1
|
Kwon SH, Lee D, Kim H, Jung YJ, Koo H, Lim YB. Structural control of self-assembled peptide nanostructures to develop peptide vesicles for photodynamic therapy of cancer. Mater Today Bio 2022; 16:100337. [PMID: 35799895 PMCID: PMC9254122 DOI: 10.1016/j.mtbio.2022.100337] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2022] [Revised: 05/30/2022] [Accepted: 06/18/2022] [Indexed: 11/24/2022]
Abstract
Vesicles such as liposomes, polymersomes, and exosomes have been widely used as drug delivery carriers; however, peptide vesicles (peptidesomes) despite their potential utility are far less well developed. Peptidesomes are distinctive because peptides play dual roles as a self-assembly building block and a bioactive functional unit. In order for peptidesomes to become successful nanodrugs, the issues related to differences in nanostructural properties between in vitro and in vivo conditions should be addressed. Here, we delineate a multivariate approach to feedback control the structures of peptide building blocks, nanoparticle size, drug loading process, nanoparticle aggregation, cytotoxicity, cell targeting capability, endosome disruption function, protease resistance, and in vivo performance, which eventually enabled the successful development of a highly efficacious peptidesome for in vivo cancer therapy. This study lays the groundwork for the successful in vivo translation of peptide nanodrugs.
Collapse
|
2
|
Djienbekov NE, Bastykova NK, Bekbussyn AM, Ramazanov TS, Kodanova SK. Shear viscosity in two-dimensional dipole systems. Phys Rev E 2022; 106:065203. [PMID: 36671159 DOI: 10.1103/physreve.106.065203] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2022] [Accepted: 10/14/2022] [Indexed: 06/17/2023]
Abstract
The results of modeling shear flows in classical two-dimensional (2D) dipole systems are presented. We used the method of nonequilibrium molecular dynamics to calculate the viscosity at various shear rates. The coefficients of shear viscosity are given in the limit of low shear rates for various regimes of interparticle correlation from a weakly correlated gaseous state to a strongly nonideal liquid state near the crystallization point. The calculations were carried out for bare (unscreened) dipole systems, as well as for dipole systems in a polarizable medium that provide screening of the dipole-dipole interaction. The effect of shear thinning in 2D dipole systems is reported for low values of the coupling parameter. In addition, it is shown that dipole systems can become both less and more viscous due to the presence of a screening medium, depending on the degree of interparticle correlation. The optimal simulation parameters are discussed within the framework of the method of nonequilibrium molecular dynamics for determining the shear viscosity of two-dimensional dipole systems. Moreover, we present a simple fitting curve which provides a universal scaling law for both bare dipole-dipole interaction and screened dipole-dipole interaction.
Collapse
Affiliation(s)
- N E Djienbekov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, 050040 Almaty, Kazakhstan
| | - N Kh Bastykova
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, 050040 Almaty, Kazakhstan
| | - A M Bekbussyn
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, 050040 Almaty, Kazakhstan
| | - T S Ramazanov
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, 050040 Almaty, Kazakhstan
| | - S K Kodanova
- Institute for Experimental and Theoretical Physics, Al-Farabi Kazakh National University, 71 Al-Farabi Avenue, 050040 Almaty, Kazakhstan
| |
Collapse
|
3
|
Senyuk B, Meng C, Smalyukh II. Design and Preparation of Nematic Colloidal Particles. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:9099-9118. [PMID: 35866261 DOI: 10.1021/acs.langmuir.2c00611] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Colloidal systems are abundant in technology, in biomedical settings, and in our daily life. The so-called "colloidal atoms" paradigm exploits interparticle interactions to self-assemble colloidal analogs of atomic and molecular crystals, liquid crystal glasses, and other types of condensed matter from nanometer- or micrometer-sized colloidal building blocks. Nematic colloids, which comprise colloidal particles dispersed within an anisotropic nematic fluid host medium, provide a particularly rich variety of physical behaviors at the mesoscale, not only matching but even exceeding the diversity of structural and phase behavior in conventional atomic and molecular systems. This feature article, using primarily examples of works from our own group, highlights recent developments in the design, fabrication, and self-assembly of nematic colloidal particles, including the capabilities of preprogramming their behavior by controlling the particle's surface boundary conditions for liquid crystal molecules at the colloidal surfaces as well as by defining the shape and topology of the colloidal particles. Recent progress in defining particle-induced defects, elastic multipoles, self-assembly, and dynamics is discussed along with open issues and challenges within this research field.
Collapse
Affiliation(s)
- Bohdan Senyuk
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Cuiling Meng
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
| | - Ivan I Smalyukh
- Department of Physics, University of Colorado, Boulder, Colorado 80309, United States
- Department of Electrical, Computer and Energy Engineering, University of Colorado, Boulder, Colorado 80309, United States
- Soft Materials Research Center and Materials Science and Engineering Program, University of Colorado, Boulder, Colorado 80309, United States
- Chemical Physics Program, Departments of Chemistry and Physics, University of Colorado, Boulder, Colorado 80309, United States
- Renewable and Sustainable Energy Institute, National Renewable Energy Laboratory and University of Colorado, Boulder, Colorado 80309, United States
| |
Collapse
|
4
|
Küster M, Ludwig F, Eremin A, Boštjančič PH, Lisjak D, Sebastián N, Mertelj A, Nádasi H. Magnetic dynamics in suspensions of ferrimagnetic platelets. J Mol Liq 2022. [DOI: 10.1016/j.molliq.2022.119484] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/18/2022]
|
5
|
Yuan H, Deng W, Zhu X, Liu G, Craig VSJ. Colloidal Systems in Concentrated Electrolyte Solutions Exhibit Re-entrant Long-Range Electrostatic Interactions due to Underscreening. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:6164-6173. [PMID: 35512818 PMCID: PMC9119301 DOI: 10.1021/acs.langmuir.2c00519] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/02/2022] [Revised: 04/26/2022] [Indexed: 05/07/2023]
Abstract
Surface force measurements have revealed that at very high electrolyte concentrations as well as in neat and diluted ionic liquids and deep eutectic solvents, the range of electrostatic interactions is far greater than the Debye length. Here, we explore the consequences of this underscreening for soft-matter and colloidal systems by investigating the stability of nanoparticle dispersions, the self-assembly of ionic surfactants, and the thickness of soap films. In each case, we find clear evidence of re-entrant properties due to underscreening at high salt concentrations. Our results show that underscreening in concentrated electrolytes is a general phenomenon and is not dependent on confinement by macroscopic surfaces. The stability of systems at very high salinity due to underscreening may be beneficially applied to processes that currently use low-salinity water.
Collapse
Affiliation(s)
- Haiyang Yuan
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Wenjie Deng
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Xiaolong Zhu
- State
Key Laboratory of Fire Science, University
of Science and Technology of China, Hefei 230026, P. R. China
| | - Guangming Liu
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
| | - Vincent Stuart James Craig
- Department
of Chemical Physics, Key Laboratory of Surface and Interface Chemistry
and Energy Catalysis of Anhui Higher Education Institutes, University of Science and Technology of China, Hefei 230026, P. R. China
- Department
of Applied Mathematics, Research School of Physics, The Australian National University, Canberra, ACT 2601, Australia
| |
Collapse
|
6
|
Abstract
Colloidal self-assembly refers to a solution-processed assembly of nanometer-/micrometer-sized, well-dispersed particles into secondary structures, whose collective properties are controlled by not only nanoparticle property but also the superstructure symmetry, orientation, phase, and dimension. This combination of characteristics makes colloidal superstructures highly susceptible to remote stimuli or local environmental changes, representing a prominent platform for developing stimuli-responsive materials and smart devices. Chemists are achieving even more delicate control over their active responses to various practical stimuli, setting the stage ready for fully exploiting the potential of this unique set of materials. This review addresses the assembly of colloids into stimuli-responsive or smart nanostructured materials. We first delineate the colloidal self-assembly driven by forces of different length scales. A set of concepts and equations are outlined for controlling the colloidal crystal growth, appreciating the importance of particle connectivity in creating responsive superstructures. We then present working mechanisms and practical strategies for engineering smart colloidal assemblies. The concepts underpinning separation and connectivity control are systematically introduced, allowing active tuning and precise prediction of the colloidal crystal properties in response to external stimuli. Various exciting applications of these unique materials are summarized with a specific focus on the structure-property correlation in smart materials and functional devices. We conclude this review with a summary of existing challenges in colloidal self-assembly of smart materials and provide a perspective on their further advances to the next generation.
Collapse
Affiliation(s)
- Zhiwei Li
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Qingsong Fan
- Department of Chemistry, University of California, Riverside, California 92521, United States
| | - Yadong Yin
- Department of Chemistry, University of California, Riverside, California 92521, United States
| |
Collapse
|
7
|
M MR, Pujala RK, Paladugu S, Dhara S. Interactions of charged microrods in chiral nematic liquid crystals. Phys Rev E 2021; 104:014706. [PMID: 34412267 DOI: 10.1103/physreve.104.014706] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/08/2021] [Accepted: 07/02/2021] [Indexed: 11/07/2022]
Abstract
We study the pair interaction of charged silica microrods in chiral nematic liquid crystals and show that the microrods with homeotropic surface anchoring form a bound state due to the competing effect of electrostatic (Coulomb) and elastic interactions. The robustness of the bound state is demonstrated by applying external electrical and mechanical forces that perturbs their equilibrium position as well as orientation. In the bound state we have measured the correlated thermal fluctuations of the position, using two-particle cross-correlation spectroscopy that uncovers their hydrodynamic interaction. These findings reveal unexplored aspects of liquid-crystal dispersions which are important for understanding the assembly and dynamics of nano- and microparticles in chiral nematic liquid crystals.
Collapse
Affiliation(s)
- Muhammed Rasi M
- School of Physics, University of Hyderabad, Hyderabad 500046, India
| | - Ravi Kumar Pujala
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| | - Sathyanarayana Paladugu
- Department of Physics, Indian Institute of Science Education and Research, Tirupati, Andhra Pradesh 517507, India
| | - Surajit Dhara
- School of Physics, University of Hyderabad, Hyderabad 500046, India
| |
Collapse
|