1
|
Dong X, Zhao X, Xu J, Chen Q, Luo H, Zheng F, Zhang T, Liu Y. Enhanced spectral signatures with Ag nanoarrays in hyperspectral microscopy for CNN-based microplastics classfication. Front Chem 2025; 13:1562743. [PMID: 40191158 PMCID: PMC11968667 DOI: 10.3389/fchem.2025.1562743] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Accepted: 03/07/2025] [Indexed: 04/09/2025] Open
Abstract
Microplastics are a pervasive pollutant in aquatic ecosystems, raising critical environmental and public health concerns and driving the need for advanced detection technologies. Microscopic hyperspectral imaging (micro-HSI), known for its ability to simultaneously capture spatial and spectral information, has shown promise in microplastic analysis. However, its widespread application is hindered by limitations such as low signal-to-noise ratios (SNR) and reduced sensitivity to smaller microplastic particles. To address these challenges, this study investigates the use of Ag nanoarrays as reflective substrates for micro-HSI. The localized surface plasmon resonance (LSPR) effect of Ag nanoarrays enhances spectral resolution by suppressing background reflections and isolating microplastic reflection bands from interference. This improvement results in significantly increased SNR and more distinct spectral features. When analyzed using a 3D-2D convolutional neural network (3D-2D CNN), the integration of Ag nanoarrays improved classification accuracy from 90.17% to 98.98%. These enhancements were further validated through Support Vector Machine (SVM) analyses, demonstrating the robustness and reliability of the proposed approach. This study demonstrates the potential of combining Ag nanoarrays with 3D-2D CNN models to enhance micro-HSI performance, offering a novel and effective solution for precise microplastics detection and advancing chemical analysis, environmental monitoring, and related fields.
Collapse
Affiliation(s)
- Xinwei Dong
- Department of Joint Osteopathy, Liuzhou Worker’s Hospital, Liuzhou, China
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Xu Zhao
- School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China
| | - Jianing Xu
- Department of Joint Osteopathy, Liuzhou Worker’s Hospital, Liuzhou, China
| | - Qianqian Chen
- Department of Joint Osteopathy, Liuzhou Worker’s Hospital, Liuzhou, China
| | - Hanwen Luo
- Department of Joint Osteopathy, Liuzhou Worker’s Hospital, Liuzhou, China
| | - Fuxin Zheng
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, China
| | - Tao Zhang
- School of Computer Science and Technology, Guangxi University of Science and Technology, Liuzhou, China
| | - Yansheng Liu
- School of Electronic Engineering, Guangxi University of Science and Technology, Liuzhou, China
| |
Collapse
|
2
|
Suryana M, Produit T, Yang H, Birarda G, Shanmugar JV, Krivitsky L, Paterova A, Grenci G. Infrared imaging with visible light in microfluidic devices: the water absorption barrier. Analyst 2025; 150:405-413. [PMID: 39692693 DOI: 10.1039/d4an01201a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2024]
Abstract
Infrared spectro-microscopy is a powerful technique for analysing chemical maps of cells and tissues for biomedical and clinical applications, yet the strong water absorption in the mid-infrared region is a challenge to overcome, as it overlaps with the spectral fingerprints of biological components. Microfluidic chips offer ultimate control over the water layer thickness and are increasingly used in infrared spectro-microscopy. However, the actual impact of the water layer thickness on the instrument's performance is often left to the experimentalist's intuition and the peculiarities of specific instruments. Aiming to experimentally test the amount of absorption introduced by water with varying layer thicknesses, we fabricated a set of microfluidic devices with three controlled chamber thicknesses, each comprising a simple test pattern made of a well-known photoresist SU-8. We employed two infrared spectro-microscopy methods for measurements. The first method involves using a standard FTIR microscope with a benchtop infrared light source. The second method is a quantum infrared microscopy technique, where infrared imaging is achieved by detecting correlated photons in the visible range. We demonstrated that both methods enable the measurement of the absorption spectrum in the mid-IR region, even in the presence of up to a 30 μm thick water layer on top of a sample pattern. Additionally, the Q-IR technique offers practical advantages over synchrotron-based FTIR, such as reduced complexity, cost, and ease of operation.
Collapse
Affiliation(s)
- Mona Suryana
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Republic of Singapore.
| | - Thomas Produit
- A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Hongzhi Yang
- A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Giovanni Birarda
- SISSI Beamline, Elettra Synchrotron Light Facility, Basovizza (Ts, IT), Italy
| | - Jegan Vishnuwardhana Shanmugar
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Republic of Singapore.
| | - Leonid Krivitsky
- A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Anna Paterova
- A*STAR Quantum Innovation Centre (Q.InC), Institute of Materials Research and Engineering (IMRE), Agency for Science, Technology and Research (A*STAR), 2 Fusionopolis Way, Innovis #08-03, 138634, Republic of Singapore
| | - Gianluca Grenci
- Mechanobiology Institute (MBI), National University of Singapore, 5A Engineering Drive 1, 117411, Republic of Singapore.
- Biomedical Engineering Department, National University of Singapore, 4 Engineering Drive 3 Block 4, Republic of Singapore 117583
| |
Collapse
|
3
|
Sonnino G. Exploring the Thermodynamic Uncertainty Constant: Insights from a Quasi-Ideal Nano-Gas Model. ENTROPY (BASEL, SWITZERLAND) 2024; 26:1011. [PMID: 39766640 PMCID: PMC11675726 DOI: 10.3390/e26121011] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/27/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 01/11/2025]
Abstract
In previous work, we investigated thermodynamic processes in systems at the mesoscopic level where traditional thermodynamic descriptions (macroscopic or microscopic) may not be fully adequate. The key result is that entropy in such systems does not change continuously, as in macroscopic systems, but rather in discrete steps characterized by the quantization constant β. This quantization reflects the underlying discrete nature of the collision process in low-dimensional systems and the essential role played by thermodynamic fluctuations at this scale. Thermodynamic variables conjugate to the forces, along with Glansdorff-Prigogine's dissipative variable can be discretized, enabling a mesoscopic-scale formulation of canonical commutation rules (CCRs). In this framework, measurements correspond to determining the eigenvalues of operators associated with key thermodynamic quantities. This work investigates the quantization parameter β in the CCRs using a nano-gas model analyzed through classical statistical physics. Our findings suggest that β is not an unknown fundamental constant. Instead, it emerges as the minimum achievable value derived from optimizing the uncertainty relation within the framework of our model. The expression for β is determined in terms of the ratio χ, which provides a dimensionless number that reflects the relative scales of volume and mass between entities at the Bohr (atomic level) and the molecular scales. This latter parameter quantifies the relative influence of quantum effects versus classical dynamics in a given scattering process.
Collapse
Affiliation(s)
- Giorgio Sonnino
- Department of Physics, Université Libre de Bruxelles (U.L.B.), Campus de la Plaine C.P. 224, Bvd du Triomphe, 1050 Brussels, Belgium
| |
Collapse
|
4
|
Massaro G, Pepe FV, D'Angelo M. Correlation Hyperspectral Imaging. PHYSICAL REVIEW LETTERS 2024; 133:183802. [PMID: 39547179 DOI: 10.1103/physrevlett.133.183802] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/10/2024] [Accepted: 10/10/2024] [Indexed: 11/17/2024]
Abstract
Hyperspectral imaging aims at providing information on both the spatial and the spectral distribution of light, with high resolution. However, state-of-the-art protocols are characterized by an intrinsic trade-off imposing to sacrifice either resolution or image acquisition speed. We address this limitation by exploiting light intensity correlations, which are shown to enable overcoming the typical downsides of traditional hyperspectral imaging techniques, both scanning and snapshot. The proposed approach also opens possibilities that are not otherwise achievable, such as sharper imaging and natural filtering of broadband spectral components that would otherwise hide the spectrum of interest. The enabled combination of high spatial and spectral resolution, high speed, and insensitivity to undesired spectral features shall lead to a paradigm change in hyperspectral imaging devices and open up new application scenarios.
Collapse
|
5
|
Pearce E, Wolley O, Mekhail SP, Gregory T, Gemmell NR, Oulton RF, Clark AS, Phillips CC, Padgett MJ. Single-frame transmission and phase imaging using off-axis holography with undetected photons. Sci Rep 2024; 14:16008. [PMID: 38992022 PMCID: PMC11239902 DOI: 10.1038/s41598-024-66233-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2024] [Accepted: 06/28/2024] [Indexed: 07/13/2024] Open
Abstract
Imaging with undetected photons relies upon nonlinear interferometry to extract the spatial image from an infrared probe beam and reveal it in the interference pattern of an easier-to-detect visible beam. Typically, the transmission and phase images are extracted using phase-shifting techniques and combining interferograms from multiple frames. Here we show that off-axis digital holography enables reconstruction of both transmission and phase images at the infrared wavelength from a single interferogram, and hence a single frame, recorded in the visible. This eliminates the need for phase stepping and multiple acquisitions, thereby greatly reducing total measurement time for imaging with long acquisition times at low flux or enabling video-rate imaging at higher flux. With this single-frame acquisition technique, we are able to reconstruct transmission images of an object in the infrared beam with a signal-to-noise ratio of 3.680 ± 0.004 at 10 frames per second, and record a dynamic scene in the infrared beam at 33 frames per second.
Collapse
Affiliation(s)
- Emma Pearce
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Osian Wolley
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Simon P Mekhail
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Thomas Gregory
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Nathan R Gemmell
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Rupert F Oulton
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Alex S Clark
- Quantum Engineering Technology Labs, H. H. Wills Physics Laboratory and Department of Electrical and Electronic Engineering, University of Bristol, BS8 1FD, Bristol, UK
| | - Chris C Phillips
- Blackett Laboratory, Department of Physics, Imperial College London, London, SW7 2AZ, UK
| | - Miles J Padgett
- School of Physics and Astronomy, University of Glasgow, Glasgow, G12 8QQ, UK.
| |
Collapse
|
6
|
Cai Y, Chen Y, Dorfman K, Xin X, Wang X, Huang K, Wu E. Mid-infrared single-photon upconversion spectroscopy enabled by nonlocal wavelength-to-time mapping. SCIENCE ADVANCES 2024; 10:eadl3503. [PMID: 38640245 PMCID: PMC11029809 DOI: 10.1126/sciadv.adl3503] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2023] [Accepted: 03/15/2024] [Indexed: 04/21/2024]
Abstract
Ultrasensitive spectroscopy is an essential component in mid-infrared (MIR) technology. However, the drawbacks of MIR detectors pose challenges to robust MIR spectroscopy at the single-photon level. We propose an MIR single-photon frequency upconversion spectroscopy nonlocally mapping the MIR information to the time domain. Broadband MIR photons from spontaneous parametric downconversion are frequency-upconverted to the near-infrared band with quantum correlation preservation. Via the group delay of fiber, the MIR spectral information within a 1.18-micrometer bandwidth of 2.76 to 3.94 micrometers is then successfully projected to arrival times of correlated photon pairs. Under the conditions of 6.4 × 106 photons per second illumination, the transmission spectra of polymers with single-photon sensitivity are demonstrated using single-pixel detectors. The developed approach circumvents scanning and frequency selection instability, which stands out for its inherent compatibility for evolving environments and scalability for various wavelengths. Because of its high sensitivity and robustness, characterization of biochemical samples and weak measurement of quantum systems are possible to foresee.
Collapse
Affiliation(s)
- Yujie Cai
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Yu Chen
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - Konstantin Dorfman
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Center for Theoretical Physics and School of Sciences, Hainan University, Haikou 570228, China
- Himalayan Institute for Advanced Study, Unit of Gopinath Seva Foundation, MIG 38, Avas Vikas, Rishikesh, Uttarakhand 249201, India
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| | - Xiaoning Xin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Xiaoying Wang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
| | - Kun Huang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
| | - E Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai 200241, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing 401120, China
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi 030006, China
| |
Collapse
|
7
|
Zou F, Du L, Li Y, Dong H. Amplifying Frequency Up-Converted Infrared Signals with a Molecular Optomechanical Cavity. PHYSICAL REVIEW LETTERS 2024; 132:153602. [PMID: 38682999 DOI: 10.1103/physrevlett.132.153602] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 01/17/2024] [Accepted: 03/19/2024] [Indexed: 05/01/2024]
Abstract
Frequency up-conversion, enabled by molecular optomechanical coupling, has recently emerged as a promising approach for converting infrared signals into the visible range through quantum coherent conversion of signals. However, detecting these converted signals poses a significant challenge due to their inherently weak signal intensity. In this work, we propose an amplification mechanism capable of enhancing the signal intensity by a factor of 1000 or more for the frequency up-converted infrared signal in a molecular optomechanical system. The mechanism takes advantage of the strong coupling enhancement with molecular collective mode and the Stokes sideband pump. This work demonstrates a feasible approach for up-converting infrared signals to the visible range.
Collapse
Affiliation(s)
- Fen Zou
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
- Beijing Computational Science Research Center, Beijing 100193, China
| | - Lei Du
- Center for Quantum Sciences and School of Physics, Northeast Normal University, Changchun 130024, China
| | - Yong Li
- Center for Theoretical Physics & School of Physics and Optoelectronic Engineering, Hainan University, Haikou 570228, China
| | - Hui Dong
- Graduate School of China Academy of Engineering Physics, Beijing 100193, China
| |
Collapse
|
8
|
Fang J, Huang K, Qin R, Liang Y, Wu E, Yan M, Zeng H. Wide-field mid-infrared hyperspectral imaging beyond video rate. Nat Commun 2024; 15:1811. [PMID: 38418468 PMCID: PMC10902379 DOI: 10.1038/s41467-024-46274-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/03/2023] [Accepted: 02/21/2024] [Indexed: 03/01/2024] Open
Abstract
Mid-infrared hyperspectral imaging has become an indispensable tool to spatially resolve chemical information in a wide variety of samples. However, acquiring three-dimensional data cubes is typically time-consuming due to the limited speed of raster scanning or wavelength tuning, which impedes real-time visualization with high spatial definition across broad spectral bands. Here, we devise and implement a high-speed, wide-field mid-infrared hyperspectral imaging system relying on broadband parametric upconversion of high-brightness supercontinuum illumination at the Fourier plane. The upconverted replica is spectrally decomposed by a rapid acousto-optic tunable filter, which records high-definition monochromatic images at a frame rate of 10 kHz based on a megapixel silicon camera. Consequently, the hyperspectral imager allows us to acquire 100 spectral bands over 2600-4085 cm-1 in 10 ms, corresponding to a refreshing rate of 100 Hz. Moreover, the angular dependence of phase matching in the image upconversion is leveraged to realize snapshot operation with spatial multiplexing for multiple spectral channels, which may further boost the spectral imaging rate. The high acquisition rate, wide-field operation, and broadband spectral coverage could open new possibilities for high-throughput characterization of transient processes in material and life sciences.
Collapse
Affiliation(s)
- Jianan Fang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Kun Huang
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China.
- Collaborative Innovation Center of Extreme Optics, Shanxi University, Taiyuan, Shanxi, 030006, China.
| | - Ruiyang Qin
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
| | - Yan Liang
- School of Optical Electrical and Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China
| | - E Wu
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China
| | - Ming Yan
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China
| | - Heping Zeng
- State Key Laboratory of Precision Spectroscopy, East China Normal University, Shanghai, 200062, China.
- Chongqing Key Laboratory of Precision Optics, Chongqing Institute of East China Normal University, Chongqing, 401121, China.
- Shanghai Research Center for Quantum Sciences, Shanghai, 201315, China.
- Chongqing Institute for Brain and Intelligence, Guangyang Bay Laboratory, Chongqing, 400064, China.
| |
Collapse
|
9
|
Fuenzalida J, Gilaberte Basset M, Töpfer S, Torres JP, Gräfe M. Experimental quantum imaging distillation with undetected light. SCIENCE ADVANCES 2023; 9:eadg9573. [PMID: 37647398 PMCID: PMC10468131 DOI: 10.1126/sciadv.adg9573] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 02/01/2023] [Accepted: 07/28/2023] [Indexed: 09/01/2023]
Abstract
Imaging based on the induced coherence effect makes use of photon pairs to obtain information of an object without detecting the light that probes it. While one photon illuminates the object, only its partner is detected, so no measurement of coincidence events is needed. The sought-after object's information is revealed, observing a certain interference pattern on the detected photon. Here, we demonstrate experimentally that this imaging technique can be made resilient to noise. We introduce an imaging distillation approach based on the interferometric modulation of the signal of interest. We show that our scheme can generate a high-quality image of an object even against noise levels up to 250 times the actual signal of interest. We also include a detailed theoretical explanation of our findings.
Collapse
Affiliation(s)
- Jorge Fuenzalida
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
- Institute of Applied Physics, Technical University of Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
| | - Marta Gilaberte Basset
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Sebastian Töpfer
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
- Institute of Applied Physics, Technical University of Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
| | - Juan P. Torres
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
| | - Markus Gräfe
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745 Jena, Germany
- Institute of Applied Physics, Technical University of Darmstadt, Schloßgartenstraße 7, 64289 Darmstadt, Germany
- Friedrich Schiller University Jena, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| |
Collapse
|
10
|
Qian G, Xu X, Zhu SA, Xu C, Gao F, Yakovlev VV, Liu X, Zhu SY, Wang DW. Quantum Induced Coherence Light Detection and Ranging. PHYSICAL REVIEW LETTERS 2023; 131:033603. [PMID: 37540869 DOI: 10.1103/physrevlett.131.033603] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Accepted: 06/22/2023] [Indexed: 08/06/2023]
Abstract
Quantum illumination has been proposed and demonstrated to improve the signal-to-noise ratio (SNR) in light detection and ranging (LiDAR). When relying on coincidence detection alone, such a quantum LiDAR is limited by the timing jitter of the detector and suffers from jamming noise. Inspired by the Zou-Wang-Mandel experiment, we design, construct, and validate a quantum induced coherence (QuIC) LiDAR which is inherently immune to ambient and jamming noises. In traditional LiDAR the direct detection of the reflected probe photons suffers from deteriorating SNR for increasing background noise. In QuIC LiDAR we circumvent this obstacle by only detecting the entangled reference photons, whose single-photon interference fringes are used to obtain the distance of the object, while the reflected probe photons are used to erase path information of the reference photons. In consequence, the noise accompanying the reflected probe light has no effect on the detected signal. We demonstrate such noise resilience with both LED and laser light to mimic the background and jamming noise. The proposed method paves a new way of battling noise in precise quantum electromagnetic sensing and ranging.
Collapse
Affiliation(s)
- Gewei Qian
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Xingqi Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Shun-An Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Chenran Xu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Fei Gao
- ZJU-Hangzhou Global Science and Technology Innovation Center, College of Information Science and Electronic Engineering, Zhejiang University, Hangzhou 310027, China
| | - V V Yakovlev
- Texas A&M University, 3120 TAMU, College Station, Texas 77843, USA
| | - Xu Liu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
| | - Shi-Yao Zhu
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Hefei National Laboratory, Hefei 230088, China
| | - Da-Wei Wang
- Interdisciplinary Center for Quantum Information, State Key Laboratory of Modern Optical Instrumentation, and Zhejiang Province Key Laboratory of Quantum Technology and Device, School of Physics, Zhejiang University, Hangzhou 310027, Zhejiang Province, China
- Hefei National Laboratory, Hefei 230088, China
- CAS Center for Excellence in Topological Quantum Computation, University of Chinese Academy of Sciences, Beijing 100190, China
| |
Collapse
|
11
|
Qian K, Wang K, Chen L, Hou Z, Krenn M, Zhu S, Ma XS. Multiphoton non-local quantum interference controlled by an undetected photon. Nat Commun 2023; 14:1480. [PMID: 36932077 PMCID: PMC10023773 DOI: 10.1038/s41467-023-37228-y] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 03/08/2023] [Indexed: 03/18/2023] Open
Abstract
The interference of quanta lies at the heart of quantum physics. The multipartite generalization of single-quanta interference creates entanglement, the coherent superposition of states shared by several quanta. Entanglement allows non-local correlations between many quanta and hence is a key resource for quantum information technology. Entanglement is typically considered to be essential for creating non-local quantum interference. Here, we show that this is not the case and demonstrate multiphoton non-local quantum interference that does not require entanglement of any intrinsic properties of the photons. We harness the superposition of the physical origin of a four-photon product state, which leads to constructive and destructive interference with the photons' mere existence. With the intrinsic indistinguishability in the generation process of photons, we realize four-photon frustrated quantum interference. This allows us to observe the following noteworthy difference to quantum entanglement: We control the non-local multipartite quantum interference with a photon that we never detect, which does not require quantum entanglement. These non-local properties pave the way for the studies of foundations of quantum physics and potential applications in quantum technologies.
Collapse
Affiliation(s)
- Kaiyi Qian
- National Laboratory of Solid-state Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Kai Wang
- National Laboratory of Solid-state Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China.
| | - Leizhen Chen
- National Laboratory of Solid-state Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Zhaohua Hou
- National Laboratory of Solid-state Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Mario Krenn
- Max Planck Institute for the Science of Light (MPL), Erlangen, Germany.
| | - Shining Zhu
- National Laboratory of Solid-state Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China
| | - Xiao-Song Ma
- National Laboratory of Solid-state Microstructures, School of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, 210093, China. .,Synergetic Innovation Center of Quantum Information and Quantum Physics, University of Science and Technology of China, Hefei, Anhui, 230026, China. .,Hefei National Laboratory, Hefei, 230088, China.
| |
Collapse
|
12
|
Abstract
Single-pixel cameras have recently emerged as promising alternatives to multi-pixel sensors due to reduced costs and superior durability, which are particularly attractive for mid-infrared (MIR) imaging pertinent to applications including industry inspection and biomedical diagnosis. To date, MIR single-pixel photon-sparse imaging has yet been realized, which urgently calls for high-sensitivity optical detectors and high-fidelity spatial modulators. Here, we demonstrate a MIR single-photon computational imaging with a single-element silicon detector. The underlying methodology relies on nonlinear structured detection, where encoded time-varying pump patterns are optically imprinted onto a MIR object image through sum-frequency generation. Simultaneously, the MIR radiation is spectrally translated into the visible region, thus permitting infrared single-photon upconversion detection. Then, the use of advanced algorithms of compressed sensing and deep learning allows us to reconstruct MIR images under sub-Nyquist sampling and photon-starving illumination. The presented paradigm of single-pixel upconversion imaging is featured with single-pixel simplicity, single-photon sensitivity, and room-temperature operation, which would establish a new path for sensitive imaging at longer infrared wavelengths or terahertz frequencies, where high-sensitivity photon counters and high-fidelity spatial modulators are typically hard to access.
Collapse
|
13
|
Zhang Y, England D, Sussman B. Snapshot hyperspectral imaging with quantum correlated photons. OPTICS EXPRESS 2023; 31:2282-2291. [PMID: 36785245 DOI: 10.1364/oe.462587] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/28/2022] [Accepted: 12/16/2022] [Indexed: 06/18/2023]
Abstract
Hyperspectral imaging (HSI) has a wide range of applications from environmental monitoring to biotechnology. Conventional snapshot HSI techniques generally require a trade-off between spatial and spectral resolution and are thus limited in their ability to achieve high resolutions in both simultaneously. Most techniques are also resource inefficient with most of the photons lost through spectral filtering. Here, we demonstrate a proof-of-principle snapshot HSI technique utilizing the strong spectro-temporal correlations inherent in entangled photons using a modified quantum ghost spectroscopy system, where the target is directly imaged with one photon and the spectral information gained through ghost spectroscopy from the partner photon. As only a few rows of pixels near the edge of the camera are used for the spectrometer, effectively no spatial resolution is sacrificed for spectral. Also since no spectral filtering is required, all photons contribute to the HSI process making the technique much more resource efficient.
Collapse
|
14
|
Wang J, Hao X, Pan B, Huang X, Sun H, Pei P. Perovskite single-detector visible-light spectrometer. OPTICS LETTERS 2023; 48:399-402. [PMID: 36638467 DOI: 10.1364/ol.478629] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/20/2022] [Accepted: 12/05/2022] [Indexed: 06/17/2023]
Abstract
We demonstrate a perovskite single-phototransistor visible-light spectrometer based on a deep-learning method. The size of the spectrometer is set to the scale of the phototransistor. A photoresponsivity matrix for the deep-learning system is learned from the characteristic parameters of the visible-light wavelength, gate voltage, and power densities of a commercial standard blackbody source. Unknown spectra are reconstructed using the corresponding photocurrent vectors. As a confirmatory experiment, a 532-nm laser and multipeak broadband spectrum are successfully reconstructed using our perovskite single-phototransistor spectrometer. The resolution is improved to 1 nm by increasing the number of sampling points from 80 to 400. In addition, a way to further improve the resolution is provided by increasing the number of sampling points, characteristic parameters, and training datasets. Furthermore, artificial intelligence technology may open pathways for on-chip visible-light spectroscopy.
Collapse
|
15
|
Haase BE, Hennig J, Kutas M, Waller E, Hering J, von Freymann G, Molter D. Phase-quadrature quantum imaging with undetected photons. OPTICS EXPRESS 2023; 31:143-152. [PMID: 36606956 DOI: 10.1364/oe.471837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/04/2022] [Accepted: 10/10/2022] [Indexed: 06/17/2023]
Abstract
Sensing with undetected photons allows access to spectral regions with simultaneous detection of photons of another region and is based on nonlinear interferometry. To obtain the full information of a sample, the corresponding interferogram has to be analyzed in terms of amplitude and phase, which has been realized so far by multiple measurements followed by phase variation. Here, we present a polarization-optics-based phase-quadrature implementation in a nonlinear interferometer for imaging with undetected photons in the infrared region. This allows us to obtain phase and visibility with a single image acquisition without the need of varying optical paths or phases, thus enabling the detection of dynamic processes. We demonstrate the usefulness of our method on a static phase mask opaque to the detected photons as well as on dynamic measurement tasks as the drying of an isopropanol film and the stretching of an adhesive tape.
Collapse
|
16
|
Phase Sensitivity Improvement in Correlation-Enhanced Nonlinear Interferometers. Symmetry (Basel) 2022. [DOI: 10.3390/sym14122684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2022] Open
Abstract
Interferometers are widely used as sensors in precision measurement. Compared with a conventional Mach–Zehnder interferometer, the sensitivity of a correlation-enhanced nonlinear interferometer can break the standard quantum limit. Phase sensitivity plays a significant role in the enhanced performance. In this paper, we review improvement in phase estimation technologies in correlation-enhanced nonlinear interferometers, including SU(1,1) interferometer and SU(1,1)-SU(2) hybrid interferometer, and so on, and the applications in quantum metrology and quantum sensing networks.
Collapse
|
17
|
Knez D, Toulson BW, Chen A, Ettenberg MH, Nguyen H, Potma EO, Fishman DA. Spectral imaging at high definition and high speed in the mid-infrared. SCIENCE ADVANCES 2022; 8:eade4247. [PMID: 36383646 PMCID: PMC9668290 DOI: 10.1126/sciadv.ade4247] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/15/2022] [Accepted: 10/20/2022] [Indexed: 06/16/2023]
Abstract
Spectral imaging in the mid-infrared (MIR) range provides simultaneous morphological and chemical information of a wide variety of samples. However, current MIR technologies struggle to produce high-definition images over a broad spectral range at acquisition rates that are compatible with real-time processes. We present a novel spectral imaging technique based on nondegenerate two-photon absorption of temporally chirped optical MIR pulses. This approach avoids complex image processing or reconstruction and enables high-speed acquisition of spectral data cubes (xyω) at high-pixel density in under a second.
Collapse
Affiliation(s)
- David Knez
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Benjamin W. Toulson
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Anabel Chen
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Martin H. Ettenberg
- Princeton Infrared Technologies Inc., 7 Deerpark Dr. Suite E, Monmouth Junction, NJ 08852, USA
| | - Hai Nguyen
- Princeton Infrared Technologies Inc., 7 Deerpark Dr. Suite E, Monmouth Junction, NJ 08852, USA
| | - Eric O. Potma
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, Irvine, CA 92697, USA
| |
Collapse
|
18
|
Huang K, Fang J, Yan M, Wu E, Zeng H. Wide-field mid-infrared single-photon upconversion imaging. Nat Commun 2022; 13:1077. [PMID: 35228533 PMCID: PMC8885736 DOI: 10.1038/s41467-022-28716-8] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2021] [Accepted: 01/04/2022] [Indexed: 11/24/2022] Open
Abstract
Frequency upconversion technique, where the infrared signal is nonlinearly translated into the visible band to leverage the silicon sensors, offers a promising alternation for the mid-infrared (MIR) imaging. However, the intrinsic field of view (FOV) is typically limited by the phase-matching condition, thus imposing a remaining challenge to promote subsequent applications. Here, we demonstrate a wide-field upconversion imaging based on the aperiodic quasi-phase-matching configuration. The acceptance angle is significantly expanded to about 30°, over tenfold larger than that with the periodical poling crystal. The extended FOV is realized in one shot without the need of parameter scanning or post-processing. Consequently, a fast snapshot allows to facilitate high-speed imaging at a frame rate up to 216 kHz. Alternatively, single-photon imaging at room temperature is permitted due to the substantially suppressed background noise by the spectro-temporal filtering. Furthermore, we have implemented high-resolution time-of-flight 3D imaging based on the picosecond optical gating. These presented MIR imaging features with wide field, fast speed, and high sensitivity might stimulate immediate applications, such as non-destructive defect inspection, in-vivo biomedical examination, and high-speed volumetric tomography. The authors present a simple yet effective solution to dramatically boost the performances of an upconversion imaging system, which leads to unprecedented mid-infrared imaging features with large field of view, single-photon sensitivity and a MHz-level frame rate.
Collapse
|
19
|
Kaufmann P, Chrzanowski HM, Vanselow A, Ramelow S. Mid-IR spectroscopy with NIR grating spectrometers. OPTICS EXPRESS 2022; 30:5926-5936. [PMID: 35209544 DOI: 10.1364/oe.442411] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/24/2021] [Accepted: 11/04/2021] [Indexed: 06/14/2023]
Abstract
Mid-infrared (mid-IR) spectroscopy is a crucial workhorse for a plethora of analytical applications and is suitable for diverse materials, including gases, polymers or biological tissue. However, this technologically significant wavelength regime between 2.5-10 µm suffers from technical limitations primarily related to the large noise in mid-IR detectors and the complexity and cost of bright, broadband mid-IR light sources. Here, using highly non-degenerate, broadband photon pairs from bright spontaneous parametric down-conversion (SPDC) in a nonlinear interferometer, we circumvent these limitations and realise spectroscopy in the mid-IR using only a visible (VIS) solid-state laser and an off-the-shelf, commercial near-infrared (NIR) grating spectrometer. With this proof-of-concept implementation, covering a broad range from 3.2 µm to 4.4 µm we demonstrate short integration times down to 1 s and signal-to-noise ratios above 200 at a spectral resolution from 12 cm-1 down to 1.5 cm-1 for longer integration times. Through the analysis of polymer samples and the ambient CO2 in our laboratory, we highlight the potential of this measurement technique for real-world applications.
Collapse
|
20
|
Kviatkovsky I, Chrzanowski HM, Ramelow S. Mid-infrared microscopy via position correlations of undetected photons. OPTICS EXPRESS 2022; 30:5916-5925. [PMID: 35209543 DOI: 10.1364/oe.440534] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/13/2021] [Accepted: 12/04/2021] [Indexed: 06/14/2023]
Abstract
Quantum imaging with undetected photons (QIUP) has recently emerged as a new powerful imaging tool. Exploiting the spatial entanglement of photon pairs, it allows decoupling of the sensing and detection wavelengths, facilitating imaging in otherwise challenging spectral regions by leveraging mature silicon-based detection technology. All existing implementations of QIUP have so far utilised the momentum correlations within the biphoton states produced by spontaneous parametric downconversion. Here, for the first time, we implement and examine theoretically and numerically the complementary scenario - utilising the tight position correlations formed within photon pairs at birth. This image plane arrangement facilitates high resolution imaging with comparative experimental ease, and we experimentally show resolutions below 10 μm at a sensing wavelength of 3.7 μm. Moreover, we present a quantitative numerical model predicting the imaging capabilities of QIUP for a wide range of parameters. Finally, by imaging mouse heart tissue at the mid-IR to reveal morphological features on the cellular level, we further demonstrate the viability of this technique for the life sciences. These results offer new perspectives on the capabilities of QIUP for label-free widefield mid-IR microscopy, enabling real-world biomedical as well as industrial imaging applications.
Collapse
|
21
|
Töpfer S, Gilaberte Basset M, Fuenzalida J, Steinlechner F, Torres JP, Gräfe M. Quantum holography with undetected light. SCIENCE ADVANCES 2022; 8:eabl4301. [PMID: 35030021 PMCID: PMC8759747 DOI: 10.1126/sciadv.abl4301] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 11/19/2021] [Indexed: 06/14/2023]
Abstract
Holography exploits the interference of a light field reflected/transmitted from an object with a reference beam to obtain a reconstruction of the spatial shape of the object. Classical holography techniques have been very successful in diverse areas such as microscopy, manufacturing technology, and basic science. However, detection constraints for wavelengths outside the visible range restrict the applications for imaging and sensing in general. For overcoming these detection limitations, we implement phase-shifting holography with nonclassical states of light, where we exploit quantum interference between two-photon probability amplitudes in a nonlinear interferometer. We demonstrate that it allows retrieving the spatial shape (amplitude and phase) of the photons transmitted/reflected from the object and thus obtaining an image of the object despite those photons are never detected. Moreover, there is no need to use a well-characterized reference beam, since the two-photon scheme already makes use of one of the photons as reference for holography.
Collapse
Affiliation(s)
- Sebastian Töpfer
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
| | - Marta Gilaberte Basset
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
- Friedrich Schiller University Jena, Institute of Applied Physics, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Jorge Fuenzalida
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
| | - Fabian Steinlechner
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
- Friedrich Schiller University Jena, Institute of Applied Physics, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| | - Juan P. Torres
- ICFO-Institut de Ciencies Fotoniques, The Barcelona Institute of Science and Technology, 08860 Castelldefels, Spain
- Department of Signal Theory and Communications, Universitat Politecnica de Catalunya, 08034 Barcelona, Spain
| | - Markus Gräfe
- Fraunhofer Institute for Applied Optics and Precision Engineering IOF, Albert-Einstein-Str. 7, 07745, Jena, Germany
- Friedrich Schiller University Jena, Institute of Applied Physics, Abbe Center of Photonics, Albert-Einstein-Str. 6, 07745 Jena, Germany
| |
Collapse
|
22
|
Viswanathan B, Barreto Lemos G, Lahiri M. Resolution limit in quantum imaging with undetected photons using position correlations. OPTICS EXPRESS 2021; 29:38185-38198. [PMID: 34808876 DOI: 10.1364/oe.434085] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/24/2021] [Accepted: 10/06/2021] [Indexed: 06/13/2023]
Abstract
Quantum imaging with undetected photons (QIUP) is a unique method of image acquisition where the photons illuminating the object are not detected. This method relies on quantum interference and spatial correlations between the twin photons to form an image. Here we present a detailed study of the resolution limits of position correlation enabled QIUP. We establish a quantitative relation between the spatial resolution and the twin-photon position correlation. Furthermore, we also quantitatively establish the roles that the wavelength of the undetected illumination field and the wavelength of the detected field play in the resolution. Like ghost imaging and unlike conventional imaging, the resolution limit imposed by the spatial correlation between the twin photons in QIUP cannot be further improved by conventional optical techniques.
Collapse
|
23
|
Michael Y, Jonas I, Bello L, Meller ME, Cohen E, Rosenbluh M, Pe'er A. Augmenting the Sensing Performance of Entangled Photon Pairs through Asymmetry. PHYSICAL REVIEW LETTERS 2021; 127:173603. [PMID: 34739301 DOI: 10.1103/physrevlett.127.173603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/05/2021] [Revised: 08/08/2021] [Accepted: 09/23/2021] [Indexed: 06/13/2023]
Abstract
We analyze theoretically and experimentally cases of asymmetric detection, stimulation, and loss within a quantum nonlinear interferometer of entangled pairs. We show that the visibility of the SU(1,1) interference directly discerns between loss on the measured mode (signal) and the conjugated mode (idler). This asymmetry also affects the phase sensitivity of the interferometer, where coherent seeding is shown to mitigate losses that are suffered by the conjugated mode; therefore increasing the maximum threshold of loss that permits sub-shot-noise phase detection. Our findings can improve the performance of setups that rely on direct detection of entangled pairs, such as quantum interferometry and imaging with undetected photons.
Collapse
Affiliation(s)
- Yoad Michael
- BINA Center for Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Isaac Jonas
- BINA Center for Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Leon Bello
- BINA Center for Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | | | - Eliahu Cohen
- BINA Center for Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Michael Rosenbluh
- BINA Center for Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| | - Avi Pe'er
- BINA Center for Nanotechnology, Bar-Ilan University, Ramat Gan, 5290002, Israel
| |
Collapse
|
24
|
Peng Z, Zhou Z, Li T, Jiang M, Li C, Qing T, Yang L, Zhang X. Real-time monitoring of the sucrose hydrolysis process based on two-photon coincidence measurements. BIOMEDICAL OPTICS EXPRESS 2021; 12:6590-6600. [PMID: 34745758 PMCID: PMC8548013 DOI: 10.1364/boe.432301] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/30/2021] [Revised: 09/10/2021] [Accepted: 09/17/2021] [Indexed: 06/13/2023]
Abstract
Real-time measurement of the biochemical reaction process has important application scenarios. Due to the chirality of a large number of life-sustaining molecules, many parameters of the reaction kinetics involving these chiral molecules, such as the reaction rate and the reagents concentrations, could be tracked by monitoring the optical activity of the substrate and/or product molecules. However, the optical activity of photosensitive biomolecules does not allow traditional laser-based real-time measurement due to the vulnerability of their biochemical properties under high-intensity light regimes. Here we introduce a real-time tracking technique of the sucrose hydrolysis reaction based on two-photon coincidence measurements. The two-photon source is generated based on a spontaneous parametric down-conversion process. During the reaction, the kinetic parameters are obtained by the real-time measurement of the change of the polarization of the photons when operating at extremely low-light regimes. Compared with single-photon counting measurements, two-photon coincidence measurements have higher signal-to-noise ratios and better robustness, which demonstrates the potential value in monitoring the photosensitive biochemical reaction processes.
Collapse
Affiliation(s)
- Zheng Peng
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, Hebei 065001, China
| | - Zhiyuan Zhou
- CAS Key Laboratory of Quantum Information, University of Science and Technology of China, Hefei, Anhui 230026, China
| | - Tongju Li
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, Hebei 065001, China
| | - Meili Jiang
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, Hebei 065001, China
| | - Chenhao Li
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, Hebei 065001, China
| | - Tang Qing
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, Hebei 065001, China
- College of Physics, Sichuan University, Chengdu, Sichuan 610064, China
| | - Liu Yang
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, Hebei 065001, China
| | - Xiaochun Zhang
- ENNOVA Institute of Life Science and Technology, ENN Group, Langfang, Hebei 065001, China
| |
Collapse
|
25
|
Yang C, Zhou ZY, Wang LL, Li Y, Liu SK, Ge Z, Zhang XC, Tang Q, Guo GC, Shi BS. Interference fringes in a nonlinear Michelson interferometer based on spontaneous parametric down-conversion. OPTICS EXPRESS 2021; 29:32006-32019. [PMID: 34615280 DOI: 10.1364/oe.437624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/13/2021] [Accepted: 09/10/2021] [Indexed: 06/13/2023]
Abstract
Quantum nonlinear interferometers (QNIs) can measure the infrared physical quantities of a sample by detecting visible photons. A QNI with Michelson geometry based on the spontaneous parametric down-conversion in a second-order nonlinear crystal is studied systematically. A simplified theoretical model of the QNI is presented. The interference visibility, coherence length, equal-inclination interference, and equal-thickness interference for the QNI are demonstrated theoretically and experimentally. As an application example of the QNI, the refractive index and the angle between two surfaces of a BBO crystal are measured using equal-inclination interference and equal-thickness interference.
Collapse
|
26
|
Viswanathan B, Barreto Lemos G, Lahiri M. Position correlation enabled quantum imaging with undetected photons. OPTICS LETTERS 2021; 46:3496-3499. [PMID: 34329208 DOI: 10.1364/ol.419502] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/13/2021] [Accepted: 06/12/2021] [Indexed: 06/13/2023]
Abstract
Quantum imaging with undetected photons (QIUP) is a unique imaging technique that does not require the detection of the light used for illuminating the object. This technique requires a correlated pair of photons. In the existing implementations of QIUP, the imaging is enabled by the momentum correlation between the twin photons. We investigate the complementary scenario in which the imaging is instead enabled by the position correlation between the two photons. We present a general theory and show that the properties of the images obtained in these two cases are significantly distinct.
Collapse
|
27
|
POTMA ERICO, KNEZ DAVID, CHEN YONG, DAVYDOVA YULIA, DURKIN AMANDA, FAST ALEXANDER, BALU MIHAELA, NORTON-BAKER BRENNA, MARTIN RACHELW, BALDACCHINI TOMMASO, FISHMAN DMITRYA. Rapid chemically selective 3D imaging in the mid-infrared. OPTICA 2021; 8:995-1002. [PMID: 35233439 PMCID: PMC8884451 DOI: 10.1364/optica.426199] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2021] [Accepted: 06/16/2021] [Indexed: 05/04/2023]
Abstract
The emerging technique of mid-infrared optical coherence tomography (MIR-OCT) takes advantage of the reduced scattering of MIR light in various materials and devices, enabling tomographic imaging at deeper penetration depths. Because of challenges in MIR detection technology, the image acquisition time is, however, significantly longer than for tomographic imaging methods in the visible/near-infrared. Here we demonstrate an alternative approach to MIR tomography with high-speed imaging capabilities. Through femtosecond nondegenerate two-photon absorption of MIR light in a conventional Si-based CCD camera, we achieve wide-field, high-definition tomographic imaging with chemical selectivity of structured materials and biological samples in mere seconds.
Collapse
Affiliation(s)
- ERIC O. POTMA
- Department of Chemistry, University of California Irvine, California 92697, USA
- Beckman Laser Institute, University of California Irvine, California 92697, USA
- e-mail:
| | - DAVID KNEZ
- Department of Chemistry, University of California Irvine, California 92697, USA
| | - YONG CHEN
- Epstein Department of Industrial and Systems Engineering, University of Southern California, Los Angeles, California 90089, USA
| | - YULIA DAVYDOVA
- Department of Chemistry, University of California Irvine, California 92697, USA
| | - AMANDA DURKIN
- Beckman Laser Institute, University of California Irvine, California 92697, USA
| | - ALEXANDER FAST
- Beckman Laser Institute, University of California Irvine, California 92697, USA
| | - MIHAELA BALU
- Beckman Laser Institute, University of California Irvine, California 92697, USA
| | - BRENNA NORTON-BAKER
- Department of Chemistry, University of California Irvine, California 92697, USA
| | - RACHEL W. MARTIN
- Department of Chemistry, University of California Irvine, California 92697, USA
- Department of Molecular Biology & Biochemistry, University of California Irvine, California 92697, USA
| | - TOMMASO BALDACCHINI
- Department of Chemistry, University of California Irvine, California 92697, USA
- Current address: Edwards Life Sciences, Irvine, California 92612, USA
| | - DMITRY A. FISHMAN
- Department of Chemistry, University of California Irvine, California 92697, USA
| |
Collapse
|
28
|
Lindner C, Kunz J, Herr SJ, Wolf S, Kießling J, Kühnemann F. Nonlinear interferometer for Fourier-transform mid-infrared gas spectroscopy using near-infrared detection. OPTICS EXPRESS 2021; 29:4035-4047. [PMID: 33770991 DOI: 10.1364/oe.415365] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/17/2020] [Accepted: 01/18/2021] [Indexed: 06/12/2023]
Abstract
Nonlinear interferometers allow for mid-infrared spectroscopy with near-infrared detection using correlated photons. Previous implementations have demonstrated a spectral resolution limited by spectrally selective detection. In our work, we demonstrate mid-infrared transmission spectroscopy in a nonlinear interferometer using single-pixel near-infrared detection and Fourier-transform analysis. A sub-wavenumber spectral resolution allows for rotational-line-resolving spectroscopy of gaseous samples in a spectral bandwidth of over 700 cm-1. We use methane transmission spectra around 3.3 μm wavelength to characterize the spectral resolution, noise limitations and transmission accuracy of our device. The combination of nonlinear interferometry and Fourier-transform analysis paves the way towards performant and efficient mid-infrared spectroscopy with near-infrared detection.
Collapse
|
29
|
Kviatkovsky I, Chrzanowski HM, Avery EG, Bartolomaeus H, Ramelow S. Microscopy with undetected photons in the mid-infrared. SCIENCE ADVANCES 2020; 6:eabd0264. [PMID: 33055168 PMCID: PMC10763735 DOI: 10.1126/sciadv.abd0264] [Citation(s) in RCA: 36] [Impact Index Per Article: 7.2] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/28/2020] [Accepted: 09/02/2020] [Indexed: 06/11/2023]
Abstract
Owing to its capacity for unique (bio)-chemical specificity, microscopy with mid-infrared (IR) illumination holds tremendous promise for a wide range of biomedical and industrial applications. The primary limitation, however, remains detection, with current mid-IR detection technology often marrying inferior technical capabilities with prohibitive costs. Here, we experimentally show how nonlinear interferometry with entangled light can provide a powerful tool for mid-IR microscopy while only requiring near-IR detection with a silicon-based camera. In this proof-of-principle implementation, we demonstrate widefield imaging over a broad wavelength range covering 3.4 to 4.3 μm and demonstrate a spatial resolution of 35 μm for images containing 650 resolved elements. Moreover, we demonstrate that our technique is suitable for acquiring microscopic images of biological tissue samples in the mid-IR. These results form a fresh perspective for potential relevance of quantum imaging techniques in the life sciences.
Collapse
Affiliation(s)
- Inna Kviatkovsky
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany.
| | | | - Ellen G Avery
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
- Freie Universität Berlin, Berlin, Germany
| | - Hendrik Bartolomaeus
- Experimental and Clinical Research Center, a cooperation of Charité-Universitätsmedizin Berlin and Max Delbrück Center for Molecular Medicine, Berlin, Germany
- Charité-Universitätsmedizin Berlin, corporate member of Freie Universität Berlin, Humboldt-Universität zu Berlin, and Berlin Institute of Health, Berlin, Germany
- Max Delbrück Center for Molecular Medicine in the Helmholtz Association, Berlin, Germany
- DZHK (German Centre for Cardiovascular Research), partner site Berlin, Berlin, Germany
- Berlin Institute of Health (BIH), Berlin, Germany
| | - Sven Ramelow
- Institut für Physik, Humboldt-Universität zu Berlin, Berlin, Germany
- IRIS Adlershof, Humboldt-Universität zu Berlin, Berlin, Germany
| |
Collapse
|
30
|
Knez D, Hanninen AM, Prince RC, Potma EO, Fishman DA. Infrared chemical imaging through non-degenerate two-photon absorption in silicon-based cameras. LIGHT, SCIENCE & APPLICATIONS 2020; 9:125. [PMID: 32704358 PMCID: PMC7371741 DOI: 10.1038/s41377-020-00369-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2020] [Revised: 06/30/2020] [Accepted: 07/08/2020] [Indexed: 05/08/2023]
Abstract
Chemical imaging based on mid-infrared (MIR) spectroscopic contrast is an important technique with a myriad of applications, including biomedical imaging and environmental monitoring. Current MIR cameras, however, lack performance and are much less affordable than mature Si-based devices, which operate in the visible and near-infrared regions. Here, we demonstrate fast MIR chemical imaging through non-degenerate two-photon absorption (NTA) in a standard Si-based charge-coupled device (CCD). We show that wide-field MIR images can be obtained at 100 ms exposure times using picosecond pulse energies of only a few femtojoules per pixel through NTA directly on the CCD chip. Because this on-chip approach does not rely on phase matching, it is alignment-free and does not necessitate complex postprocessing of the images. We emphasize the utility of this technique through chemically selective MIR imaging of polymers and biological samples, including MIR videos of moving targets, physical processes and live nematodes.
Collapse
Affiliation(s)
- David Knez
- Department of Chemistry, University of California, Irvine, CA 92697 USA
| | - Adam M. Hanninen
- Department of Chemistry, University of California, Irvine, CA 92697 USA
| | - Richard C. Prince
- Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA
| | - Eric O. Potma
- Department of Chemistry, University of California, Irvine, CA 92697 USA
- Department of Biomedical Engineering, University of California, Irvine, CA 92697 USA
| | - Dmitry A. Fishman
- Department of Chemistry, University of California, Irvine, CA 92697 USA
| |
Collapse
|