1
|
Zheng T, Jiang H, Ma J, Chen H, Shi Z, Liang Y. Dispersion-controlled C6-selective C-H borylation of indoles. Chem Commun (Camb) 2025. [PMID: 40337780 DOI: 10.1039/d5cc01554e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/09/2025]
Abstract
Through DFT and NCI analysis, we designed a bulky tertiary phosphine directing group, enabling an iridium-catalyzed C6-selective borylation of indoles with a simple and commercially available ligand, 1,10-phenanthroline. The directing group has dual dispersive interactions with both phenanthroline and a Bpin group, which enhance selectivity and reactivity.
Collapse
Affiliation(s)
- Tianyu Zheng
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Hao Jiang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Jiawei Ma
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Haochi Chen
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| | - Yong Liang
- State Key Laboratory of Coordination Chemistry, Jiangsu Key Laboratory of Advanced Organic Materials, Chemistry and Biomedicine Innovation Center, ChemBioMed Interdisciplinary Research Center, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
2
|
Mondal A, Dašková V, Chen X, Thiel NO, Alachouzos G, Feringa BL. Diastereoselective C(sp 3)-H acetoxylation of phosphoramidites. Chem Commun (Camb) 2025; 61:6510-6513. [PMID: 40189936 DOI: 10.1039/d5cc00550g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Chiral phosphines are important ligands in asymmetric catalysis, yet their potential as directing groups for asymmetric C-H activation remains unexplored due to the oxidative nature of these reactions. We present a Pd-catalysed, P(III)-directed diastereoselective acetoxylation of phosphoramidites, with DFT calculations elucidating their unique reactivity and supporting the proposed reaction mechanism.
Collapse
Affiliation(s)
- Anirban Mondal
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3, 9747AG Groningen, The Netherlands.
| | - Vanda Dašková
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3, 9747AG Groningen, The Netherlands.
| | - Xiaobing Chen
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3, 9747AG Groningen, The Netherlands.
| | - Niklas O Thiel
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3, 9747AG Groningen, The Netherlands.
| | - Georgios Alachouzos
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3, 9747AG Groningen, The Netherlands.
| | - Ben L Feringa
- Stratingh Institute for Chemistry, University of Groningen Nijenborgh 3, 9747AG Groningen, The Netherlands.
| |
Collapse
|
3
|
Wang X, Fu Y, Guo Z, Lin A, Jia Q, Han C. Site-Selective Electrophilic Trifluoromethylthiolation for the Synthesis of C5- or C7-SCF 3-Substituted Indolines. Org Lett 2025; 27:493-497. [PMID: 39711164 DOI: 10.1021/acs.orglett.4c04500] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2024]
Abstract
We report herein an efficient and site-selective electrophilic trifluoromethylthiolation of indolines. In the absence of any catalyst or additive, C5-selective trifluoromethylthiolation could proceed at room temperature. With palladium used as the catalyst, the selectivity was reversed completely, giving C7-selecive trifluoromethylthiolated products. This reaction features good functional group tolerance, simple operation, mild conditions, and scale-up application. The potential utilities of the products were shown by further transformations.
Collapse
Affiliation(s)
- Xiaolong Wang
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Yan Fu
- Core Facilities and Centers, Hebei Medical University, Shijiazhuang 050017, China
| | - Zhenshan Guo
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Aijun Lin
- State Key Laboratory of Natural Medicines (SKLNM) and Department of Medicinal Chemistry, School of Pharmacy, China Pharmaceutical University, Nanjing 210009, China
| | - Qingzhong Jia
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
| | - Chunhua Han
- School of Pharmacy, Hebei Medical University, Shijiazhuang 050017, China
- Postdoctoral Research Station in Biology, Hebei Medical University, Shijiazhuang 050017, China
| |
Collapse
|
4
|
Das S, Saha R, Bhadra S, Samanta R. Ru(II)-Catalyzed Skeletal Editing of Oxindole with Internal Alkyne To Synthesize C7-Alkylated Indole Derivatives. Org Lett 2024; 26:8051-8056. [PMID: 39284099 DOI: 10.1021/acs.orglett.4c02870] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/28/2024]
Abstract
A Ru(II)-catalyzed skeletal editing of oxindole scaffolds was established to afford C7-alkyl acetate indole derivatives using internal alkyne and alkyl alcohol. The developed method is simple, efficient, and straightforward. The reaction was extended to substrates having wide chemoselective profiles. When unsymmetrical alkynes were used, promising regioselectivity was realized. A preliminary mechanistic study revealed that the reaction pathway proceeded by Ru(II)/Ag(I)-catalyzed amide cleavage and subsequent oxidative annulation.
Collapse
Affiliation(s)
- Sarbojit Das
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Raktim Saha
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Souvik Bhadra
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| | - Rajarshi Samanta
- Department of Chemistry, Indian Institute of Technology Kharagpur, Kharagpur 721302, India
| |
Collapse
|
5
|
Wei P, Ying J, Wu XF. Cobalt(II)-Catalyzed Intermolecular Aminocarbonylation of Indoles with Amines. Org Lett 2023; 25:7700-7704. [PMID: 37853515 DOI: 10.1021/acs.orglett.3c03034] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/20/2023]
Abstract
A cobalt(II)-catalyzed C2-H carbonylation of indoles with amines toward indole-2-carboxamides has been developed. By employing Co(OAc)2·4H2O as an inexpensive catalyst and using benzene-1,3,5-triyl triformate (TFBen) as the CO surrogate, a variety of indole-2-carboxamide derivatives were produced in moderate to high yields. Additionally, several bioactive-molecule-related compounds can be applied as substrates, as well.
Collapse
Affiliation(s)
- Ping Wei
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Jun Ying
- School of Chemistry and Chemical Engineering, Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, Zhejiang Sci-Tech University, Hangzhou 310018, China
| | - Xiao-Feng Wu
- Dalian National Laboratory for Clean Energy, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian, Liaoning 116023, China
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Straβe 29a, 18059 Rostock, Germany
| |
Collapse
|
6
|
Peng M, Ari D, Roisnel T, Doucet H, Soulé JF. Rhodium(i)-catalyzed cascade C(sp 2)-H bond alkylation - amidation of anilines: phosphorus as traceless directing group. Chem Sci 2023; 14:9055-9062. [PMID: 37655033 PMCID: PMC10466282 DOI: 10.1039/d3sc02992a] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 08/01/2023] [Indexed: 09/02/2023] Open
Abstract
We introduce a versatile Rh(i)-catalyzed cascade reaction, combining C(sp2)-H bond functionalization and amidation between N-arylphosphanamines and acrylates. This innovative approach enables the rapid synthesis of dihydroquinolinone scaffolds, a common heterocycle found in various pharmaceuticals. Notably, the presence of the phosphorus atom facilitates the aniline ortho-C(sp2)-H bond activation prior to N-P bond hydrolysis, streamlining one-pot intramolecular amidation. Moreover, we demonstrate the applicability of this reaction by synthesizing an antipsychotic drug. Detailed mechanistic investigations revealed the involvement of a Rh-H intermediate, with substrate inhibition through catalyst saturation.
Collapse
Affiliation(s)
- Marie Peng
- Univ. Rennes, CNRS UMR6226 Rennes F-3500 France
| | - Denis Ari
- Univ. Rennes, CNRS UMR6226 Rennes F-3500 France
| | | | | | - Jean-François Soulé
- Chimie ParisTech, PSL University, CNRS, Institute of Chemistry for Life and Health Sciences 75005 Paris France
| |
Collapse
|
7
|
Rzayev J, Zhang Z, Durand N, Soulé JF. Upgrading Carbazolyl-Derived Phosphine Ligands Using Rh I-Catalyzed P III-Directed C-H Bond Alkylation for Catalytic CO 2-Fixation Reactions. Org Lett 2022; 24:6755-6760. [PMID: 36083787 DOI: 10.1021/acs.orglett.2c02514] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/29/2022]
Abstract
We report an Rh(I)-catalyzed C-H bond alkylation of PhenCarPhos [N-(2-(diphenylphosphaneyl)phenyl)carbazole] and some congener phosphine ligands with alkenes. The C-H bond functionalization occurred exclusively at the C1 position of the carbazolyl unit because the trivalent phosphine acts as a directing group. This protocol provides straightforward access to a large library of C1-alkyl substituted PhenCarPhos, which outperformed common commercial or unfunctionalized phosphines and their precursors in the Pd-catalyzed carbon dioxide-fixation reactions with propargylic amines.
Collapse
Affiliation(s)
- Javid Rzayev
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Zhuan Zhang
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | - Natacha Durand
- Univ Rennes, CNRS, ISCR UMR 6226, F-35000 Rennes, France
| | | |
Collapse
|
8
|
Wang M, Zhang X, Ma M, Zhao B. Palladium-Catalyzed Synthesis of Esters from Arenes through C-H Thianthrenation. Org Lett 2022; 24:6031-6036. [PMID: 35929821 DOI: 10.1021/acs.orglett.2c02330] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/26/2023]
Abstract
The efficient palladium-catalyzed synthesis of esters from readily available arenes has been developed. These C-H bond esterifications were achieved relying on the regioselective thianthrenation to generate the aryl-TT salts, which were treated as reactive electrophilic substrates to couple with phenol formate and N-hydroxysuccinimide (NHS) formate giving access to phenol esters and NHS esters, respectively, in the absence of carbon monoxide. A wide range of functional esters could be prepared with high efficiency under this redox-neutral palladium-catalytic condition. Late-stage functionalization and investigations of synthetic applications demonstrated the potential application of the established platform and these products.
Collapse
Affiliation(s)
- Mengning Wang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Xiaomei Zhang
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Mengtao Ma
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| | - Binlin Zhao
- Department of Chemistry and Materials Science, College of Science, Nanjing Forestry University, Nanjing 210037, China
| |
Collapse
|
9
|
Liu L, Fan X, Wang B, Deng H, Wang T, Zheng J, Chen J, Shi Z, Wang H. P
III
‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022; 61:e202206177. [DOI: 10.1002/anie.202206177] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/27/2022] [Indexed: 12/24/2022]
Affiliation(s)
- Lei Liu
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Xinlong Fan
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Boning Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Hong Deng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Tianhang Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jie Zheng
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Jun Chen
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
- School of Chemistry and Chemical Engineering Henan Normal University Xinxiang Henan 453007 China
| | - Huan Wang
- State Key Laboratory of Coordination Chemistry Chemistry and Biomedicine Innovation Center of Nanjing University Jiangsu Key Laboratory of Advanced Organic Materials School of Chemistry and Chemical Engineering Nanjing University No. 163 Xianlin Ave Nanjing 210093 China
| |
Collapse
|
10
|
LIU LEI, FAN XINLONG, WANG BONING, DENG HONG, WANG TIANHANG, ZHENG JIE, CHEN JUN, SHI ZHUANGZHI, Wang H. P(III)‐Directed Late‐Stage Ligation and Macrocyclization of Peptides with Olefins by Rhodium Catalysis. Angew Chem Int Ed Engl 2022. [DOI: 10.1002/ange.202206177] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- LEI LIU
- Nanjing University CHEMISTRY AND CHEMICAL ENGINEERING CHINA
| | | | | | | | | | | | - JUN CHEN
- Nanjing University CHEMISTRY CHINA
| | | | - Huan Wang
- Nanjing University Chemistry and Chemical Engineering 163 Xianlin Ave.Chemistry Building, E504 210023 Nanjing CHINA
| |
Collapse
|
11
|
Xu T, He Q, Fan R. Synthesis of C7-Functionalized Indoles through an Aromaticity Destruction-Reconstruction Process. Org Lett 2022; 24:2665-2669. [PMID: 35377659 DOI: 10.1021/acs.orglett.2c00733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/28/2022]
Abstract
A process for the synthesis of C7-functionalized indoles using para-substituted 2-alkynylanilines as starting materials was reported. The process involves a dearomatization, an 1,2-addition by organic lithium or Grignard reagents, an aromatization-driven allylic rearrangement, and a cyclization. A variety of groups including alkyl, aryl, alkenyl, or alkynyl groups were selectively installed at the C7 site of indoles leading to the formation of 2,5,7-trisubstituted indoles.
Collapse
Affiliation(s)
- Tingxuan Xu
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Qiuqin He
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| | - Renhua Fan
- Department of Chemistry, Fudan University, 2005 Songhu Road, Shanghai 200438, China
| |
Collapse
|
12
|
Niu Y, Yan CX, Yang XX, Bai PB, Zhou PP, Yang SD. Solvent-controlled regioselective arylation of indoles and mechanistic explorations. Org Chem Front 2022. [DOI: 10.1039/d1qo01454d] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/18/2022]
Abstract
A new reaction for the regioselective arylation of indoles at C2 or C3 positions achieved by adjusting the solvent and with P(O)tBu2 as an auxiliary group is reported. And the experimental results and DFT confirmed the process.
Collapse
Affiliation(s)
- Yuan Niu
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Chao-Xian Yan
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Xin-Xin Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Peng-Bo Bai
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Pan-Pan Zhou
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
| | - Shang-Dong Yang
- State Key Laboratory of Applied Organic Chemistry, College of Chemistry and Chemical Engineering, Lanzhou University, Lanzhou 730000, China
- State Key Laboratory for Oxo Synthesis and Selective Oxidation, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China
| |
Collapse
|
13
|
Lv J, Zhang XJ, Wang M, Zhao Y, Shi Z. BBr 3 -Mediated P(III)-Directed C-H Borylation of Phosphines. Chemistry 2021; 28:e202104100. [PMID: 34878200 DOI: 10.1002/chem.202104100] [Citation(s) in RCA: 13] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2021] [Indexed: 01/09/2023]
Abstract
Transition-metal-catalyzed C-H borylation has been widely used in the preparation of organoboron compounds. Here, we developed a general protocol on metal-free P(III)-directed C-H borylation of phosphines mediated by BBr3 , resulting in the formation of products bearing both phosphorus and boron. The development of the metal-free strategy to mimic previous metallic processes has shown low cost, superior practicality, and environmental friendliness. Density functional theory (DFT) calculations demonstrate the preferred pathway for this metal-free directed C-H borylation process.
Collapse
Affiliation(s)
- Jiahang Lv
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Xue-Jun Zhang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.,Department of Orthopedic Surgery, Zhongda Hospital, School of Medicine, Southeast University, Nanjing, 210093, P. R. China
| | - Minyan Wang
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Yue Zhao
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, 210093, P. R. China.,School of Chemistry and Chemical Engineering, Henan Normal University, Xinxiang, Henan, 453007, P. R. China
| |
Collapse
|
14
|
Li M, Dong Y, Zhou C, Bai J, Cheng J, Sun J, Sun S. Iridium-Catalyzed Redox-Neutral C2 and C3 Dual C-H Functionalization of Indoles with Nitrones toward 7 H-Indolo[2,3- c]quinolines. Org Lett 2021; 23:8229-8234. [PMID: 34623158 DOI: 10.1021/acs.orglett.1c02975] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/15/2023]
Abstract
An iridium-catalyzed redox-neutral C-2 and C-3 dual C-H functionalization of indoles with nitrones has been developed, furnishing a range of 7H-indolo[2,3-c]quinolines with high efficiency and regioselectivity under mild reaction conditions. Notably, sequential multiple C-H bond cleavage and C-C bond formation constitute the key events of this process, in which nitrone serves as a building block and an oxidant. Distinct from the previous methods toward 7H-indolo[2,3-c]quinolines, this newly developed reaction features readily available substrates, operational simplicity, broad scope, good to high efficiency, and excellent regioselectivity.
Collapse
Affiliation(s)
- Miao Li
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Yaqun Dong
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Cong Zhou
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Junxue Bai
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jiang Cheng
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| | - Jianwei Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China.,Department of Chemistry, the Hong Kong University of Science and Technology, Clear Water Bay, Kowloon, Hong Kong, China
| | - Song Sun
- Jiangsu Key Laboratory of Advanced Catalytic Materials & Technology, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China
| |
Collapse
|
15
|
Kona CN, Nishii Y, Miura M. Sulfur-Directed C 7-Selective Alkenylation of Indoles under Rhodium Catalysis. Org Lett 2021; 23:6252-6256. [PMID: 34351764 DOI: 10.1021/acs.orglett.1c01990] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
Regioselective direct functionalization of an indole benzenoid fragment has been a significant challenge because of its inherently lower reactivity. In this report, we introduce a Rh-catalyzed C7-selective alkenylation of indole derivatives using a new sulfur directing group N-SCy. A notable feature of this system is that the directing group is readily installed to the indoles and easily removed after the catalysis under mild conditions.
Collapse
Affiliation(s)
- Chandrababu Naidu Kona
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| | - Yuji Nishii
- Department of Applied Chemistry, Graduate School of Engineering, Osaka University, Suita, Osaka 565-0871, Japan
| | - Masahiro Miura
- Innovative Catalysis Science Division, Institute for Open and Transdisciplinary Research Initiatives (ICS-OTRI), Osaka University, Suita, Osaka 565-0871, Japan
| |
Collapse
|
16
|
Wen J, Shi Z. From C4 to C7: Innovative Strategies for Site-Selective Functionalization of Indole C-H Bonds. Acc Chem Res 2021; 54:1723-1736. [PMID: 33709705 DOI: 10.1021/acs.accounts.0c00888] [Citation(s) in RCA: 127] [Impact Index Per Article: 31.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/14/2022]
Abstract
The widespread presence of hydrocarbons makes C-H functionalization an attractive alternative to traditional cross-coupling methods. As indole is an important heteroarene in a plethora of natural products and pharmaceuticals, C-H functionalization of indole moieties has emerged as one of the most important topics in this field. Due to the presence of multiple C-H bonds in indoles, site selectivity is a long-standing challenge. Much effort has been devoted to the C-H functionalization of indoles at the C3 or C2 position, while accessing the benzene core (from C4 to C7) is considerably more challenging.This Account summarizes our recent efforts toward site-selective C-H functionalization of indoles at the benzene core based on innovative strategies. A common method to solve the issue involves the development of directing groups (DGs). Our early studies establish that the installation of the N-P(O)tBu2 group at the N position can produce C7 and C6 arylation products using palladium and copper catalysts, respectively. The developed system can also be extended to direct arylation of indoles at the C5 and C4 positions by installing a pivaloyl group at the C3 position. Further investigation of indoles bearing N-PtBu2 groups shows a more diverse reactivity for C-H functionalizations at the C7 position, including arylation, olefination, acylation, alkylation, silylation, and carbonylation with different coupling partners. Compared to the P(V) DG, the P(III) group can be easily attached to the indole substrates and detached from the products. However, these attractive reactions rely mostly on precious metal catalysts with ligands; this requirement can be a significant limitation, particularly for large-scale syntheses and the necessity of removal of toxic trace metals in pharmaceutical products. We have also uncovered a general strategy for chelation-assisted aromatic C-H borylation just using simple BBr3 under mild conditions, in which the installation of pivaloyl groups at the N1 or C3 position of indoles can selectively deliver the boron species to the unfavorable C7 or C4 positions and allow subsequent C-H borylation without any metal. This transition-metal-free strategy can be extended to synthesize C7 and C4 hydroxylated indoles by boron-mediated directed C-H hydroxylation under mild reaction conditions and with broad functional group compatibility.In this Account, we describe our contributions to this topic since 2015. These studies provide efficient and attractive methods for the divergent synthesis of valuable substituted indoles and insights into the exploration of new strategies for the site-selective C-H functionalization and directives for other important heteroarenes.
Collapse
Affiliation(s)
- Jian Wen
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| | - Zhuangzhi Shi
- State Key Laboratory of Coordination Chemistry, Chemistry and Biomedicine Innovation Center (ChemBIC), School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
| |
Collapse
|
17
|
Affiliation(s)
- Marin R. Auth
- Department of Chemistry and Biochemistry University of San Diego San Diego CA 92110 USA
| | - Kathryn A. McGarry
- Department of Chemistry University of Wisconsin-Stevens Point Stevens Point WI 54481 USA
| | - Timothy B. Clark
- Department of Chemistry and Biochemistry University of San Diego San Diego CA 92110 USA
| |
Collapse
|
18
|
Kumar P, Nagtilak PJ, Kapur M. Transition metal-catalyzed C–H functionalizations of indoles. NEW J CHEM 2021. [DOI: 10.1039/d1nj01696b] [Citation(s) in RCA: 17] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/24/2022]
Abstract
This review summarises a wide range of transformations on the indole skeleton, including arylation, alkenylation, alkynylation, acylation, nitration, borylation, and amidation, using transition-metal catalyzed C–H functionalization as the key step.
Collapse
Affiliation(s)
- Pravin Kumar
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Prajyot Jayadev Nagtilak
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| | - Manmohan Kapur
- Department of Chemistry, Indian Institute of Science Education and Research Bhopal, Bhopal Bypass Road, Bhauri, Bhopal 462066, MP, India
| |
Collapse
|