1
|
Zhang L, Chen X, Wang X, Zhou Y, Fang Y, Gu X, Zhang Z, Sun Q, Li N, Xu L, Tan F, Chai R, Qi J. AAV-mediated Gene Cocktails Enhance Supporting Cell Reprogramming and Hair Cell Regeneration. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304551. [PMID: 38810137 PMCID: PMC11304307 DOI: 10.1002/advs.202304551] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 05/02/2024] [Indexed: 05/31/2024]
Abstract
Mammalian cochlear hair cells (HCs) are essential for hearing, and damage to HCs results in severe hearing impairment. Damaged HCs can be regenerated by neighboring supporting cells (SCs), thus the functional regeneration of HCs is the main goal for the restoration of auditory function in vivo. Here, cochlear SC trans-differentiation into outer and inner HC by the induced expression of the key transcription factors Atoh1 and its co-regulators Gfi1, Pou4f3, and Six1 (GPAS), which are necessary for SCs that are destined for HC development and maturation via the AAV-ie targeting the inner ear stem cells are successfully achieved. Single-cell nuclear sequencing and lineaging tracing results showed that the majority of new Atoh1-derived HCs are in a state of initiating differentiation, while GP (Gfi1, Pou4f3) and GPS (Gfi1, Pou4f3, and Six1) enhanced the Atoh1-induced new HCs into inner and outer HCs. Moreover, the patch-clamp analysis indicated that newborn inner HCs induced by GPAS forced expression have similar electrophysiological characteristics to those of native inner HCs. Also, GPAS can induce HC regeneration in the HC-damaged mice model. In summary, the study demonstrates that AAV-mediated co-regulation of multiple genes, such as GPAS, is an effective means to achieve functional HC regeneration in the mouse cochlea.
Collapse
Affiliation(s)
- Liyan Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xin Chen
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xinlin Wang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yinyi Zhou
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Yuan Fang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Xingliang Gu
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Ziyu Zhang
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Qiuhan Sun
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Nianci Li
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Lei Xu
- Department of Otolaryngology‐Head and Neck SurgeryShandong Provincial ENT HospitalShandong UniversityJinan250022China
- Shandong Institute of OtorhinolaryngologyJinan250022China
| | - Fangzhi Tan
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
| | - Renjie Chai
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
- Department of Otolaryngology‐Head and Neck SurgerySichuan Provincial People's HospitalSchool of MedicineUniversity of Electronic Science and Technology of ChinaChengdu610072China
- Southeast University Shenzhen Research InstituteShenzhen518063China
| | - Jieyu Qi
- State Key Laboratory of Digital Medical EngineeringDepartment of Otolaryngology‐Head and Neck SurgeryZhongda HospitalSchool of Life Sciences and TechnologySchool of MedicineAdvanced Institute for Life and HealthJiangsu Province High‐Tech Key Laboratory for Bio‐Medical ResearchSoutheast UniversityNanjing210096China
- Co‐Innovation Center of NeuroregenerationNantong UniversityNantong226001China
- Department of NeurologyAerospace Center HospitalSchool of Life ScienceBeijing Institute of TechnologyBeijing100081China
| |
Collapse
|
2
|
Kaiser M, Lüdtke TH, Deuper L, Rudat C, Christoffels VM, Kispert A, Trowe MO. TBX2 specifies and maintains inner hair and supporting cell fate in the Organ of Corti. Nat Commun 2022; 13:7628. [PMID: 36494345 PMCID: PMC9734556 DOI: 10.1038/s41467-022-35214-4] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/21/2022] [Accepted: 11/21/2022] [Indexed: 12/13/2022] Open
Abstract
The auditory function of the mammalian cochlea relies on two types of mechanosensory hair cells and various non-sensory supporting cells. Recent studies identified the transcription factors INSM1 and IKZF2 as regulators of outer hair cell (OHC) fate. However, the transcriptional regulation of the differentiation of inner hair cells (IHCs) and their associated inner supporting cells (ISCs) has remained enigmatic. Here, we show that the expression of the transcription factor TBX2 is restricted to IHCs and ISCs from the onset of differentiation until adulthood and examine its function using conditional deletion and misexpression approaches in the mouse. We demonstrate that TBX2 acts in prosensory progenitors as a patterning factor by specifying the inner compartment of the sensory epithelium that subsequently gives rise to IHCs and ISCs. Hair cell-specific inactivation or misexpression causes transdifferentiation of hair cells indicating a cell-autonomous function of TBX2 in inducing and maintaining IHC fate.
Collapse
Affiliation(s)
- Marina Kaiser
- grid.10423.340000 0000 9529 9877Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Timo H. Lüdtke
- grid.10423.340000 0000 9529 9877Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Lena Deuper
- grid.10423.340000 0000 9529 9877Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Carsten Rudat
- grid.10423.340000 0000 9529 9877Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Vincent M. Christoffels
- grid.509540.d0000 0004 6880 3010Medical Biology, Amsterdam Reproduction & Development, Amsterdam University Medical Centers, Amsterdam, The Netherlands
| | - Andreas Kispert
- grid.10423.340000 0000 9529 9877Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| | - Mark-Oliver Trowe
- grid.10423.340000 0000 9529 9877Institute of Molecular Biology, Hannover Medical School, Hannover, Germany
| |
Collapse
|
3
|
Petitpré C, Faure L, Uhl P, Fontanet P, Filova I, Pavlinkova G, Adameyko I, Hadjab S, Lallemend F. Single-cell RNA-sequencing analysis of the developing mouse inner ear identifies molecular logic of auditory neuron diversification. Nat Commun 2022; 13:3878. [PMID: 35790771 PMCID: PMC9256748 DOI: 10.1038/s41467-022-31580-1] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Accepted: 06/21/2022] [Indexed: 11/08/2022] Open
Abstract
Different types of spiral ganglion neurons (SGNs) are essential for auditory perception by transmitting complex auditory information from hair cells (HCs) to the brain. Here, we use deep, single cell transcriptomics to study the molecular mechanisms that govern their identity and organization in mice. We identify a core set of temporally patterned genes and gene regulatory networks that may contribute to the diversification of SGNs through sequential binary decisions and demonstrate a role for NEUROD1 in driving specification of a Ic-SGN phenotype. We also find that each trajectory of the decision tree is defined by initial co-expression of alternative subtype molecular controls followed by gradual shifts toward cell fate resolution. Finally, analysis of both developing SGN and HC types reveals cell-cell signaling potentially playing a role in the differentiation of SGNs. Our results indicate that SGN identities are drafted prior to birth and reveal molecular principles that shape their differentiation and will facilitate studies of their development, physiology, and dysfunction.
Collapse
Affiliation(s)
- Charles Petitpré
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Louis Faure
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
| | - Phoebe Uhl
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Paula Fontanet
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden
| | - Iva Filova
- Institute of Biotechnology CAS, 25250, Vestec, Czech Republic
| | | | - Igor Adameyko
- Department of Neuroimmunology, Center for Brain Research, Medical University Vienna, 1090, Vienna, Austria
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Saida Hadjab
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
| | - Francois Lallemend
- Department of Neuroscience, Karolinska Institutet, Stockholm, Sweden.
- Ming-Wai Lau Centre for Reparative Medicine, Stockholm Node, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
4
|
Barrett MS, Hegarty DM, Habecker BA, Aicher SA. Distinct morphology of cardiac- and brown adipose tissue-projecting neurons in the stellate ganglia of mice. Physiol Rep 2022; 10:e15334. [PMID: 35621038 PMCID: PMC9136702 DOI: 10.14814/phy2.15334] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2022] [Revised: 05/02/2022] [Accepted: 05/07/2022] [Indexed: 11/24/2022] Open
Abstract
Sympathetic neurons that innervate the heart are located primarily in the stellate ganglia (SG), which also contains neurons that project to brown adipose tissue (BAT). These studies were designed to examine the morphology of these two populations (cardiac- and BAT-projecting) and their target connectivity. We examined SG neurons in C57BL/6J mice following injections of the retrograde tracer cholera toxin B (CTb) conjugated to Alexa Fluor 488 and Alexa Fluor 555, into cardiac tissue and intrascapular BAT. BAT-projecting SG neurons were widely dispersed in SG, while cardiac-projecting SG neurons were localized primarily near the inferior cardiac nerve base. SG neurons were not dual-labeled, suggesting that sympathetic innervation is specific to the heart and BAT, supporting the idea of "labeled lines" of efferents. Morphologically, cardiac-projecting SG somata had more volume and were less abundant than BAT-projecting neurons using our tracer-labeling paradigm. We found a positive correlation between the number of primary dendrites per neuron and soma volume in cardiac-projecting SG neurons, though not in BAT-projecting neurons. In both SG subpopulations, the number of cholinergic inputs marked with vesicular acetylcholine transporter (VAChT) puncta contacting the soma was positively correlated to soma volume, suggesting scaling of inputs across a range of neuronal sizes. In separate studies using dual tracing from left and right BAT, we found that BAT-projecting SG neurons were located predominately ipsilateral to the injection, but a small subset of SG neurons project bilaterally to BAT. This tracing approach will allow the assessment of cell-specific mechanisms of plasticity within subpopulations of SG neurons.
Collapse
Affiliation(s)
- Madeleine S Barrett
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Deborah M Hegarty
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Beth A Habecker
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| | - Sue A Aicher
- Department of Chemical Physiology & Biochemistry, Oregon Health & Science University, Portland, Oregon, USA
| |
Collapse
|
5
|
García-Añoveros J, Clancy JC, Foo CZ, García-Gómez I, Zhou Y, Homma K, Cheatham MA, Duggan A. Tbx2 is a master regulator of inner versus outer hair cell differentiation. Nature 2022; 605:298-303. [PMID: 35508658 PMCID: PMC9803360 DOI: 10.1038/s41586-022-04668-3] [Citation(s) in RCA: 42] [Impact Index Per Article: 14.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/07/2021] [Accepted: 03/21/2022] [Indexed: 01/03/2023]
Abstract
The cochlea uses two types of mechanosensory cell to detect sounds. A single row of inner hair cells (IHCs) synapse onto neurons to transmit sensory information to the brain, and three rows of outer hair cells (OHCs) selectively amplify auditory inputs1. So far, two transcription factors have been implicated in the specific differentiation of OHCs, whereas, to our knowledge, none has been identified in the differentiation of IHCs2-4. One such transcription factor for OHCs, INSM1, acts during a crucial embryonic period to consolidate the OHC fate, preventing OHCs from transdifferentiating into IHCs2. In the absence of INSM1, embryonic OHCs misexpress a core set of IHC-specific genes, which we predict are involved in IHC differentiation. Here we find that one of these genes, Tbx2, is a master regulator of IHC versus OHC differentiation in mice. Ablation of Tbx2 in embryonic IHCs results in their development as OHCs, expressing early OHC markers such as Insm1 and eventually becoming completely mature OHCs in the position of IHCs. Furthermore, Tbx2 is epistatic to Insm1: in the absence of both genes, cochleae generate only OHCs, which suggests that TBX2 is necessary for the abnormal transdifferentiation of INSM1-deficient OHCs into IHCs, as well as for normal IHC differentiation. Ablation of Tbx2 in postnatal, largely differentiated IHCs makes them transdifferentiate directly into OHCs, replacing IHC features with those of mature and not embryonic OHCs. Finally, ectopic expression of Tbx2 in OHCs results in their transdifferentiation into IHCs. Hence, Tbx2 is both necessary and sufficient to make IHCs distinct from OHCs and maintain this difference throughout development.
Collapse
Affiliation(s)
- Jaime García-Añoveros
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Department of Neurology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Department of Neuroscience, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL, USA.,These authors jointly supervised this work: Jaime García-Añoveros, Anne Duggan.,Correspondence and requests for materials should be addressed to Jaime García-Añoveros or Anne Duggan. ;
| | - John C. Clancy
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Chuan Zhi Foo
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Driskill Graduate Program in Life Sciences, Northwestern University, Chicago, IL, USA
| | - Ignacio García-Gómez
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Yingjie Zhou
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Kazuaki Homma
- Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL, USA.,Department of Otolaryngology–Head and Neck Surgery, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA
| | - Mary Ann Cheatham
- Hugh Knowles Center for Clinical and Basic Science in Hearing and its Disorders, Northwestern University, Chicago, IL, USA.,Department of Communication Sciences and Disorders, Northwestern University, Evanston, IL, USA
| | - Anne Duggan
- Department of Anesthesiology, Northwestern University, Feinberg School of Medicine, Chicago, IL, USA.,These authors jointly supervised this work: Jaime García-Añoveros, Anne Duggan.,Correspondence and requests for materials should be addressed to Jaime García-Añoveros or Anne Duggan. ;
| |
Collapse
|
6
|
Zhao HB, Liu LM, Yu N, Zhu Y, Mei L, Chen J, Liang C. Efferent neurons control hearing sensitivity and protect hearing from noise through the regulation of gap junctions between cochlear supporting cells. J Neurophysiol 2022; 127:313-327. [PMID: 34907797 PMCID: PMC8759971 DOI: 10.1152/jn.00468.2021] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/03/2023] Open
Abstract
It is critical for hearing that the descending cochlear efferent system provides a negative feedback to hair cells to regulate hearing sensitivity and protect hearing from noise. The medial olivocochlear (MOC) efferent nerves project to outer hair cells (OHCs) to regulate OHC electromotility, which is an active cochlear amplifier and can increase hearing sensitivity. Here, we report that the MOC efferent nerves also could innervate supporting cells (SCs) in the vicinity of OHCs to regulate hearing sensitivity. MOC nerve fibers are cholinergic, and acetylcholine (ACh) is a primary neurotransmitter. Immunofluorescent staining showed that MOC nerve endings, presynaptic vesicular acetylcholine transporters (VAChTs), and postsynaptic ACh receptors were visible at SCs and in the SC area. Application of ACh in SCs could evoke a typical inward current and reduce gap junctions (GJs) between them, which consequently enhanced the direct effect of ACh on OHCs to shift but not eliminate OHC electromotility. This indirect, GJ-mediated inhibition had a long-lasting influence. In vivo experiments further demonstrated that deficiency of this GJ-mediated efferent pathway decreased the regulation of active cochlear amplification and compromised the protection against noise. In particular, distortion product otoacoustic emission (DPOAE) showed a delayed reduction after noise exposure. Our findings reveal a new pathway for the MOC efferent system via innervating SCs to control active cochlear amplification and hearing sensitivity. These data also suggest that this SC GJ-mediated efferent pathway may play a critical role in long-term efferent inhibition and is required for protection of hearing from noise trauma.NEW & NOTEWORTHY The cochlear efferent system provides a negative feedback to control hair cell activity and hearing sensitivity and plays a critical role in noise protection. We reveal a new efferent control pathway in which medial olivocochlear efferent fibers have innervations with cochlear supporting cells to control their gap junctions, therefore regulating outer hair cell electromotility and hearing sensitivity. This supporting cell gap junction-mediated efferent control pathway is required for the protection of hearing from noise.
Collapse
|
7
|
Qi Y, Xiong W, Yu S, Du Z, Qu T, He L, Wei W, Zhang L, Liu K, Li Y, He DZ, Gong S. Deletion of C1ql1 Causes Hearing Loss and Abnormal Auditory Nerve Fibers in the Mouse Cochlea. Front Cell Neurosci 2021; 15:713651. [PMID: 34512267 PMCID: PMC8424102 DOI: 10.3389/fncel.2021.713651] [Citation(s) in RCA: 9] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2021] [Accepted: 07/21/2021] [Indexed: 01/19/2023] Open
Abstract
Complement C1q Like 1 (C1QL1), a secreted component of C1Q-related protein, is known to play an important role in synaptic maturation, regulation, and maintenance in the central nervous system. C1ql1 is expressed in adult cochlear inner and outer hair cells (IHCs and OHCs) with preferential expression in OHCs. We generated C1ql1 null mice to examine the role of C1QL1 in the auditory periphery. C1ql1-null mice exhibited progressive hearing loss with elevated thresholds of auditory brainstem response and distortion product otoacoustic emission. Confocal microscopy showed that the number of nerve fibers innervating both IHCs and OHCs was significantly reduced. However, spiral ganglion neurons appeared to be normal under electron microscopy. IHC development and survival were not affected by deletion of C1ql1. Voltage-clamp recording and immunocytochmistry combined with confocal microscopy showed C1ql1-null IHCs showed no significant reduction of pre-synaptic proteins and synaptic vesicle release. This is in contrast to significant OHC loss in the KO mice. Our study suggests that C1ql1 is essential for development of hair cell innervation and OHC survival. But maturation of presynaptic machinery in IHCs does not depend on C1QL1.
Collapse
Affiliation(s)
- Yue Qi
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Xiong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Shukui Yu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Zhengde Du
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Tengfei Qu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Lu He
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Wei Wei
- Department of Otology, Sheng Jing Hospital, China Medical University, Shenyang, China
| | - Lingjun Zhang
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Ke Liu
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| | - Yi Li
- Department of Otolaryngology Head and Neck Surgery, Beijing Tongren Hospital, Capital Medical University, Beijing, China
| | - David Z He
- Department of Biomedical Sciences, Creighton University, Omaha, NE, United States
| | - Shusheng Gong
- Department of Otolaryngology Head and Neck Surgery, Beijing Friendship Hospital, Capital Medical University, Beijing, China
| |
Collapse
|
8
|
Biswas J, Pijewski RS, Makol R, Miramontes TG, Thompson BL, Kresic LC, Burghard AL, Oliver DL, Martinelli DC. C1ql1 is expressed in adult outer hair cells of the cochlea in a tonotopic gradient. PLoS One 2021; 16:e0251412. [PMID: 33979385 PMCID: PMC8115824 DOI: 10.1371/journal.pone.0251412] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2021] [Accepted: 04/26/2021] [Indexed: 01/08/2023] Open
Abstract
Hearing depends on the transduction of sounds into neural signals by the inner hair cells of the cochlea. Cochleae also have outer hair cells with unique electromotile properties that increase auditory sensitivity, but they are particularly susceptible to damage by intense noise exposure, ototoxic drugs, and aging. Although the outer hair cells have synapses on afferent neurons that project to the brain, the function of this neuronal circuit is unclear. Here, we created a novel mouse allele that inserts a fluorescent reporter at the C1ql1 locus which revealed gene expression in the outer hair cells and allowed creation of outer hair cell-specific C1ql1 knockout mice. We found that C1ql1 expression in outer hair cells corresponds to areas with the most sensitive frequencies of the mouse audiogram, and that it has an unexpected adolescence-onset developmental timing. No expression was observed in the inner hair cells. Since C1QL1 in the brain is made by neurons, transported anterogradely in axons, and functions in the synaptic cleft, C1QL1 may serve a similar function at the outer hair cell afferent synapse. Histological analyses revealed that C1ql1 conditional knockout cochleae may have reduced outer hair cell afferent synapse maintenance. However, auditory behavioral and physiological assays did not reveal a compelling phenotype. Nonetheless, this study identifies a potentially useful gene expressed in the cochlea and opens the door for future studies aimed at elucidating the function of C1QL1 and the function of the outer hair cell and its afferent neurons.
Collapse
Affiliation(s)
- Joyshree Biswas
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Robert S. Pijewski
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Rohit Makol
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, United States of America
| | - Tania G. Miramontes
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Brianna L. Thompson
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Lyndsay C. Kresic
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Alice L. Burghard
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - Douglas L. Oliver
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
| | - David C. Martinelli
- Department of Neuroscience, University of Connecticut Health, Farmington, CT, United States of America
- The Connecticut Institute for the Brain and Cognitive Sciences (IBACS), Storrs, CT, United States of America
- * E-mail:
| |
Collapse
|