1
|
Zhao Y, Zheng Z, Liu J, Dong X, Yang H, Wu A, Shi Q, Wang H. Structural Optimization of Microfluidic Chips for Enhancing Droplet Manipulation and Observation via Electrodynamics Simulation. CYBORG AND BIONIC SYSTEMS 2025; 6:0217. [PMID: 40051612 PMCID: PMC11884587 DOI: 10.34133/cbsystems.0217] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/09/2024] [Revised: 12/18/2024] [Accepted: 12/25/2024] [Indexed: 03/09/2025] Open
Abstract
Digital microfluidic chips (DMCs) have shown huge potential for biochemical analysis applications due to their excellent droplet manipulation capabilities. The driving force is a critical factor for characterizing and optimizing the performance of droplet manipulation. Conducting numerical analysis of the driving force is essential for DMC design, as it helps optimize the structural parameters. Despite advances in numerical analysis, evaluating driving forces in partially filled electrodes remains challenging. Here, we propose a versatile electrodynamics simulation model designed to analyze the driving forces of partially filled electrodes to optimize the structural parameters of DMCs. This model utilizes finite element analysis to determine the voltage distribution within the DMC and calculates the driving force acting on the droplets using the principles of virtual work. Using this electrodynamics simulation model, we evaluated the effects of various structural parameters, including the dielectric constant and thickness of the dielectric layer, the dielectric constant and conductivity of the droplet, and substrate spacing, on the droplet driving force. This evaluation helps to optimize the structural parameters and enhances the droplet manipulation of DMCs. Measurements of droplet acceleration demonstrated that the droplet acceleration on the partially filled electrode aligns with the simulated driving force trend, which verified the effectiveness of the proposed electrodynamics simulation model. We anticipate that the electrodynamics simulation model is capable of evaluating the driving force in partially filled electrodes within complex DMCs, offering unprecedented possibilities for future structural designs of DMCs.
Collapse
Affiliation(s)
- Yanfeng Zhao
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Zhiqiang Zheng
- Department of Biomedical Engineering,
City University of Hong Kong, Hong Kong 999077, China
| | - Jiaxin Liu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Xinyi Dong
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Haotian Yang
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Anping Wu
- Intelligent Robotics Institute, School of Mechatronical Engineering,
Beijing Institute of Technology, Beijing 100081, China
| | - Qing Shi
- Beijing Advanced Innovation Center for Intelligent Robots and Systems,
Beijing Institute of Technology, Beijing 100081, China
| | - Huaping Wang
- Key Laboratory of Biomimetic Robots and Systems (Beijing Institute of Technology), Ministry of Education, Beijing 100081, China
| |
Collapse
|
2
|
Shen Z, Zhao Y, Xu X, Yang H, He S, Ma J, Zhang S, Hou P, Sui F. Single-cell RNA sequencing integrated with bulk RNA sequencing analysis of clock circadian regulator with prognostic and immune microenvironment in thyroid cancer. Transl Oncol 2025; 53:102299. [PMID: 39892222 PMCID: PMC11833347 DOI: 10.1016/j.tranon.2025.102299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2024] [Revised: 01/05/2025] [Accepted: 01/28/2025] [Indexed: 02/03/2025] Open
Abstract
BACKGROUND Disruption of circadian rhythm was found to be associated with immune infiltration and thyroid cancer. However, the role of clock circadian regulator (CLOCK) in the progression of thyroid cancer and its immune microenvironment remains largely unexplored. Therefore, our aim was to explore the role and potential mechanism of CLOCK in thyroid cancer. METHODS Single cell sequencing analysis and bulk RNA sequencing analysis was used for LASSO regression and Kaplan-Meier survival estimates. Potential mechanism analysis were gained through KEGG/GO analysis, GSEA analysis and PPI network. In vivo and in vitro experiment was used for further validation. RESULTS The result showed CLOCK protein was overexpressed in thyroid cancer compared with normal tissue in both thyroid specific mouse model and human sample. A prognostic model incorporating CLOCK and other related genes (FAT4, OR6K2, STK40, TMEM63A, HRCT1, SUPT5H, and OR2C3) was developed using LASSO regression. Functional assay and bioinformatics analysis indicated that CLOCK knockdown hindered tumor growth and the activity of MAPK signaling. Besides, analyses of gene enrichment, signaling pathways, and immune checkpoints suggested that CLOCK might inhibit immune infiltration within the tumor microenvironment. Confirmatory in vitro experiments and immunohistochemical assays in human samples further linked high CLOCK expression to reduced T cell cytotoxicity and infiltration. CONCLUSION These findings underscore the pivotal role of CLOCK in thyroid cancer prognosis and immune suppression, highlighting its potential as a target for therapeutic intervention and prognostic assessment in thyroid cancer management.
Collapse
Affiliation(s)
- Zhen Shen
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Yuelei Zhao
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Xinxin Xu
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Huini Yang
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Shuting He
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Junchi Ma
- School of Information Engineering, Chang'an University, Shaanxi Province, PR China
| | - Shaoqiang Zhang
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China
| | - Peng Hou
- Department of Endocrinology, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China; International Joint Research Center for Tumor Precision Medicine of Shaanxi Province, Xi'an 710061, Shaanxi Province, PR China
| | - Fang Sui
- Department of Otorhinolaryngology-Head and Neck Surgery, The First Affiliated Hospital of Xi'an Jiaotong University, Xi'an 710061, Shaanxi Province, PR China.
| |
Collapse
|
3
|
Liang S, Li C, Ning Y, Su R, Li M, Huang Y, Zou Y, Yang L, Xu X, Yang C. DMF-Bimol: Counting mRNA and Protein Molecules in Single Cells with Digital Microfluidics. Anal Chem 2024; 96:17253-17261. [PMID: 39428609 DOI: 10.1021/acs.analchem.4c03277] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2024]
Abstract
Analyzing single-cell protein and mRNA levels yields invaluable insights into cellular functions and the intricacies of biologically heterogeneous systems. Current joint mRNAs and protein analysis methodologies suffer from relative quantification, low sensitivity, possible background interference, and tedious manual manipulation. Therefore, we propose DMF-Bimol that leverages addressable digital microfluidics to automate digital counting of single-cell mRNA and protein based on proximity ligation assay (PLA) and one-step RT-droplet digital PCR (RT-ddPCR). Through an engineered hydrophilic-hydrophobic interface, DMF-Bimol enables efficient single-cell isolation and lossless protein and nucleic acid processing. The closed droplet reaction system enhances the protein concentration and isolates exogenous contaminants, thereby dramatically improving the efficiency of the PLA reaction. The limit of detection of this approach achieves 3313 protein copies, marking a significant 17-fold enhancement in sensitivity over traditional benchtop PLA. This heightened sensitivity also uncovers a lower correlation between mRNA and protein levels in individual cells (Spearman r = 0.255) than bulk results, reflecting the complex relationship in heterogeneous cells. Using DMF-Bimol, we observed a significant upsurge of CD147 protein in CD138+ myeloma cells but consistent levels of CD147 mRNAs compared with normal leukocytes. This discovery indicates a possible consequence of CD147 oncogenic activation that tends to harness protein translation to bolster tumor cell survival and enhance invasiveness, highlighting the potential of DMF-Bimol in unveiling intricate dynamics in translation processes at the single-cell level.
Collapse
Affiliation(s)
- Shanshan Liang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Chong Li
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yu Ning
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Rui Su
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Mingyin Li
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yihao Huang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Yuning Zou
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Liu Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
| | - Xing Xu
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
- Department of Laboratory Medicine, Key Laboratory of Clinical Laboratory Technology for Precision Medicine, School of Medical Technology and Engineering Fujian Medical University, Fuzhou 350005, China
| | - Chaoyong Yang
- Collaborative Innovation Center of Chemistry for Energy Materials, the MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Hematology, The First Affiliated Hospital of Xiamen University and Institute of Hematology, School of Medicine, Xiamen University, Xiamen 361005, China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200127, China
| |
Collapse
|
4
|
Abedini-Nassab R, Adibi E, Ahmadiasl S. Characterization of AI-enhanced magnetophoretic transistors operating in a tri-axial magnetic field for on-chip bioparticle sorting. Sci Rep 2024; 14:23381. [PMID: 39379453 PMCID: PMC11461615 DOI: 10.1038/s41598-024-74761-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2024] [Accepted: 09/30/2024] [Indexed: 10/10/2024] Open
Abstract
We demonstrate two general classes of magnetophoretic transistors, called the "trap" and the "repel-and-collect" transistors, capable of switching single magnetically labeled cells and magnetic particles between different paths in a microfluidic chamber. Compared with prior work on magnetophoretic transistors operating in a two-dimensional in-plane rotating field, the use of a tri-axial magnetic field has the fundamental advantages of preventing particle cluster formation and better syncing of single particles with the general operating clock. We use finite element methods to investigate the energy distribution on the chip surface and to predict the particle behavior at various device geometries. We then fabricate the proposed transistors and compare the experimental results with the simulation predictions. We found that with gate electrical currents of ~ 40 mA for a transistor with proper geometry, complete switching of magnetic particles with diameters in the range of 8-15 μm is achieved. We show that the device is reliable and works well at different magnetic field strengths (50-100 Oe) and frequencies (0.05-0.5 Hz). We also employed an image processing code with a trained convolutional neural network to automate the proposed transistors for identifying and sorting particles with various sizes and magnetic susceptibilities with accuracies higher than 98%. The proposed transistors can be used in designing novel magnetophoretic circuits for important applications in biomedical microdevices and single-cell biology.
Collapse
Affiliation(s)
- Roozbeh Abedini-Nassab
- Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran.
| | - Elias Adibi
- Department of Biomedical Engineering, University of Neyshabur, Neyshabur, Iran
| | - Sina Ahmadiasl
- Faculty of Mechanical Engineering, Tarbiat Modares University, P.O. Box: 14115-111, Tehran, Iran
| |
Collapse
|
5
|
Wu Z, Huang D, Wang J, Zhao Y, Sun W, Shen X. Engineering Heterogeneous Tumor Models for Biomedical Applications. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304160. [PMID: 37946674 PMCID: PMC10767453 DOI: 10.1002/advs.202304160] [Citation(s) in RCA: 5] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Revised: 09/16/2023] [Indexed: 11/12/2023]
Abstract
Tumor tissue engineering holds great promise for replicating the physiological and behavioral characteristics of tumors in vitro. Advances in this field have led to new opportunities for studying the tumor microenvironment and exploring potential anti-cancer therapeutics. However, the main obstacle to the widespread adoption of tumor models is the poor understanding and insufficient reconstruction of tumor heterogeneity. In this review, the current progress of engineering heterogeneous tumor models is discussed. First, the major components of tumor heterogeneity are summarized, which encompasses various signaling pathways, cell proliferations, and spatial configurations. Then, contemporary approaches are elucidated in tumor engineering that are guided by fundamental principles of tumor biology, and the potential of a bottom-up approach in tumor engineering is highlighted. Additionally, the characterization approaches and biomedical applications of tumor models are discussed, emphasizing the significant role of engineered tumor models in scientific research and clinical trials. Lastly, the challenges of heterogeneous tumor models in promoting oncology research and tumor therapy are described and key directions for future research are provided.
Collapse
Affiliation(s)
- Zhuhao Wu
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Danqing Huang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Jinglin Wang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| | - Weijian Sun
- Department of Gastrointestinal SurgeryThe Second Affiliated Hospital and Yuying Children's Hospital of Wenzhou Medical UniversityWenzhou325027China
| | - Xian Shen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Department of Gastrointestinal SurgeryThe First Affiliated HospitalWenzhou Medical UniversityWenzhou325035China
| |
Collapse
|
6
|
Desjardins-Lecavalier N, Annis MG, Nowakowski A, Kiepas A, Binan L, Roy J, Modica G, Hébert S, Kleinman CL, Siegel PM, Costantino S. Migration speed of captured breast cancer subpopulations correlates with metastatic fitness. J Cell Sci 2023; 136:jcs260835. [PMID: 37313743 PMCID: PMC10657211 DOI: 10.1242/jcs.260835] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/24/2022] [Accepted: 06/02/2023] [Indexed: 06/15/2023] Open
Abstract
The genetic alterations contributing to migration proficiency, a phenotypic hallmark of metastatic cells required for colonizing distant organs, remain poorly defined. Here, we used single-cell magneto-optical capture (scMOCa) to isolate fast cells from heterogeneous human breast cancer cell populations, based on their migratory ability alone. We show that captured fast cell subpopulations retain higher migration speed and focal adhesion dynamics over many generations as a result of a motility-related transcriptomic profile. Upregulated genes in isolated fast cells encoded integrin subunits, proto-cadherins and numerous other genes associated with cell migration. Dysregulation of several of these genes correlates with poor survival outcomes in people with breast cancer, and primary tumors established from fast cells generated a higher number of circulating tumor cells and soft tissue metastases in pre-clinical mouse models. Subpopulations of cells selected for a highly migratory phenotype demonstrated an increased fitness for metastasis.
Collapse
Affiliation(s)
- Nicolas Desjardins-Lecavalier
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Institut de genie biomedical, University of Montreal, Pavillon Paul-G.-Desmarais, 2960, chemin de la Tour, Montréal, QC H3T 1J4, Canada
| | - Matthew G. Annis
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Nowakowski
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Alexander Kiepas
- Cell Biology Section, National Institute of Dental and Craniofacial Research, National Institutes of Health Bethesda, MA 20892-4370, USA
| | - Loïc Binan
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Joannie Roy
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Graziana Modica
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
| | - Steven Hébert
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
| | - Claudia L. Kleinman
- Lady Davis Institute, McGill University, Montréal, QC H3T 1E2, Canada
- Department of Human Genetics, McGill University, Montréal, QC H3T 1E2, Canada
| | - Peter M. Siegel
- Goodman Cancer Institute, McGill University, 1160 Pine Avenue West, Montreal, QC H3A 1A3, Canada
- Department of Medicine, McGill University, 1001 Decarie Boulevard, Montreal, QC H4A 3J1, Canada
| | - Santiago Costantino
- Maisonneuve-Rosemont Hospital Research Center, 5415, boulevard de l'Assomption, Montréal, QC H1T 2M4, Canada
- Department of Ophthalmology, University of Montreal, Pavillon Roger-Gaudry, Bureau S-700, 2900, boul. Édouard-Montpetit, Montréal, QC H3T 1J4, Canada
| |
Collapse
|
7
|
Hu S, Ye J, Shi S, Yang C, Jin K, Hu C, Wang D, Ma H. Large-Area Electronics-Enabled High-Resolution Digital Microfluidics for Parallel Single-Cell Manipulation. Anal Chem 2023; 95:6905-6914. [PMID: 37071892 DOI: 10.1021/acs.analchem.3c00150] [Citation(s) in RCA: 18] [Impact Index Per Article: 9.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/20/2023]
Abstract
Large-area electronics as switching elements are an ideal option for electrode-array-based digital microfluidics. With support of highly scalable thin-film semiconductor technology, high-resolution digital droplets (diameter around 100 μm) containing single-cell samples can be manipulated freely on a two-dimensional plane with programmable addressing logic. In addition, single-cell generation and manipulation as foundations for single-cell research demand ease of operation, multifunctionality, and accurate tools. In this work, we reported an active-matrix digital microfluidic platform for single-cell generation and manipulation. The active device contained 26,368 electrodes that could be independently addressed to perform parallel and simultaneous droplet generation and achieved single-cell manipulation. We demonstrate a high-resolution digital droplet generation with a droplet volume limit of 500 pL and show the continuous and stable movement of droplet-contained cells for over 1 h. Furthermore, the success rate of single droplet formation was higher than 98%, generating tens of single cells within 10 s. In addition, a pristine single-cell generation rate of 29% was achieved without further selection procedures, and the droplets containing single cells could then be tested for on-chip cell culturing. After 20 h of culturing, about 12.5% of the single cells showed cell proliferation.
Collapse
Affiliation(s)
- Siyi Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Jingmin Ye
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Subao Shi
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Chao Yang
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| | - Kai Jin
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Chenxuan Hu
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Dongping Wang
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
| | - Hanbin Ma
- CAS Key Laboratory of Bio-Medical Diagnostics, Suzhou Institute of Biomedical Engineering and Technology, Chinese Academy of Sciences, Suzhou 215163, P. R. China
- Guangdong ACXEL Micro & Nano Tech Co., Ltd, Foshan, Guangdong Province 528000, P. R. China
| |
Collapse
|
8
|
Peng J, Chan C, Zhang S, Sklavounos AA, Olson ME, Scott EY, Hu Y, Rajesh V, Li BB, Chamberlain MD, Zhang S, Peng H, Wheeler AR. All-in-One digital microfluidics pipeline for proteomic sample preparation and analysis. Chem Sci 2023; 14:2887-2900. [PMID: 36937585 PMCID: PMC10016607 DOI: 10.1039/d3sc00560g] [Citation(s) in RCA: 19] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 02/07/2023] [Indexed: 02/24/2023] Open
Abstract
Highly sensitive and reproducible analysis of samples containing low amounts of protein is restricted by sample loss and the introduction of contaminants during processing. Here, we report an All-in-One digital microfluidic (DMF) pipeline for proteomic sample reduction, alkylation, digestion, isotopic labeling and analysis. The system features end-to-end automation, with integrated thermal control for digestion, optimized droplet additives for sample manipulation and analysis, and an automated interface to liquid chromatography with tandem mass spectrometry (HPLC-MS/MS). Dimethyl labeling was integrated into the pipeline to allow for relative quantification of the trace samples at the nanogram level, and the new pipeline was applied to evaluating cancer cell lines and cancer tissue samples. Several known proteins (including HSP90AB1, HSPB1, LDHA, ENO1, PGK1, KRT18, and AKR1C2) and pathways were observed between model breast cancer cell lines related to hormone response, cell metabolism, and cell morphology. Furthermore, differentially quantified proteins (such as PGS2, UGDH, ASPN, LUM, COEA1, and PRELP) were found in comparisons of healthy and cancer breast tissues, suggesting potential utility of the All-in-One pipeline for the emerging application of proteomic cancer sub-typing. In sum, the All-in-One pipeline represents a powerful new tool for automated proteome processing and analysis, with the potential to be useful for evaluating mass-limited samples for a wide range of applications.
Collapse
Affiliation(s)
- Jiaxi Peng
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - Calvin Chan
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
| | - Shuailong Zhang
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- School of Mechatronical Engineering, Beijing Institute of Technology Beijing 100081 China
- Beijing Advanced Innovation Center for Intelligent Robots and Systems, Beijing Institute of Technology Beijing 100081 China
| | - Alexandros A Sklavounos
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
| | - Maxwell E Olson
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
| | - Erica Y Scott
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - Yechen Hu
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - Vigneshwar Rajesh
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
| | - Bingyu B Li
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| | - M Dean Chamberlain
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
- Saskatchewan Cancer Agency, University of Saskatchewan 107 Wiggins Road Saskatoon SK S7N 5E5 Canada
| | - Shen Zhang
- Lunenfeld-Tanenbaum Research Institute, Mount Sinai Hospital 600 University Avenue Toronto ON M5G 1X5 Canada
- Clinical Research Center for Reproduction and Genetics in Hunan Province, Reproductive and Genetic Hospital of CITIC-XIANGYA Changsha Hunan 410000 China
| | - Hui Peng
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- School of Environment, University of Toronto 33 Willcocks Street Toronto ON M5S 3E8 Canada
| | - Aaron R Wheeler
- Department of Chemistry, University of Toronto 80 St. George Street Toronto ON M5S 3H6 Canada +1-416-946-3865 +1-416-946-3866
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto 160 College Street Toronto ON M5S 3E1 Canada
- Institute of Biomedical Engineering, University of Toronto 164 College Street Toronto ON M5S 3G9 Canada
| |
Collapse
|
9
|
Xu X, Cai L, Liang S, Zhang Q, Lin S, Li M, Yang Q, Li C, Han Z, Yang C. Digital microfluidics for biological analysis and applications. LAB ON A CHIP 2023; 23:1169-1191. [PMID: 36644972 DOI: 10.1039/d2lc00756h] [Citation(s) in RCA: 34] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/17/2023]
Abstract
Digital microfluidics (DMF) is an emerging liquid-handling technology based on arrays of microelectrodes for the precise manipulation of discrete droplets. DMF offers the benefits of automation, addressability, integration and dynamic configuration ability, and provides enclosed picoliter-to-microliter reaction space, making it suitable for lab-on-a-chip biological analysis and applications that require high integration and intricate processes. A review of DMF bioassays with a special emphasis on those actuated by electrowetting on dielectric (EWOD) force is presented here. Firstly, a brief introduction is presented on both the theory of EWOD actuation and the types of droplet motion. Subsequently, a comprehensive overview of DMF-based biological analysis and applications, including nucleic acid, protein, immunoreaction and cell assays, is provided. Finally, a discussion on the strengths, challenges, and potential applications and perspectives in this field is presented.
Collapse
Affiliation(s)
- Xing Xu
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Linfeng Cai
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shanshan Liang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qiannan Zhang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Shiyan Lin
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Mingying Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Qizheng Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chong Li
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Ziyan Han
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
| | - Chaoyong Yang
- The MOE Key Laboratory of Spectrochemical Analysis & Instrumentation, The Key Laboratory of Chemical Biology of Fujian Province, State Key Laboratory of Physical Chemistry of Solid Surfaces, Collaborative Innovation Center of Chemistry for Energy Materials, Department of Chemical Biology, Department of Chemical Engineering, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen 361005, China.
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, China
| |
Collapse
|
10
|
Pan JZ, Fan C, Zuo ZQ, Yuan YX, Wang HF, Dong Z, Fang Q. Lab at home: a promising prospect for on-site chemical and biological analysis. Anal Bioanal Chem 2023; 415:17-25. [PMID: 36334114 PMCID: PMC9638225 DOI: 10.1007/s00216-022-04392-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 10/05/2022] [Accepted: 10/19/2022] [Indexed: 11/07/2022]
Abstract
The continuing pursuit for a healthy life has led to the urgent need for on-site analysis. In response to the urgent needs of on-site analysis, we propose a novel concept, called lab at home (LAH), for building automated and integrated total analysis systems to perform chemical and biological testing at home. It represents an emerging research area with broad prospects that has not yet attracted sufficient attention. In this paper, we discuss the urgent need, challenges, and future prospects of this area, and the possible roadmap for achieving the goal of LAH has also been proposed.
Collapse
Affiliation(s)
- Jian-Zhang Pan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
| | - Chen Fan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Zhi-Qiang Zuo
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Ying-Xin Yuan
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
| | - Hui-Feng Wang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Zhi Dong
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China
| | - Qun Fang
- Institute of Microanalytical Systems, Department of Chemistry, Zhejiang University, Hangzhou, 310058, China.
- ZJU-Hangzhou Global Scientific and Technological Innovation Center, Hangzhou, 311200, China.
- Key Laboratory of Excited-State Materials of Zhejiang Province, Zhejiang University, Hangzhou, 310007, China.
- College of Chemistry, Zhengzhou University, Zhengzhou, 450001, China.
| |
Collapse
|
11
|
Ahmadi F, Simchi M, Perry JM, Frenette S, Benali H, Soucy JP, Massarweh G, Shih SCC. Integrating machine learning and digital microfluidics for screening experimental conditions. LAB ON A CHIP 2022; 23:81-91. [PMID: 36416045 DOI: 10.1039/d2lc00764a] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Digital microfluidics (DMF) has the signatures of an ideal liquid handling platform - as shown through almost two decades of automated biological and chemical assays. However, in the current state of DMF, we are still limited by the number of parallel biological or chemical assays that can be performed on DMF. Here, we report a new approach that leverages design-of-experiment and numerical methodologies to accelerate experimental optimization on DMF. The integration of the one-factor-at-a-time (OFAT) experimental technique with machine learning algorithms provides a set of recommended optimal conditions without the need to perform a large set of experiments. We applied our approach towards optimizing the radiochemistry synthesis yield given the large number of variables that affect the yield. We believe that this work is the first to combine such techniques which can be readily applied to any other assays that contain many parameters and levels on DMF.
Collapse
Affiliation(s)
- Fatemeh Ahmadi
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada.
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Mohammad Simchi
- Department of Mechanical & Industrial Engineering, University of Toronto, 5 King's College Rd, Toronto, Ontario, M5S 3G8, Canada
| | - James M Perry
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Stephane Frenette
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Habib Benali
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada.
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| | - Jean-Paul Soucy
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4, Canada
| | - Gassan Massarweh
- McConnell Brain Imaging Centre, Montreal Neurological Institute, McGill University, 3801 University Street, Montréal, Québec, H3A 2B4, Canada
| | - Steve C C Shih
- Department of Electrical and Computer Engineering, Concordia University, 1455 de Maisonneuve Blvd. West, Montréal, Québec, H3G 1M8, Canada.
- PERFORM Centre, Concordia University, 7200 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
- Centre for Applied Synthetic Biology, Concordia University, 7141 Sherbrooke Street West, Montréal, Québec, H4B 1R6, Canada
| |
Collapse
|
12
|
Rojek K, Ćwiklińska M, Kuczak J, Guzowski J. Microfluidic Formulation of Topological Hydrogels for Microtissue Engineering. Chem Rev 2022; 122:16839-16909. [PMID: 36108106 PMCID: PMC9706502 DOI: 10.1021/acs.chemrev.1c00798] [Citation(s) in RCA: 55] [Impact Index Per Article: 18.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/15/2021] [Indexed: 02/07/2023]
Abstract
Microfluidics has recently emerged as a powerful tool in generation of submillimeter-sized cell aggregates capable of performing tissue-specific functions, so-called microtissues, for applications in drug testing, regenerative medicine, and cell therapies. In this work, we review the most recent advances in the field, with particular focus on the formulation of cell-encapsulating microgels of small "dimensionalities": "0D" (particles), "1D" (fibers), "2D" (sheets), etc., and with nontrivial internal topologies, typically consisting of multiple compartments loaded with different types of cells and/or biopolymers. Such structures, which we refer to as topological hydrogels or topological microgels (examples including core-shell or Janus microbeads and microfibers, hollow or porous microstructures, or granular hydrogels) can be precisely tailored with high reproducibility and throughput by using microfluidics and used to provide controlled "initial conditions" for cell proliferation and maturation into functional tissue-like microstructures. Microfluidic methods of formulation of topological biomaterials have enabled significant progress in engineering of miniature tissues and organs, such as pancreas, liver, muscle, bone, heart, neural tissue, or vasculature, as well as in fabrication of tailored microenvironments for stem-cell expansion and differentiation, or in cancer modeling, including generation of vascularized tumors for personalized drug testing. We review the available microfluidic fabrication methods by exploiting various cross-linking mechanisms and various routes toward compartmentalization and critically discuss the available tissue-specific applications. Finally, we list the remaining challenges such as simplification of the microfluidic workflow for its widespread use in biomedical research, bench-to-bedside transition including production upscaling, further in vivo validation, generation of more precise organ-like models, as well as incorporation of induced pluripotent stem cells as a step toward clinical applications.
Collapse
Affiliation(s)
- Katarzyna
O. Rojek
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Monika Ćwiklińska
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Julia Kuczak
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| | - Jan Guzowski
- Institute of Physical Chemistry, Polish Academy of Sciences, ul. Kasprzaka 44/52, 01-224 Warsaw, Poland
| |
Collapse
|
13
|
Das A, Weise C, Polack M, Urban RD, Krafft B, Hasan S, Westphal H, Warias R, Schmidt S, Gulder T, Belder D. On-the-Fly Mass Spectrometry in Digital Microfluidics Enabled by a Microspray Hole: Toward Multidimensional Reaction Monitoring in Automated Synthesis Platforms. J Am Chem Soc 2022; 144:10353-10360. [PMID: 35640072 DOI: 10.1021/jacs.2c01651] [Citation(s) in RCA: 22] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
We report an approach for the online coupling of digital microfluidics (DMF) with mass spectrometry (MS) using a chip-integrated microspray hole (μSH). The technique uses an adapted electrostatic spray ionization (ESTASI) method to spray a portion of a sample droplet through a microhole in the cover plate, allowing its chemical content to be analyzed by MS. This eliminates the need for chip disassembly or the introduction of capillary emitters for MS analysis, as required by state-of-the-art. For the first time, this allows the essential advantage of a DMF device─free droplet movement─to be retained during MS analysis. The broad applicability of the developed seamless coupling of DMF and mass spectrometry was successfully applied to the study of various on-chip organic syntheses as well as protein and peptide analysis. In the case of a Hantzsch synthesis, we were able to show that the method is very well suited for monitoring even rapid chemical reactions that are completed in a few seconds. In addition, the strength of the low resource consumption in such on-chip microsyntheses was demonstrated by the example of enzymatic brominations, for which only a minute amount of a special haloperoxidase is required in the droplet. The unique selling point of this approach is that the analyzed droplet remains completely movable after the MS measurement and is available for subsequent on-DMF chip processes. This is illustrated here for the example of MS analysis of the starting materials in the corresponding droplets before they are combined to investigate the reaction progress by DMF-MS further. This technology enables the ongoing and almost unlimited tracking of multistep chemical processes in a DMF chip and offers exciting prospects for transforming digital microfluidics into automated synthesis platforms.
Collapse
Affiliation(s)
- Anish Das
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Chris Weise
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Matthias Polack
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Raphael D Urban
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Benjamin Krafft
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Sadat Hasan
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Hannes Westphal
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Rico Warias
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| | - Simon Schmidt
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Tanja Gulder
- Institute of Organic Chemistry, Leipzig University, Johannisallee 29, 04103 Leipzig, Germany
| | - Detlev Belder
- Institute of Analytical Chemistry, Leipzig University, Linnéstraße 3, 04103 Leipzig, Germany
| |
Collapse
|
14
|
Li BB, Scott EY, Olafsen NE, Matthews J, Wheeler AR. Analysis of the effects of aryl hydrocarbon receptor expression on cancer cell invasion via three-dimensional microfluidic invasion assays. LAB ON A CHIP 2022; 22:313-325. [PMID: 34904612 DOI: 10.1039/d1lc00854d] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The aryl hydrocarbon receptor (AHR) is a ligand-activated transcription factor that binds to xenobiotics and activates expression of response elements to metabolize these compounds. The AHR pathway has been associated with a long list of diseases including cancer; however, it is debated whether AHR is tumorigenic or tumour-inhibiting. In particular, there are contradictory reports in the literature regarding the effects of AHR expression level on metastatic breast cancer. Here we used a 3D invasion assay called cell invasion in digital microfluidic microgel systems (CIMMS) to study the effect of AHR expression on invasion. In this study, MDA-MB-231 cells with stable knockout of AHR (AHRko) showed enhanced invasive characteristics and reduced proliferation, and cells with transient overexpression of AHR showed reduced invasiveness. Overexpression of AHR with a mutation in the DNA binding domain showed no difference in invasiveness compared to control, which suggests that the changes in invasiveness are related to the expression of AHR. CIMMS also allowed for extraction of sub-populations of invaded cells for RNA sequencing experiments. A comparison of the transcriptomes of invaded subpopulations of wild-type and AHRko cells identified 1809 genes that were differentially expressed, with enriched pathways including cell cycle, proliferation, survival, immunoproteasome activation, and activation of matrix metalloproteases. In sum, the data reported here for MDA-MB-231 cells suggests some new interpretations of the discrepancy in the literature on the role of AHR in breast cancer. We propose that the unique combination of functional discrimination with transcriptome profiling provided by CIMMS will be valuable for a wide range of mechanistic invasion-biology studies in the future.
Collapse
Affiliation(s)
- Bingyu B Li
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
| | - Erica Y Scott
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| | - Ninni E Olafsen
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
| | - Jason Matthews
- Institute of Basic Medical Sciences, University of Oslo, Oslo, 0317, Norway
- Department of Pharmacology and Toxicology, University of Toronto, Toronto, Canada
| | - Aaron R Wheeler
- Institute of Biomedical Engineering, University of Toronto, 164 College St, Toronto, ON, M5S 3G9, Canada.
- Donnelly Centre for Cellular and Biomolecular Research, University of Toronto, 160 College St, Toronto, ON, M5S 3E1, Canada
- Department of Chemistry, University of Toronto, 80 St George St., Toronto, ON, M5S 3H6, Canada
| |
Collapse
|
15
|
Smith JJ, Xiao Y, Parsan N, Medwig-Kinney TN, Martinez MAQ, Moore FEQ, Palmisano NJ, Kohrman AQ, Chandhok Delos Reyes M, Adikes RC, Liu S, Bracht SA, Zhang W, Wen K, Kratsios P, Matus DQ. The SWI/SNF chromatin remodeling assemblies BAF and PBAF differentially regulate cell cycle exit and cellular invasion in vivo. PLoS Genet 2022; 18:e1009981. [PMID: 34982771 PMCID: PMC8759636 DOI: 10.1371/journal.pgen.1009981] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2021] [Revised: 01/14/2022] [Accepted: 12/07/2021] [Indexed: 12/15/2022] Open
Abstract
Chromatin remodelers such as the SWI/SNF complex coordinate metazoan development through broad regulation of chromatin accessibility and transcription, ensuring normal cell cycle control and cellular differentiation in a lineage-specific and temporally restricted manner. Mutations in genes encoding the structural subunits of chromatin, such as histone subunits, and chromatin regulating factors are associated with a variety of disease mechanisms including cancer metastasis, in which cancer co-opts cellular invasion programs functioning in healthy cells during development. Here we utilize Caenorhabditis elegans anchor cell (AC) invasion as an in vivo model to identify the suite of chromatin agents and chromatin regulating factors that promote cellular invasiveness. We demonstrate that the SWI/SNF ATP-dependent chromatin remodeling complex is a critical regulator of AC invasion, with pleiotropic effects on both G0 cell cycle arrest and activation of invasive machinery. Using targeted protein degradation and enhanced RNA interference (RNAi) vectors, we show that SWI/SNF contributes to AC invasion in a dose-dependent fashion, with lower levels of activity in the AC corresponding to aberrant cell cycle entry and increased loss of invasion. Our data specifically implicate the SWI/SNF BAF assembly in the regulation of the G0 cell cycle arrest in the AC, whereas the SWI/SNF PBAF assembly promotes AC invasion via cell cycle-independent mechanisms, including attachment to the basement membrane (BM) and activation of the pro-invasive fos-1/FOS gene. Together these findings demonstrate that the SWI/SNF complex is necessary for two essential components of AC invasion: arresting cell cycle progression and remodeling the BM. The work here provides valuable single-cell mechanistic insight into how the SWI/SNF assemblies differentially contribute to cellular invasion and how SWI/SNF subunit-specific disruptions may contribute to tumorigeneses and cancer metastasis. Cellular invasion is required for animal development and homeostasis. Inappropriate activation of invasion however can result in cancer metastasis. Invasion programs are orchestrated by complex gene regulatory networks (GRN) that function in a coordinated fashion to turn on and off pro-invasive genes. While the core of GRNs are DNA binding transcription factors, they require aid from chromatin remodelers to access the genome. To identify the suite of pro-invasive chromatin remodelers, we paired high resolution imaging with RNA interference to individually knockdown 269 chromatin factors, identifying the evolutionarily conserved SWItching defective/Sucrose Non-Fermenting (SWI/SNF) ATP-dependent chromatin remodeling complex as a new regulator of Caenorhabditis elegans anchor cell (AC) invasion. Using a combination of CRISPR/Cas9 genome engineering and targeted protein degradation we demonstrate that the core SWI/SNF complex functions in a dose-dependent manner to control invasion. Further, we determine that the accessory SWI/SNF complexes, BAF and PBAF, contribute to invasion via distinctive mechanisms: BAF is required to prevent inappropriate proliferation while PBAF promotes AC attachment and remodeling of the basement membrane. Together, our data provide insights into how the SWI/SNF complex, which is mutated in many human cancers, can function in a dose-dependent fashion to regulate switching from invasive to proliferative fates.
Collapse
Affiliation(s)
- Jayson J. Smith
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Yutong Xiao
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nithin Parsan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Massachusetts Institute of Technology, Cambridge, Massachusetts, United States of America
| | - Taylor N. Medwig-Kinney
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Michael A. Q. Martinez
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Frances E. Q. Moore
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Nicholas J. Palmisano
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Abraham Q. Kohrman
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Molecular Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Mana Chandhok Delos Reyes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Rebecca C. Adikes
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Biology Department, Siena College, Loudonville, New York, United States of America
| | - Simeiyun Liu
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Molecular, Cellular and Developmental Biology, University of California Santa Cruz, Santa Cruz, California, United States of America
| | - Sydney A. Bracht
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Department of Cell Biology, Johns Hopkins University, Baltimore, Maryland, United States of America
| | - Wan Zhang
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Kailong Wen
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - Paschalis Kratsios
- The Grossman Institute for Neuroscience, Quantitative Biology, and Human Behavior, University of Chicago, Chicago, Illinois, United States of America
- Department of Neurobiology, University of Chicago, Chicago, Illinois, United States of America
| | - David Q. Matus
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- * E-mail:
| |
Collapse
|
16
|
Colorimetric Sensing with Gold Nanoparticles on Electrowetting-Based Digital Microfluidics. MICROMACHINES 2021; 12:mi12111423. [PMID: 34832834 PMCID: PMC8621347 DOI: 10.3390/mi12111423] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/31/2021] [Revised: 11/14/2021] [Accepted: 11/16/2021] [Indexed: 12/18/2022]
Abstract
Digital microfluidic (DMF) has been a unique tool for manipulating micro-droplets with high flexibility and accuracy. To extend the application of DMF for automatic and in-site detection, it is promising to introduce colorimetric sensing based on gold nanoparticles (AuNPs), which have advantages including high sensitivity, label-free, biocompatibility, and easy surface modification. However, there is still a lack of studies for investigating the movement and stability of AuNPs for in-site detection on the electrowetting-based digital microfluidics. Herein, to demonstrate the ability of DMF for colorimetric sensing with AuNPs, we investigated the electrowetting property of the AuNPs droplets on the hydrophobic interface of the DMF chip and examined the stability of the AuNPs on DMF as well as the influence of evaporation to the colorimetric sensing. As a result, we found that the electrowetting of AuNPs fits to a modified Young–Lippmann equation, which suggests that a higher voltage is required to actuate AuNPs droplets compared with actuating water droplets. Moreover, the stability of AuNPs was maintained during the processing of electrowetting. We also proved that the evaporation of droplets has a limited influence on the detections that last several minutes. Finally, a model experiment for the detection of Hg2+ was carried out with similar results to the detections in bulk solution. The proposed method can be further extended to a wide range of AuNPs-based detection for label-free, automatic, and low-cost detection of small molecules, biomarkers, and metal ions.
Collapse
|
17
|
Hu X, Yang F, Zhao H, Guo M, Wang Y. Design and Evaluation of Three-Dimensional Zigzag Chaotic Micromixers for Biochemical Applications. Ind Eng Chem Res 2021. [DOI: 10.1021/acs.iecr.1c02435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Affiliation(s)
- Xingjian Hu
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Fan Yang
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Haiyan Zhao
- State Key Laboratory of Tribology, Department of Mechanical Engineering, Tsinghua University, Beijing 100084, China
| | - Mingzhao Guo
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| | - Yujun Wang
- State Key Laboratory of Chemical Engineering, Department of Chemical Engineering, Tsinghua University, Beijing 100084, China
| |
Collapse
|
18
|
Zhao X, Ou G, Lei M, Zhang Y, Li L, Ge A, Wang Y, Li Y, Liu BF. Rapid generation of hybrid biochemical/mechanical cues in heterogeneous droplets for high-throughput screening of cellular responses. LAB ON A CHIP 2021; 21:2691-2701. [PMID: 34165109 DOI: 10.1039/d1lc00209k] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2023]
Abstract
Cells in their native microenvironment are subjected to varying combinations of biochemical cues and mechanical cues in a wide range. Although many signaling pathways have been found to be responsive for extracellular cues, little is known about how biochemical cues crosstalk with mechanical cues in a complex microenvironment. Here, we introduced heterogeneous droplets on a microchip, which were rapidly assembled by combining wettability-patterned microchip and programmed droplet manipulations, for a high-throughput cell screening of the varying combinations of biochemical cues and mechanical cues. This platform constructed a heterogeneous droplet/microgel array with orthogonal gradual chemicals and materials, which was further applied to analyze the cellular Wnt/β-catenin signaling in response to varying combinations of Wnt ligands and substrate stiffness. Thus, this device provides a powerful multiplexed bioassay platform for drug development, tissue engineering, and stem cell screening.
Collapse
Affiliation(s)
- Xing Zhao
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Gaozhi Ou
- School of Sports, China University of Geosciences, Wuhan, 430074, China
| | - Mengcheng Lei
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yang Zhang
- School of Public Health (Shenzhen), Sun Yat-sen University, Shenzhen, 518100, China
| | - Lina Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Anle Ge
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yachao Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics - Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan, 430074, China.
| |
Collapse
|
19
|
Lee WC, Ng HY, Hou CY, Lee CT, Fu LM. Recent advances in lab-on-paper diagnostic devices using blood samples. LAB ON A CHIP 2021; 21:1433-1453. [PMID: 33881033 DOI: 10.1039/d0lc01304h] [Citation(s) in RCA: 15] [Impact Index Per Article: 3.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/12/2023]
Abstract
Lab-on-paper, or microfluidic paper-based analytical devices (μPADs), use paper as a substrate material, and are patterned with a system of microchannels, reaction zones and sensing elements to perform analysis and detection. The sample transfer in such devices is performed by capillary action. As a result, external driving forces are not required, and hence the size and cost of the device are significantly reduced. Lab-on-paper devices have thus attracted significant attention for point-of-care medical diagnostic purposes in recent years, particularly in less-developed regions of the world lacking medical resources and infrastructures. This review discusses the major advances in lab-on-paper technology for blood analysis and diagnosis in the past five years. The review focuses particularly on the many clinical applications of lab-on-paper devices, including diabetes diagnosis, acute myocardial infarction (AMI) detection, kidney function diagnosis, liver function diagnosis, cholesterol and triglyceride (TG) analysis, sickle-cell disease (SCD) and phenylketonuria (PKU) analysis, virus analysis, C-reactive protein (CRP) analysis, blood ion analysis, cancer factor analysis, and drug analysis. The review commences by introducing the basic transmission principles, fabrication methods, structural characteristics, detection techniques, and sample pretreatment process of modern lab-on-paper devices. A comprehensive review of the most recent applications of lab-on-paper devices to the diagnosis of common human diseases using blood samples is then presented. The review concludes with a brief summary of the main challenges and opportunities facing the lab-on-paper technology field in the coming years.
Collapse
Affiliation(s)
- Wen-Chin Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Hwee-Yeong Ng
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Chih-Yao Hou
- Department of Seafood Science, National Kaohsiung University of Science and Technology, Kaohsiung 811, Taiwan
| | - Chien-Te Lee
- Division of Nephrology, Kaohsiung Chang Gung Memorial Hospital, College of Medicine, Chang Gung University, Kaohsiung, 833, Taiwan.
| | - Lung-Ming Fu
- Department of Engineering Science, National Cheng Kung University, Tainan, 701, Taiwan.
| |
Collapse
|
20
|
Realizing tissue integration with supramolecular hydrogels. Acta Biomater 2021; 124:1-14. [PMID: 33508507 DOI: 10.1016/j.actbio.2021.01.034] [Citation(s) in RCA: 24] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2020] [Revised: 01/04/2021] [Accepted: 01/21/2021] [Indexed: 12/17/2022]
Abstract
Biomaterial matrices must permit tissue growth and maturation for the success of tissue regeneration strategies. Naturally, this accommodation is achieved via the dynamic remodeling of a cell's extracellular matrix (ECM). Synthetically, hydrolytic or enzymatic degradation are often engineered into materials for this purpose. More recently, supramolecular interactions have been used to provide a biomimetic and tunable mechanism to facilitate tissue formation via their dynamic and reversible non-covalent interactions. By engineering the mechanical and bioactive properties of a material, supramolecular chemists are able to design permissivity into the construct and facilitate tissue integration in-vivo. Furthermore, via the reversibility of non-covalent interactions, injectability and responsiveness can be designed for enhanced delivery and spatio-temporal control. In this review, we delineate the basic considerations needed when designing permissive supramolecular hydrogels for tissue engineering with an eye toward tissue growth and integration. We highlight three archetypal hydrogel systems that have shown well-documented tissue integration in vivo, and provide avenues to assess tissue in-growth. Careful design and assessment of the biomedical potential of a supramolecular hydrogels can inspire the creation of robust and dynamic implants for new tissue engineering applications.
Collapse
|