1
|
Białek R, Vasileiadis T, Pochylski M, Graczykowski B. Fano meets Stokes: Four-order-of-magnitude enhancement of asymmetric Brillouin light scattering spectra. PHOTOACOUSTICS 2023; 30:100478. [PMID: 37025113 PMCID: PMC10070932 DOI: 10.1016/j.pacs.2023.100478] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/19/2022] [Revised: 03/21/2023] [Accepted: 03/21/2023] [Indexed: 06/19/2023]
Abstract
Observation of Fano resonances in various physical phenomena is usually ascribed to the coupling of discrete states with background continuum, as it has already been reported for various physical phenomena. Here, we report on Fano lineshapes of nonthermal GHz phonons generated and observed with pumped Brillouin light scattering in gold-silicon thin membranes, overlapping the broad zero-shift background of yet questionable origin. The system's broken mid-plane symmetry enabled the generation of coherent quasi-symmetric and quasi-antisymmetric Lamb acoustic waves/phonons, leading to the four orders-of-magnitude enhancement of Brillouin light scattering. Notably, the membrane asymmetry resulted also in the mode-dependent Stokes and anti-Stokes Fano lineshapes asymmetry.
Collapse
Affiliation(s)
- Rafał Białek
- Faculty of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Thomas Vasileiadis
- Faculty of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Mikołaj Pochylski
- Faculty of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
| | - Bartłomiej Graczykowski
- Faculty of Physics, Adam Mickiewicz University, Poznań, ul. Uniwersytetu Poznańskiego 2, 61-614 Poznań, Poland
- Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
2
|
Vasileiadis T, Noual A, Wang Y, Graczykowski B, Djafari-Rouhani B, Yang S, Fytas G. Optomechanical Hot-Spots in Metallic Nanorod-Polymer Nanocomposites. ACS NANO 2022; 16:20419-20429. [PMID: 36475620 PMCID: PMC9798866 DOI: 10.1021/acsnano.2c06673] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2022] [Accepted: 11/28/2022] [Indexed: 06/17/2023]
Abstract
Plasmonic coupling between adjacent metallic nanoparticles can be exploited for acousto-plasmonics, single-molecule sensing, and photochemistry. Light absorption or electron probes can be used to study plasmons and their interactions, but their use is challenging for disordered systems and colloids dispersed in insulating matrices. Here, we investigate the effect of plasmonic coupling on optomechanics with Brillouin light spectroscopy (BLS) in a prototypical metal-polymer nanocomposite, gold nanorods (Au NRs) in polyvinyl alcohol. The intensity of the light inelastically scattered on thermal phonons captured by BLS is strongly affected by the wavelength of the probing light. When light is resonant with the transverse plasmons, BLS reveals mostly the normal vibrational modes of single NRs. For lower energy off-resonant light, BLS is dominated by coupled bending modes of NR dimers. The experimental results, supported by optomechanical calculations, document plasmonically enhanced BLS and reveal energy-dependent confinement of coupled plasmons close to the tips of NR dimers, generating BLS hot-spots. Our work establishes BLS as an optomechanical probe of plasmons and promotes nanorod-soft matter nanocomposites for acousto-plasmonic applications.
Collapse
Affiliation(s)
| | - Adnane Noual
- LPMR,
Département de Physique, Faculté des Sciences, Université Mohammed Premier, Oujda, 60000, Morocco
| | - Yuchen Wang
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - Bartlomiej Graczykowski
- Faculty
of Physics, Adam Mickiewicz University, 61-614 Poznan, Poland
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| | - Bahram Djafari-Rouhani
- Département
de Physique, Institut d’Electronique de Microélectonique
et de Nanotechnologie, UMR CNRS 8520, Université
de Lille, Villeneuve
d’Ascq, 59655, France
| | - Shu Yang
- Department
of Materials Science and Engineering, University
of Pennsylvania, 3231 Walnut Street, Philadelphia, Pennsylvania 19104, United States
| | - George Fytas
- Max
Planck Institute for Polymer Research, 55128 Mainz, Germany
| |
Collapse
|
3
|
Ng RC, El Sachat A, Cespedes F, Poblet M, Madiot G, Jaramillo-Fernandez J, Florez O, Xiao P, Sledzinska M, Sotomayor-Torres CM, Chavez-Angel E. Excitation and detection of acoustic phonons in nanoscale systems. NANOSCALE 2022; 14:13428-13451. [PMID: 36082529 PMCID: PMC9520674 DOI: 10.1039/d2nr04100f] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 08/15/2022] [Indexed: 06/15/2023]
Abstract
Phonons play a key role in the physical properties of materials, and have long been a topic of study in physics. While the effects of phonons had historically been considered to be a hindrance, modern research has shown that phonons can be exploited due to their ability to couple to other excitations and consequently affect the thermal, dielectric, and electronic properties of solid state systems, greatly motivating the engineering of phononic structures. Advances in nanofabrication have allowed for structuring and phonon confinement even down to the nanoscale, drastically changing material properties. Despite developments in fabricating such nanoscale devices, the proper manipulation and characterization of phonons continues to be challenging. However, a fundamental understanding of these processes could enable the realization of key applications in diverse fields such as topological phononics, information technologies, sensing, and quantum electrodynamics, especially when integrated with existing electronic and photonic devices. Here, we highlight seven of the available methods for the excitation and detection of acoustic phonons and vibrations in solid materials, as well as advantages, disadvantages, and additional considerations related to their application. We then provide perspectives towards open challenges in nanophononics and how the additional understanding granted by these techniques could serve to enable the next generation of phononic technological applications.
Collapse
Affiliation(s)
- Ryan C Ng
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | | | - Francisco Cespedes
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Martin Poblet
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Guilhem Madiot
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Juliana Jaramillo-Fernandez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Omar Florez
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Peng Xiao
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- Departamento de Física, Universidad Autónoma de Barcelona, Bellaterra, 08193 Barcelona, Spain
| | - Marianna Sledzinska
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| | - Clivia M Sotomayor-Torres
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
- ICREA, Passeig Lluis Companys 23, 08010 Barcelona, Spain
| | - Emigdio Chavez-Angel
- Catalan Institute of Nanoscience and Nanotechnology (ICN2), CSIC and BIST, Campus UAB, Bellaterra, 08193 Barcelona, Spain.
| |
Collapse
|
4
|
Vasileiadis T, Marchesi D’Alvise T, Saak CM, Pochylski M, Harvey S, Synatschke CV, Gapinski J, Fytas G, Backus EHG, Weil T, Graczykowski B. Fast Light-Driven Motion of Polydopamine Nanomembranes. NANO LETTERS 2022; 22:578-585. [PMID: 34904831 PMCID: PMC8796235 DOI: 10.1021/acs.nanolett.1c03165] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/16/2021] [Revised: 11/15/2021] [Indexed: 06/12/2023]
Abstract
The actuation of micro- and nanostructures controlled by external stimuli remains one of the exciting challenges in nanotechnology due to the wealth of fundamental questions and potential applications in energy harvesting, robotics, sensing, biomedicine, and tunable metamaterials. Photoactuation utilizes the conversion of light into motion through reversible chemical and physical processes and enables remote and spatiotemporal control of the actuation. Here, we report a fast light-to-motion conversion in few-nanometer thick bare polydopamine (PDA) membranes stimulated by visible light. Light-induced heating of PDA leads to desorption of water molecules and contraction of membranes in less than 140 μs. Switching off the light leads to a spontaneous expansion in less than 20 ms due to heat dissipation and water adsorption. Our findings demonstrate that pristine PDA membranes are multiresponsive materials that can be harnessed as robust building blocks for soft, micro-, and nanoscale actuators stimulated by light, temperature, and moisture level.
Collapse
Affiliation(s)
- Thomas Vasileiadis
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Clara-Magdalena Saak
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Mikolaj Pochylski
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - Sean Harvey
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | | | - Jacek Gapinski
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Ellen H. G. Backus
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
- Department
of Physical Chemistry, University of Vienna, Währinger Strasse 42, 1090 Vienna, Austria
| | - Tanja Weil
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Bartlomiej Graczykowski
- Faculty
of Physics, Adam Mickiewicz University, Uniwersytetu Poznanskiego 2, 61-614 Poznan, Poland
- Max
Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| |
Collapse
|
5
|
Lifting restrictions on coherence loss when characterizing non-transparent hypersonic phononic crystals. Sci Rep 2021; 11:17174. [PMID: 34433886 PMCID: PMC8387379 DOI: 10.1038/s41598-021-96663-3] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/18/2021] [Accepted: 08/10/2021] [Indexed: 11/09/2022] Open
Abstract
Hypersonic phononic bandgap structures confine acoustic vibrations whose wavelength is commensurate with that of light, and have been studied using either time- or frequency-domain optical spectroscopy. Pulsed pump-probe lasers are the preferred instruments for characterizing periodic multilayer stacks from common vacuum deposition techniques, but the detection mechanism requires the injected sound wave to maintain coherence during propagation. Beyond acoustic Bragg mirrors, frequency-domain studies using a tandem Fabry–Perot interferometer (TFPI) find dispersions of two- and three-dimensional phononic crystals (PnCs) even for highly disordered samples, but with the caveat that PnCs must be transparent. Here, we demonstrate a hybrid technique for overcoming the limitations that time- and frequency-domain approaches exhibit separately. Accordingly, we inject coherent phonons into a non-transparent PnC using a pulsed laser and acquire the acoustic transmission spectrum on a TFPI, where pumped appear alongside spontaneously excited (i.e. incoherent) phonons. Choosing a metallic Bragg mirror for illustration, we determine the bandgap and compare with conventional time-domain spectroscopy, finding resolution of the hybrid approach to match that of a state-of-the-art asynchronous optical sampling setup. Thus, the hybrid pump–probe technique retains key performance features of the established one and going forward will likely be preferred for disordered samples.
Collapse
|
6
|
Noual A, Kang E, Maji T, Gkikas M, Djafari-Rouhani B, Fytas G. Optomechanic Coupling in Ag Polymer Nanocomposite Films. THE JOURNAL OF PHYSICAL CHEMISTRY. C, NANOMATERIALS AND INTERFACES 2021; 125:14854-14864. [PMID: 34295447 PMCID: PMC8287562 DOI: 10.1021/acs.jpcc.1c04549] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2021] [Revised: 06/15/2021] [Indexed: 05/08/2023]
Abstract
Particle vibrational spectroscopy has emerged as a new tool for the measurement of elasticity, glass transition, and interactions at a nanoscale. For colloid-based materials, however, the weakly localized particle resonances in a fluid or solid medium renders their detection difficult. The strong amplification of the inelastic light scattering near surface plasmon resonance of metallic nanoparticles (NPs) allowed not only the detection of single NP eigenvibrations but also the interparticle interaction effects on the acoustic vibrations of NPs mediated by strong optomechanical coupling. The "rattling" and quadrupolar modes of Ag/polymer and polymer-grafted Ag NPs with different diameters in their assemblies are probed by Brillouin light spectroscopy (BLS). We present thorough theoretical 3D calculations for anisotropic Ag elasticity to quantify the frequency and intensity of the "rattling" mode and hence its BLS activity for different interparticle separations and matrix rigidity. Theoretically, a liquidlike environment, e.g., poly(isobutylene) (PIB) does not support rattling vibration of Ag dimers but unexpectedly hardening of the extremely confined graft melt renders both activation of the former and a frequency blue shift of the fundamental quadrupolar mode in the grafted nanoparticle Ag@PIB film.
Collapse
Affiliation(s)
- Adnane Noual
- Faculté
Pluridisciplinaire Nador, LPMR, Université
Mohammed Premier, Oujda BP 717-60 000, Morocco
| | - Eunsoo Kang
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| | - Tanmoy Maji
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Manos Gkikas
- Department
of Chemistry, University of Massachusetts
Lowell, Lowell, Massachusetts 01854, United States
| | - Bahram Djafari-Rouhani
- Institut
d’Électronique, de Microélectronique et de Nanotechnologie
(IEMN), UMR-CNRS 8520, Department of Physics, University of Lille, Villeneuve d’Ascq 59655, France
| | - George Fytas
- Max
Planck Institute for Polymer Research, Ackermannweg 10, Mainz 55128, Germany
| |
Collapse
|