs at the molecule-metal interface were not spatially confined to the donor-acceptor moieties because of hybridization. Meanwhile, FMOs at the molecule-insulator interface exhibited spatially separated filled and empty states confined to each moiety, similar to the calculated gas-phase FMOs. These observations illustrate that the molecule-environment interaction alters the spatial distribution of FMOs, proving that STM is a powerful tool for studying TADF molecules.
Collapse
Affiliation(s)
- Inhae Zoh
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- Department of Biophysics and Chemical Biology, Seoul National University, 1, Gwanak-ro, Gwanak-gu, Seoul 08826, Republic of Korea
| | - Miyabi Imai-Imada
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| | - Jaehyun Bae
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Hiroshi Imada
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
- PRESTO, Japan Science and Technology Agency (JST), Kawaguchi 332-0012, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
- International Institute for Carbon-Neutral Energy Research (I2CNER), Kyushu University, 744 Motooka, Nishi-ku, Fukuoka 819-0395, Japan
| | - Yousoo Kim
- Surface and Interface Science Laboratory, RIKEN, 2-1 Hirosawa, Wako, Saitama 351-0198, Japan
| |
Collapse
|
32
|
Balijapalli U, Lee YT, Karunathilaka BSB, Tumen-Ulzii G, Auffray M, Tsuchiya Y, Nakanotani H, Adachi C. Tetrabenzo[a,c]phenazine Backbone for Highly Efficient Orange-Red Thermally Activated Delayed Fluorescence with Completely Horizontal Molecular Orientation. Angew Chem Int Ed Engl 2021; 60:19364-19373. [PMID: 34155775 DOI: 10.1002/anie.202106570] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/16/2021] [Indexed: 11/09/2022]
Abstract
Three thermally activated delayed fluorescence (TADF) molecules, namely PQ1, PQ2, and PQ3, are composed of electron-accepting (A) tetrabenzo[a,c]phenazine (TBPZ) and electron-donating (D) phenoxazine (PXZ) units are designed and characterized. The combined effects of planar acceptor manipulation and high steric hindrance between D and A units endow high molecular rigidity that suppresses nonradiative decay of the excitons with improved photoluminescence quantum yields (PLQYs). Particularly, the well-aligned excited states involving a singlet and a triplet charge-transfer excited states and a localized excited triplet state in PQ3 enhances the reverse intersystem crossing rate constant (kRISC ) with a short delay lifetime (τd ). The orange-red OLED based on PQ3 displays a maximum external EL quantum efficiency (EQE) of 27.4 % with a well-suppressed EL efficiency roll-off owing to a completely horizontal orientation of the transition dipole moment in the film state.
Collapse
Affiliation(s)
- Umamahesh Balijapalli
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Yi-Ting Lee
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Buddhika S B Karunathilaka
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Ganbaatar Tumen-Ulzii
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Morgan Auffray
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Youichi Tsuchiya
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Hajime Nakanotani
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| | - Chihaya Adachi
- Center for Organic Photonics and Electronics Research (OPERA) and Department of Applied Chemistry, Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan.,International Institute for Carbon Neutral Energy Research, (WPI-I2CNER), Kyushu University, 744 Motooka, Nishi, Fukuoka, 819-0395, Japan
| |
Collapse
|
33
|
Khammultri P, Chasing P, Chitpakdee C, Namuangruk S, Sudyoadsuk T, Promarak V. Red to orange thermally activated delayed fluorescence polymers based on 2-(4-(diphenylamino)-phenyl)-9 H-thioxanthen-9-one-10,10-dioxide for efficient solution-processed OLEDs. RSC Adv 2021; 11:24794-24806. [PMID: 35481012 PMCID: PMC9037026 DOI: 10.1039/d1ra04599g] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2021] [Accepted: 07/08/2021] [Indexed: 12/02/2022] Open
Abstract
Most highly efficient thermally activated delayed fluorescence (TADF)-based organic light-emitting diodes (OLEDs) are multi-layer devices fabricated by thermal vacuum evaporation techniques, which are unfavorable for real applications. However, there are only a few reported examples of efficient solution-processed TADF OLEDs, in particular TADF polymer OLEDs. Herein, a series of solution-processable TADF conjugated polymers (PCTXO/PCTXO-Fx (x = 25, 50 and 75)) were designed and synthesized by copolymerization of 2-(4-(diphenylamino)-phenyl)-9H-thioxanthen-9-one-10,10-dioxide (TXO-TPA) as a red/orange emissive TADF unit, 9,9'-((fluorene-9,9-diyl)-bis(octane-8,1-diyl))-bis(3,6-di-tert-butylcarbazole) as host/hole-transporting unit and 2,7-N-(heptadecan-9-yl)carbazole as a conjugated linker and solubilizing group. They possessed a conjugated backbone with donor TPA-carbazole/fluorene moieties and a pendent acceptor 9H-thioxanthen-9-one-10,10-dioxide (TXO) forming a twisted donor-acceptor structure. These polymers in neat films displayed red/orange color emissions (601-655 nm) with TADF properties, proved by theory calculations and transient PL decay measurements. Their hole-transporting capability was improved when the content of 9,9'-((fluorene-9,9-diyl)-bis(octane-8,1-diyl))-bis(3,6-di-tert-butylcarbazole) within the polymers increased. All polymers were successfully employed as emitters in solution-processed OLEDs. In particular, the doped OLED fabricated with PCTXO exhibited an intense deep orange emission at 603 nm with the best electroluminescence performance (a maximum external quantum efficiency 10.44%, a maximum current efficiency of 14.97 cd A-1 and a turn-on voltage of 4.2 V).
Collapse
Affiliation(s)
- Praetip Khammultri
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Pongsakorn Chasing
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Chirawat Chitpakdee
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Supawadee Namuangruk
- National Nanotechnology Center (NANOTEC), National Science and Technology Development Agency Pathum Thani 12120 Thailand
| | - Taweesak Sudyoadsuk
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| | - Vinich Promarak
- Department of Material Science and Engineering, School of Molecular Science & Engineering, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
- Research Network of NANOTEC-VISTEC on Nanotechnology for Energy, Vidyasirimedhi Institute of Science and Technology Wangchan Rayong 21210 Thailand
| |
Collapse
|
34
|
Li Z, Yang D, Han C, Zhao B, Wang H, Man Y, Ma P, Chang P, Ma D, Xu H. Optimizing Charge Transfer and Out-Coupling of A Quasi-Planar Deep-Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 . Angew Chem Int Ed Engl 2021; 60:14846-14851. [PMID: 33871909 DOI: 10.1002/anie.202103070] [Citation(s) in RCA: 53] [Impact Index Per Article: 13.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2021] [Revised: 03/28/2021] [Indexed: 11/11/2022]
Abstract
Herein, we report a deep-red TADF emitter pCNQ-TPA, composed of quinoxaline-5,8-dicarbonitrile (pCNQ) acceptor and triphenylamine (TPA) donor. pCNQ-TPA supported its OLED with desired CIE coordinates of (0.69, 0.31) and the record maximum external quantum efficiency of 30.3 %, which is the best red TADF diode with Rec.2020 gamut for UHDTV. It is showed that through tuning pCNQ-TPA doping concentration, intra- and inter-molecular charge transfer are balanced to synchronously improve emission color saturation and TADF radiation, and remedy aggregation-induced quenching, rendering photoluminescence quantum yield (PLQY) reaching 90 % for deep-red emission peaked at ≈690 nm. Quasi-planar structure further endows pCNQ-TPA with an improved horizontal ratio of emitting dipole orientation, which increases light out-coupling ratio to 0.34 for achieving the state-of-the-art device efficiencies.
Collapse
Affiliation(s)
- Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Bingjie Zhao
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices, State Key Laboratory of Luminescent Materials and Devices, South China University of Technology, Guangzhou, 510640, P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry, Ministry of Education, School of Chemistry and Materials, Heilongjiang University, Harbin, 150080, P. R. China
| |
Collapse
|
35
|
Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103187] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
|
36
|
Li Z, Yang D, Han C, Zhao B, Wang H, Man Y, Ma P, Chang P, Ma D, Xu H. Optimizing Charge Transfer and Out‐Coupling of A Quasi‐Planar Deep‐Red TADF Emitter: towards Rec.2020 Gamut and External Quantum Efficiency beyond 30 %. Angew Chem Int Ed Engl 2021. [DOI: 10.1002/ange.202103070] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Affiliation(s)
- Zhe Li
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Dezhi Yang
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Chunmiao Han
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Bingjie Zhao
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Huiqin Wang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Yi Man
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Peng Ma
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Peng Chang
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| | - Dongge Ma
- Institute of Polymer Optoelectronic Materials and Devices State Key Laboratory of Luminescent Materials and Devices South China University of Technology Guangzhou 510640 P. R. China
| | - Hui Xu
- Key Laboratory of Functional Inorganic Material Chemistry Ministry of Education School of Chemistry and Materials Heilongjiang University Harbin 150080 P. R. China
| |
Collapse
|
37
|
Liu H, Liu Z, Li G, Huang H, Zhou C, Wang Z, Yang C. Versatile Direct Cyclization Constructs Spiro‐acridan Derivatives for Highly Efficient TADF emitters. Angew Chem Int Ed Engl 2021; 60:12376-12380. [DOI: 10.1002/anie.202103187] [Citation(s) in RCA: 23] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2021] [Indexed: 12/16/2022]
Affiliation(s)
- He Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiwen Liu
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Ganggang Li
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Huaina Huang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Changjiang Zhou
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| | - Zhiming Wang
- State Key Laboratory of Luminescent Materials and Devices Center for Aggregation-Induced Emission Guangzhou International Campus South China University of Technology (SCUT) Guangzhou 510640 P. R. China
| | - Chuluo Yang
- College of Materials Science and Engineering Shenzhen University Shenzhen 518055 P. R. China
| |
Collapse
|
38
|
Efficient Red Thermally Activated Delayed Fluorescence Emitters Based on a Dibenzonitrile-Substituted Dipyrido[3,2-a:2',3'-c]phenazine Acceptor. Molecules 2021; 26:molecules26092427. [PMID: 33921941 PMCID: PMC8122472 DOI: 10.3390/molecules26092427] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/12/2021] [Revised: 04/16/2021] [Accepted: 04/17/2021] [Indexed: 12/11/2022] Open
Abstract
How to construct efficient red-emitting thermally activated delayed fluorescence (TADF) materials is a challenging task in the field of organic light-emitting diodes (OLEDs). Herein, an electron acceptor moiety, 3,6-DCNB-DPPZ, with high rigidity and strong acceptor strength was designed by introducing two cyanobenzene groups into the 3,6-positions of a dipyrido[3,2-a:2′,3′-c]phenazine unit. A red-emitting compound, 3,6_R, has been designed and synthesized by combining the rigid acceptor unit with two triphenylamine donors. Due to high molecular rigidity and strong intramolecular charge transfer characteristic in donor–acceptor–donor skeleton, 3,6_R exhibited a red emission with a high photoluminescence quantum yield of 86% and distinct TADF nature with short delayed fluorescence lifetime of about 1 microsecond. Accordingly, the OLED using 3,6_R as the guest emitter gained a high external quantum efficiency of 12.0% in the red region with an electroluminescence peak of 619 nm and favorable Commission Internationale de l’Eclairage coordinates of (0.62, 0.38).
Collapse
|
39
|
Ying A, Huang YH, Lu CH, Chen Z, Lee WK, Zeng X, Chen T, Cao X, Wu CC, Gong S, Yang C. High-Efficiency Red Electroluminescence Based on a Carbene-Cu(I)-Acridine Complex. ACS APPLIED MATERIALS & INTERFACES 2021; 13:13478-13486. [PMID: 33689279 DOI: 10.1021/acsami.0c22109] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
How to develop efficient red-emitting organometallics of earth-abundant copper(I) is a formidable challenge in the field of organic light-emitting diodes (OLEDs) because Cu(I) complexes have weak spin-orbit coupling and a serious excited-state reorganization effect. Here, a red Cu(I) complex, MAC*-Cu-DPAC, was developed using a rigid 9,9-diphenyl-9,10-dihydroacridine donor ligand in a carbene-metal-amide motif. The Cu(I) complex achieved satisfactory red emission, a high photoluminescence quantum yield of up to 70%, and a sub-microsecond lifetime. Thanks to a linear geometry and the acceptor and donor ligands in a coplanar conformation, the complex exhibited a high horizontal dipole ratio of 77% in the host matrix, first demonstrated for coinage metal(I) complexes. The resulting OLEDs delivered high external quantum efficiencies of 21.1% at a maximum and 20.1% at 1000 nits, together with a red emission peak at ∼630 nm. These values represent the state-of-the-art performance for red-emitting OLEDs based on coinage metal complexes.
Collapse
Affiliation(s)
- Ao Ying
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, People's Republic of China
| | - Yu-Hsin Huang
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Chen-Han Lu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Zhanxiang Chen
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, People's Republic of China
| | - Wei-Kai Lee
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Xuan Zeng
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, People's Republic of China
| | - Tianhao Chen
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, People's Republic of China
| | - Xiaosong Cao
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen 518060, People's Republic of China
| | - Chung-Chih Wu
- Department of Electrical Engineering, Graduate Institute of Electronics Engineering and Graduate Institute of Photonics and Optoelectronics, National Taiwan University, Taipei 10617, Taiwan
| | - Shaolong Gong
- Department of Chemistry, Hubei Key Lab on Organic and Polymeric Optoelectronic Materials, Wuhan University, Wuhan 430072, People's Republic of China
- Shenzhen Research Institute of Wuhan University, Shenzhen 518057, People's Republic of China
| | - Chuluo Yang
- College of Materials Science and Engineering, Shenzhen Key Laboratory of Polymer Science and Technology, Shenzhen University, Shenzhen 518060, People's Republic of China
| |
Collapse
|
40
|
Serevičius T, Skaisgiris R, Kreiza G, Dodonova J, Kazlauskas K, Orentas E, Tumkevičius S, Juršėnas S. TADF Parameters in the Solid State: An Easy Way to Draw Wrong Conclusions. J Phys Chem A 2021; 125:1637-1641. [PMID: 33576226 PMCID: PMC8279544 DOI: 10.1021/acs.jpca.0c10391] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
![]()
The
successful development of thermally activated delayed fluorescence
(TADF) OLEDs relies on advances in molecular design. To guide the
molecular design toward compounds with preferable properties, special
care should be taken while estimating the parameters of prompt and
delayed fluorescence. Mistakes made in the initial steps of analysis
may lead to completely misleading conclusions. Here we show that inaccuracies
usually are introduced in the very first steps while estimating the
solid-state prompt and delayed fluorescence quantum yields, resulting
in an overestimation of prompt fluorescence (PF) parameters and a
subsequent underestimation of the delayed emission (DF) yield and
rates. As a solution to the problem, a working example of a more sophisticated
analysis is provided, stressing the importance of in-depth research
of emission properties in both oxygen-saturated and oxygen-free surroundings.
Collapse
Affiliation(s)
- Tomas Serevičius
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Rokas Skaisgiris
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Gediminas Kreiza
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Jelena Dodonova
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Karolis Kazlauskas
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| | - Edvinas Orentas
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Sigitas Tumkevičius
- Institute of Chemistry, Vilnius University, Naugarduko 24, LT-03225 Vilnius, Lithuania
| | - Saulius Juršėnas
- Institute of Photonics and Nanotechnology, Vilnius University, Sauletekio 3, LT-10257 Vilnius, Lithuania
| |
Collapse
|