1
|
Cheng Y, Bürgmann R, Allen RM. 3D architecture and complex behavior along the simple central San Andreas fault. Nat Commun 2024; 15:5390. [PMID: 38918370 PMCID: PMC11199709 DOI: 10.1038/s41467-024-49454-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2023] [Accepted: 06/05/2024] [Indexed: 06/27/2024] Open
Abstract
The central San Andreas Fault (CSAF) exhibits a simple linear large-scale fault geometry, yet seismic and aseismic deformation features vary in a complex way along the fault. Here we investigate fault zone behaviors using geodetic observation, seismicity and microearthquake focal mechanisms. We employ an improved focal-mechanism characterization method using relative earthquake radiation patterns on 75,164 Ml ≥ 1 earthquakes along a 2-km-wide, 190-km-long segment of the CSAF, from 1984 to 2015. The data reveal the 3D fine-scale structure and interseismic kinematics of the CSAF. Our findings indicate that the first-order spatial variations in interseismic fault creep rate, creep direction, and the fault zone stress field can be explained by a simple fault coupling model. The inferred 3D mechanical properties of a mechanically weak and poorly coupled fault zone provide a unified understanding of the complex fine-scale kinematics, indicating distributed slip deficits facilitating small-to-moderate earthquakes, localized stress heterogeneities, and complex multi-scale ruptures along the fault. Through this detailed mapping, we aim to relate the fine-scale fault architecture to potential future faulting behavior along the CSAF.
Collapse
Affiliation(s)
- Yifang Cheng
- State Key Laboratory of Marine Geology, Tongji University, Shanghai, China.
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA.
- Berkeley Seismological Laboratory, University of California, Berkeley, Berkeley, CA, USA.
- School of Ocean and Earth Science, Tongji University, Shanghai, China.
| | - Roland Bürgmann
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Berkeley Seismological Laboratory, University of California, Berkeley, Berkeley, CA, USA
| | - Richard M Allen
- Department of Earth and Planetary Science, University of California, Berkeley, CA, USA
- Berkeley Seismological Laboratory, University of California, Berkeley, Berkeley, CA, USA
| |
Collapse
|
2
|
Shi S, Wang M, Poles Y, Fineberg J. How frictional slip evolves. Nat Commun 2023; 14:8291. [PMID: 38092832 PMCID: PMC10719317 DOI: 10.1038/s41467-023-44086-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2023] [Accepted: 11/28/2023] [Indexed: 12/17/2023] Open
Abstract
Earthquake-like ruptures break the contacts that form the frictional interface separating contacting bodies and mediate the onset of frictional motion (stick-slip). The slip (motion) of the interface immediately resulting from the rupture that initiates each stick-slip event is generally much smaller than the total slip logged over the duration of the event. Slip after the onset of friction is generally attributed to continuous motion globally attributed to 'dynamic friction'. Here we show, by means of direct measurements of real contact area and slip at the frictional interface, that sequences of myriad hitherto invisible, secondary ruptures are triggered immediately in the wake of each initial rupture. Each secondary rupture generates incremental slip that, when not resolved, may appear as steady sliding of the interface. Each slip increment is linked, via fracture mechanics, to corresponding variations of contact area and local strain. Only by accounting for the contributions of these secondary ruptures can the accumulated interface slip be described. These results have important ramifications both to our fundamental understanding of frictional motion as well as to the essential role of aftershocks within natural faults in generating earthquake-mediated slip.
Collapse
Affiliation(s)
- Songlin Shi
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | - Meng Wang
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | - Yonatan Poles
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel
| | - Jay Fineberg
- The Racah Institute of Physics, The Hebrew University of Jerusalem, Givat Ram, Jerusalem, 91904, Israel.
| |
Collapse
|
3
|
Martin de Blas J, Iaffaldano G, Tassara A, Melnick D. Feedback between megathrust earthquake cycle and plate convergence. Sci Rep 2023; 13:18623. [PMID: 37903833 PMCID: PMC10616103 DOI: 10.1038/s41598-023-45753-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2023] [Accepted: 10/23/2023] [Indexed: 11/01/2023] Open
Abstract
Over million years, convergence between the Nazca and South America tectonic plates results in Andean orogeny. Over decades/centuries, it fuels the earthquake cycle of the Andean megathrust. It is well recognised that, over the geologically-long term of million years, Andean orogeny feeds back onto plate convergence rates, generating temporal changes documented throughout the Neogene. In contrast, no feedback mechanism operated over the geologically-short term by the earthquake cycle is currently contemplated. In fact, it is commonly assumed that the rates of contemporary convergence, which are accurately measured via geodesy, remain steady during the megathrust earthquake cycle. Here we investigate whether the contemporary Nazca/South America plate motion varies over year-/decade-long periods in response to megathrust stress variations associated with the earthquake cycle. We focus on the decade preceding the three largest and most recent [Formula: see text] earthquakes (2010 [Formula: see text] Maule, 2014 [Formula: see text] Iquique, 2015 [Formula: see text] Illapel), and find slowdowns of both Nazca and South America whole-plate motions that exceed the impact of data uncertainty or noise. We show that the torque variations required upon Nazca and South America to generate the slowdowns are consistent with that arising from the buildup of interseismic stress preceding the earthquakes.
Collapse
Affiliation(s)
- Juan Martin de Blas
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark.
| | - Giampiero Iaffaldano
- Department of Geosciences and Natural Resource Management, University of Copenhagen, Copenhagen, Denmark
- Dipartimento di Scienze Chimiche, della Vita e della Sostenibilità Ambientale, Università di Parma, Parma, Italy
| | - Andrés Tassara
- Departamento de Ciencias de la Tierra, Universidad de Concepción, Concepción, Chile
| | - Daniel Melnick
- Instituto de Ciencias de la Tierra, Universidad Austral de Chile, Valdivia, Chile
| |
Collapse
|
4
|
Itoh Y, Aoki Y, Fukuda J. Imaging evolution of Cascadia slow-slip event using high-rate GPS. Sci Rep 2022; 12:7179. [PMID: 35504923 PMCID: PMC9065071 DOI: 10.1038/s41598-022-10957-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2021] [Accepted: 04/11/2022] [Indexed: 11/19/2022] Open
Abstract
The slip history of short-term slow slip event (SSE) is typically inferred from daily Global Positioning System (GPS) data, which, however, cannot image the sub-daily processes, leaving the underlying mechanisms of SSEs elusive. To address the temporal resolution issue, we attempted to employ the kinematic subdaily GPS analysis, which has never been applied to SSE studies because its signal-to-noise ratio has been believed too low. By carefully post-processing sub-daily positions to remove non-tectonic position fluctuation, our 30-min kinematic data clearly exhibits the transient motion of a few mm during one Cascadia SSE. A spatiotemporal slip image by inverting the 30-min data exhibits a multi-stage evolution; it consists of an isotropic growth of SSE followed by an along-strike migration and termination within the rheologically controlled down-dip width. This transition at the slip growth mode is similar to the rupture growth of regular earthquakes, implying the presence of common mechanical factors behind the two distinct slip phenomena. The comparison with a slip inversion of the daily GPS demonstrates the current performance and limitation of the subdaily data in the SSE detection and imaging. Better understanding of the non-tectonic noise in the kinematic GPS analysis will further improve the temporal resolution of SSE.
Collapse
Affiliation(s)
- Yuji Itoh
- Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan. .,Institut des Sciences de la Terre, Université Grenoble Alpes, 38610, Gières, France.
| | - Yosuke Aoki
- Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Junichi Fukuda
- Earthquake Research Institute, The University of Tokyo, Bunkyo-ku, Tokyo, 113-0032, Japan
| |
Collapse
|
5
|
Churchill RM, Werner MJ, Biggs J, Fagereng Å. Afterslip Moment Scaling and Variability From a Global Compilation of Estimates. JOURNAL OF GEOPHYSICAL RESEARCH. SOLID EARTH 2022; 127:e2021JB023897. [PMID: 35865712 PMCID: PMC9287082 DOI: 10.1029/2021jb023897] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/23/2021] [Revised: 03/22/2022] [Accepted: 04/02/2022] [Indexed: 05/26/2023]
Abstract
Aseismic afterslip is postseismic fault sliding that may significantly redistribute crustal stresses and drive aftershock sequences. Afterslip is typically modeled through geodetic observations of surface deformation on a case-by-case basis, thus questions of how and why the afterslip moment varies between earthquakes remain largely unaddressed. We compile 148 afterslip studies following 53 M w 6.0-9.1 earthquakes, and formally analyze a subset of 88 well-constrained kinematic models. Afterslip and coseismic moments scale near-linearly, with a median Spearman's rank correlation coefficient (CC) of 0.91 after bootstrapping (95% range: 0.89-0.93). We infer that afterslip area and average slip scale with coseismic moment as M o 2 / 3 and M o 1 / 3 , respectively. The ratio of afterslip to coseismic moment (M rel ) varies from <1% to >300% (interquartile range: 9%-32%). M rel weakly correlates with M o (CC: -0.21, attributed to a publication bias), rupture aspect ratio (CC: -0.31), and fault slip rate (CC: 0.26, treated as a proxy for fault maturity), indicating that these factors affect afterslip. M rel does not correlate with mainshock dip, rake, or depth. Given the power-law decay of afterslip, we expected studies that started earlier and spanned longer timescales to capture more afterslip, but M rel does not correlate with observation start time or duration. Because M rel estimates for a single earthquake can vary by an order of magnitude, we propose that modeling uncertainty currently presents a challenge for systematic afterslip analysis. Standardizing modeling practices may improve model comparability, and eventually allow for predictive afterslip models that account for mainshock and fault zone factors to be incorporated into aftershock hazard models.
Collapse
Affiliation(s)
| | - M. J. Werner
- School of Earth SciencesUniversity of BristolBristolUK
| | - J. Biggs
- School of Earth SciencesUniversity of BristolBristolUK
| | - Å. Fagereng
- School of Earth and Environmental SciencesCardiff UniversityCardiffUK
| |
Collapse
|