1
|
Asido M, Lamm GHU, Lienert J, La Greca M, Kaur J, Mayer A, Glaubitz C, Heberle J, Schlesinger R, Kovalev K, Wachtveitl J. A Detailed View on the (Re)isomerization Dynamics in Microbial Rhodopsins Using Complementary Near-UV and IR Readouts. Angew Chem Int Ed Engl 2025; 64:e202416742. [PMID: 39523487 PMCID: PMC11753611 DOI: 10.1002/anie.202416742] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2024] [Revised: 10/20/2024] [Accepted: 11/06/2024] [Indexed: 11/16/2024]
Abstract
Isomerization is a key process in many (bio)chemical systems. In microbial rhodopsins, the photoinduced isomerization of the all-trans retinal to the 13-cis isomer initiates a cascade of structural changes of the protein. The interplay between these changes and the thermal relaxation of the isomerized retinal is one of the crucial determinants for rhodopsin functionality. It is therefore important to probe this dynamic interplay with chromophore specific markers that combine gapless temporal observation with spectral sensitivity. Here we utilize the near-UV and mid-IR fingerprint region in the framework of a systematic (time-resolved) spectroscopic study on H+- (HsBR, (G)PR), Na+- (KR2, ErNaR) and Cl--(NmHR) pumps. We demonstrate that the near-UV region is an excellent probe for retinal configuration and-being sensitive to the electrostatic environment of retinal-even transient ion binding, which allows us to pinpoint protein specific mechanistic nuances and chromophore-charge interactions. The combination of the near-UV and mid-IR fingerprint region hence provides a spectroscopic analysis tool that allows a detailed, precise and temporally fully resolved description of retinal configurations during all stages of the photocycle.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
- Present Adress: Department of Chemistry Massachusetts Institute of Technology77 Massachusetts Ave, 2–014CambridgeMassachusetts02139USA
| | - Gerrit H. U. Lamm
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| | - Jonas Lienert
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| | - Mariafrancesca La Greca
- Department of PhysicsGenetic BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Anne Mayer
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ)Goethe University FrankfurtMax-von-Laue Straße 960438Frankfurt (Main)Germany
| | - Joachim Heberle
- Department of PhysicsExperimental Molecular BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Ramona Schlesinger
- Department of PhysicsGenetic BiophysicsFreie Universität BerlinArnimallee 1414195BerlinGermany
| | - Kirill Kovalev
- European Molecular Biology Laboratory Hamburg, EMBL Hamburgc/o DESY, Notkestraße 8522607HamburgGermany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical ChemistryGoethe University FrankfurtMax-von-Laue Straße 760438Frankfurt (Main)Germany
| |
Collapse
|
2
|
Gopinath T, Kraft A, Shin K, Wood NA, Marassi FM. Solid state NMR spectral editing of histidine, arginine and lysine using Hadamard encoding. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.23.604848. [PMID: 39211063 PMCID: PMC11360888 DOI: 10.1101/2024.07.23.604848] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/04/2024]
Abstract
The NMR signals from protein sidechains are rich in information about intra- and inter-molecular interactions, but their detection can be complicated due to spectral overlap as well as conformational and hydrogen exchange. In this work, we demonstrate a protocol for multi-dimensional solid-state NMR spectral editing of signals from basic sidechains based on Hadamard matrix encoding. The Hadamard method acquires multi-dimensional experiments in such a way that both the backbone and under-sampled sidechain signals can be decoded for unambiguous editing in the 15 N spectral frequency dimension. All multi-dimensional 15 N-edited solid-state NMR experiments can be acquired using this strategy, thereby accelerating the acquisition of spectra spanning broad frequency bandwidth. Application of these methods to the ferritin nanocage, reveals signals from N atoms from His, Arg, Lys and Trp sidechains, as well as their tightly bound, ordered water molecules. The Hadamard approach adds to the arsenal of spectroscopic approaches for protein NMR signal detection.
Collapse
|
3
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Configurational Changes of Retinal Schiff Base during Membrane Na + Transport by a Sodium Pumping Rhodopsin. J Phys Chem Lett 2024; 15:1993-1998. [PMID: 38349321 DOI: 10.1021/acs.jpclett.3c03435] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Microbial rhodopsins are photoreceptors containing the retinal Schiff base chromophore and are ubiquitous among microorganisms. The Schiff base configuration of the chromophore, 15-anti (C═N trans) or 15-syn (C═N cis), is structurally important for their functions, such as membrane ion transport, because this configuration dictates the orientation of the positively charged NH group that interacts with substrate ions. The 15-anti/syn configuration is thus essential for elucidating the ion-transport mechanisms in microbial rhodopsins. Here, we identified the Schiff base configuration during the photoreaction of a sodium pumping rhodopsin from Indibacter alkaliphilus using Raman spectroscopy. We found that the unique configurational change from the 13-cis, 15-anti to all-trans, 15-syn form occurs between the photointermediates termed O1 and O2, which accomplish the Na+ uptake and release, respectively. This isomerization is considered to give rise to the highly irreversible O1 → O2 step that is crucial for unidirectional Na+ transport.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| |
Collapse
|
4
|
Zhang J, Kriebel CN, Wan Z, Shi M, Glaubitz C, He X. Automated Fragmentation Quantum Mechanical Calculation of 15N and 13C Chemical Shifts in a Membrane Protein. J Chem Theory Comput 2023; 19:7405-7422. [PMID: 37788419 DOI: 10.1021/acs.jctc.3c00621] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
In this work, we developed an accurate and cost-effective automated fragmentation quantum mechanics/molecular mechanics (AF-QM/MM) method to calculate the chemical shifts of 15N and 13C of membrane proteins. The convergence of the AF-QM/MM method was tested using Krokinobacter eikastus rhodopsin 2 as a test case. When the distance threshold of the QM region is equal to or larger than 4.0 Å, the results of the AF-QM/MM calculations are close to convergence. In addition, the effects of selected density functionals, basis sets, and local chemical environment of target atoms on the chemical shift calculations were systematically investigated. Our results demonstrate that the predicted chemical shifts are more accurate when important environmental factors including cross-protomer interactions, lipid molecules, and solvent molecules are taken into consideration, especially for the 15N chemical shift prediction. Furthermore, with the presence of sodium ions in the environment, the chemical shift of residues, retinal, and retinal Schiff base are affected, which is consistent with the results of the solid-state nuclear magnetic resonance (NMR) experiment. Upon comparing the performance of various density functionals (namely, B3LYP, B3PW91, M06-2X, M06-L, mPW1PW91, OB95, and OPBE), the results show that mPW1PW91 is a suitable functional for the 15N and 13C chemical shift prediction of the membrane proteins. Meanwhile, we find that the improved accuracy of the 13Cβ chemical shift calculations can be achieved by the employment of the triple-ζ basis set. However, the employment of the triple-ζ basis set does not improve the accuracy of the 15N and 13Cα chemical shift calculations nor does the addition of a diffuse function improve the overall prediction accuracy of the chemical shifts. Our study also underscores that the AF-QM/MM method has significant advantages in predicting the chemical shifts of key ligands and nonstandard residues in membrane proteins than most widely used empirical models; therefore, it could be an accurate computational tool for chemical shift calculations on various types of biological systems.
Collapse
Affiliation(s)
- Jinhuan Zhang
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clara Nassrin Kriebel
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Zheng Wan
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Man Shi
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry and Center for Biomolecular Magnetic Resonance, Goethe University Frankfurt, 60438 Frankfurt am Main, Germany
| | - Xiao He
- Shanghai Engineering Research Center of Molecular Therapeutics and New Drug Development, Shanghai Frontiers Science Center of Molecule Intelligent Syntheses, School of Chemistry and Molecular Engineering, East China Normal University, Shanghai 200062, China
- New York University-East China Normal University Center for Computational Chemistry, New York University Shanghai, Shanghai 200062, China
| |
Collapse
|
5
|
Yang Q, Chen D. Na + Binding and Transport: Insights from Light-Driven Na +-Pumping Rhodopsin. Molecules 2023; 28:7135. [PMID: 37894614 PMCID: PMC10608830 DOI: 10.3390/molecules28207135] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 10/07/2023] [Accepted: 10/16/2023] [Indexed: 10/29/2023] Open
Abstract
Na+ plays a vital role in numerous physiological processes across humans and animals, necessitating a comprehensive understanding of Na+ transmembrane transport. Among the various Na+ pumps and channels, light-driven Na+-pumping rhodopsin (NaR) has emerged as a noteworthy model in this field. This review offers a concise overview of the structural and functional studies conducted on NaR, encompassing ground/intermediate-state structures and photocycle kinetics. The primary focus lies in addressing key inquiries: (1) unraveling the translocation pathway of Na+; (2) examining the role of structural changes within the photocycle, particularly in the O state, in facilitating Na+ transport; and (3) investigating the timing of Na+ uptake/release. By delving into these unresolved issues and existing debates, this review aims to shed light on the future direction of Na+ pump research.
Collapse
Affiliation(s)
- Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
6
|
Xu J, Yang Q, Ma B, Li L, Kong F, Xiao L, Chen D. K +-Dependent Photocycle and Photocurrent Reveal the Uptake of K + in Light-Driven Sodium Pump. Int J Mol Sci 2023; 24:14414. [PMID: 37833864 PMCID: PMC10572131 DOI: 10.3390/ijms241914414] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/19/2023] [Revised: 09/16/2023] [Accepted: 09/18/2023] [Indexed: 10/15/2023] Open
Abstract
Engineering light-controlled K+ pumps from Na+-pumping rhodopsins (NaR) greatly expands the scope of optogenetic applications. However, the limited knowledge regarding the kinetic and selective mechanism of K+ uptake has significantly impeded the modification and design of light-controlled K+ pumps, as well as their practical applications in various fields, including neuroscience. In this study, we presented K+-dependent photocycle kinetics and photocurrent of a light-driven Na+ pump called Nonlabens dokdonensis rhodopsin 2 (NdR2). As the concentration of K+ increased, we observed the accelerated decay of M intermediate in the wild type (WT) through flash photolysis. In 100 mM KCl, the lifetime of the M decay was approximately 1.0 s, which shortened to around 0.6 s in 1 M KCl. Additionally, the K+-dependent M decay kinetics were also observed in the G263W/N61P mutant, which transports K+. In 100 mM KCl, the lifetime of the M decay was approximately 2.5 s, which shortened to around 0.2 s in 1 M KCl. According to the competitive model, in high KCl, K+ may be taken up from the cytoplasmic surface, competing with Na+ or H+ during M decay. This was further confirmed by the K+-dependent photocurrent of WT liposome. As the concentration of K+ increased to 500 mM, the amplitude of peak current significantly dropped to approximately ~60%. Titration experiments revealed that the ratio of the rate constant of H+ uptake (kH) to that of K+ uptake (kK) is >108. Compared to the WT, the G263W/N61P mutant exhibited a decrease of approximately 40-fold in kH/kK. Previous studies focused on transforming NaR into K+ pumps have primarily targeted the intracellular ion uptake region of Krokinobacter eikastus rhodopsin 2 (KR2) to enhance K+ uptake. However, our results demonstrate that the naturally occurring WT NdR2 is capable of intracellular K+ uptake without requiring structural modifications on the intracellular region. This discovery provides diverse options for future K+ pump designs. Furthermore, we propose a novel photocurrent-based approach to evaluate K+ uptake, which can serve as a reference for similar studies on other ion pumps. In conclusion, our research not only provides new insights into the mechanism of K+ uptake but also offers a valuable point of reference for the development of optogenetic tools and other applications in this field.
Collapse
Affiliation(s)
- Jikang Xu
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Qifan Yang
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| | - Baofu Ma
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Longjie Li
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Fei Kong
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Lan Xiao
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
| | - Deliang Chen
- College of Life Sciences, University of Chinese Academy of Sciences, Beijing 100049, China (B.M.)
- National Laboratory of Biomacromolecules, Institute of Biophysics, Chinese Academy of Sciences, Beijing 100101, China
| |
Collapse
|
7
|
Kriebel CN, Asido M, Kaur J, Orth J, Braun P, Becker-Baldus J, Wachtveitl J, Glaubitz C. Structural and functional consequences of the H180A mutation of the light-driven sodium pump KR2. Biophys J 2023; 122:1003-1017. [PMID: 36528791 PMCID: PMC10111219 DOI: 10.1016/j.bpj.2022.12.023] [Citation(s) in RCA: 5] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/26/2022] [Revised: 12/04/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
Krokinobacter eikastus rhodopsin 2 (KR2) is a light-driven pentameric sodium pump. Its ability to translocate cations other than protons and to create an electrochemical potential makes it an attractive optogenetic tool. Tailoring its ion-pumping characteristics by mutations is therefore of great interest. In addition, understanding the functional and structural consequences of certain mutations helps to derive a functional mechanism of ion selectivity and transfer of KR2. Based on solid-state NMR spectroscopy, we report an extensive chemical shift resonance assignment of KR2 within lipid bilayers. This data set was then used to probe site-resolved allosteric effects of sodium binding, which revealed multiple responsive sites including the Schiff base nitrogen and the NDQ motif. Based on this data set, the consequences of the H180A mutation are probed. The mutant is silenced in the presence of sodium while in its absence proton pumping is observed. Our data reveal specific long-range effects along the sodium transfer pathway. These experiments are complemented by time-resolved optical spectroscopy. Our data suggest a model in which sodium uptake by the mutant can still take place, while sodium release and backflow control are disturbed.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Marvin Asido
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jagdeep Kaur
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Jennifer Orth
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Philipp Braun
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute for Physical and Theoretical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
8
|
Asido M, Wachtveitl J. Photochemistry of the Light-Driven Sodium Pump Krokinobacter eikastus Rhodopsin 2 and Its Implications on Microbial Rhodopsin Research: Retrospective and Perspective. J Phys Chem B 2023; 127:3766-3773. [PMID: 36919947 DOI: 10.1021/acs.jpcb.2c08933] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/16/2023]
Abstract
The discovery of the light-driven sodium pump Krokinobacter eikastus rhodopsin 2 (KR2) in 2013 has changed the paradigm that cation transport in microbial rhodopsins is restricted to the translocation of protons. Even though this finding is already remarkable by itself, it also reignited more general discussions about the functional mechanism of ion transport. The unique composition of the retinal binding pocket in KR2 with a tight interaction between the retinal Schiff base and its respective counterion D116 also has interesting implications on the photochemical pathway of the chromophore. Here, we discuss the most recent advances in our understanding of the KR2 functionality from the primary event of photon absorption by all-trans retinal up to the actual protein response in the later phases of the photocycle, mainly from the point of view of optical spectroscopy. In this context, we furthermore highlight some of the ongoing debates on the photochemistry of microbial rhodopsins and give some perspectives for promising future directions in this field of research.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
9
|
Fujisawa T, Kinoue K, Seike R, Kikukawa T, Unno M. Reisomerization of retinal represents a molecular switch mediating Na + uptake and release by a bacterial sodium-pumping rhodopsin. J Biol Chem 2022; 298:102366. [PMID: 35963435 PMCID: PMC9483557 DOI: 10.1016/j.jbc.2022.102366] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 11/27/2022] Open
Abstract
Sodium-pumping rhodopsins (NaRs) are membrane transporters that utilize light energy to pump Na+ across the cellular membrane. Within the NaRs, the retinal Schiff base chromophore absorbs light, and a photochemically induced transient state, referred to as the “O intermediate”, performs both the uptake and release of Na+. However, the structure of the O intermediate remains unclear. Here, we used time-resolved cryo-Raman spectroscopy under preresonance conditions to study the structure of the retinal chromophore in the O intermediate of an NaR from the bacterium Indibacter alkaliphilus. We observed two O intermediates, termed O1 and O2, having distinct chromophore structures. We show O1 displays a distorted 13-cis chromophore, while O2 contains a distorted all-trans structure. This finding indicated that the uptake and release of Na+ are achieved not by a single O intermediate but by two sequential O intermediates that are toggled via isomerization of the retinal chromophore. These results provide crucial structural insight into the unidirectional Na+ transport mediated by the chromophore-binding pocket of NaRs.
Collapse
Affiliation(s)
- Tomotsumi Fujisawa
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| | - Kouta Kinoue
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Ryouhei Seike
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan
| | - Takashi Kikukawa
- Faculty of Advanced Life Science, Hokkaido University, Sapporo 060-0810, Japan; Global Station for Soft Matter, Global Institution for Collaborative Research and Education, Hokkaido University, Sappo-ro 060-0810, Japan
| | - Masashi Unno
- Department of Chemistry and Applied Chemistry, Faculty of Science and Engineering, Saga University, Saga 840-8502, Japan.
| |
Collapse
|
10
|
Bogachev AV, Baykov AA, Bertsova YV, Mamedov MD. Mechanism of Ion Translocation by Na+-Rhodopsin. BIOCHEMISTRY (MOSCOW) 2022; 87:731-741. [DOI: 10.1134/s0006297922080053] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
11
|
Elathram N, Ackermann BE, Debelouchina GT. DNP-enhanced solid-state NMR spectroscopy of chromatin polymers. JOURNAL OF MAGNETIC RESONANCE OPEN 2022; 10-11:100057. [PMID: 35707629 PMCID: PMC9191766 DOI: 10.1016/j.jmro.2022.100057] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/10/2023]
Abstract
Chromatin is a DNA-protein polymer that represents the functional form of the genome. The main building block of chromatin is the nucleosome, a structure that contains 147 base pairs of DNA and two copies each of the histone proteins H2A, H2B, H3 and H4. Previous work has shown that magic angle spinning (MAS) NMR spectroscopy can capture the nucleosome at high resolution although studies have been challenging due to low sensitivity, the presence of dynamic and rigid components, and the complex interaction networks of nucleosomes within the chromatin polymer. Here, we use dynamic nuclear polarization (DNP) to enhance the sensitivity of MAS NMR experiments of nucleosome arrays at 100 K and show that well-resolved 13C-13C MAS NMR correlations can be obtained much more efficiently. We evaluate the effect of temperature on the chemical shifts and linewidths in the spectra and demonstrate that changes are relatively minimal and clustered in regions of histone-DNA or histone-histone contacts. We also compare samples prepared with and without DNA and show that the low temperature 13C-13C correlations exhibit sufficient resolution to detect chemical shift changes and line broadening for residues that form the DNA-histone interface. On the other hand, we show that the measurement of DNP-enhanced 15N-13C histone-histone interactions within the nucleosome core is complicated by the natural 13C abundance network in the sample. Nevertheless, the enhanced sensitivity afforded by DNP can be used to detect long-range correlations between histone residues and DNA. Overall, our experiments demonstrate that DNP-enhanced MAS NMR spectroscopy of chromatin samples yields spectra with high resolution and sensitivity and can be used to capture functionally relevant protein-DNA interactions that have implications for gene regulation and genome organization.
Collapse
Affiliation(s)
| | | | - Galia T. Debelouchina
- Corresponding author: Galia Debelouchina, University of California, San Diego, Natural Sciences Building 4322, 9500 Gilman Dr., La Jolla, CA 92093, 858-534-3038,
| |
Collapse
|
12
|
Biedenbänder T, Aladin V, Saeidpour S, Corzilius B. Dynamic Nuclear Polarization for Sensitivity Enhancement in Biomolecular Solid-State NMR. Chem Rev 2022; 122:9738-9794. [PMID: 35099939 DOI: 10.1021/acs.chemrev.1c00776] [Citation(s) in RCA: 64] [Impact Index Per Article: 21.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Solid-state NMR with magic-angle spinning (MAS) is an important method in structural biology. While NMR can provide invaluable information about local geometry on an atomic scale even for large biomolecular assemblies lacking long-range order, it is often limited by low sensitivity due to small nuclear spin polarization in thermal equilibrium. Dynamic nuclear polarization (DNP) has evolved during the last decades to become a powerful method capable of increasing this sensitivity by two to three orders of magnitude, thereby reducing the valuable experimental time from weeks or months to just hours or days; in many cases, this allows experiments that would be otherwise completely unfeasible. In this review, we give an overview of the developments that have opened the field for DNP-enhanced biomolecular solid-state NMR including state-of-the-art applications at fast MAS and high magnetic field. We present DNP mechanisms, polarizing agents, and sample constitution methods suitable for biomolecules. A wide field of biomolecular NMR applications is covered including membrane proteins, amyloid fibrils, large biomolecular assemblies, and biomaterials. Finally, we present perspectives and recent developments that may shape the field of biomolecular DNP in the future.
Collapse
Affiliation(s)
- Thomas Biedenbänder
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Victoria Aladin
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Siavash Saeidpour
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| | - Björn Corzilius
- Institute of Chemistry, University of Rostock, Albert-Einstein-Straße 3a, 18059 Rostock, Germany.,Department Life, Light & Matter, University of Rostock, Albert-Einstein-Straße 25, 18059 Rostock, Germany
| |
Collapse
|
13
|
Abstract
Microbial rhodopsins represent the most abundant phototrophic systems known today. A similar molecular architecture with seven transmembrane helices and a retinal cofactor linked to a lysine in helix 7 enables a wide range of functions including ion pumping, light-controlled ion channel gating, or sensing. Deciphering their molecular mechanisms therefore requires a combined consideration of structural, functional, and spectroscopic data in order to identify key factors determining their function. Important insight can be gained by solid-state NMR spectroscopy by which the large homo-oligomeric rhodopsin complexes can be studied directly within lipid bilayers. This chapter describes the methodological background and the necessary sample preparation requirements for the study of photointermediates, for the analysis of protonation states, H-bonding and chromophore conformations, for 3D structure determination, and for probing oligomer interfaces of microbial rhodopsins. The use of data extracted from these NMR experiments is discussed in the context of complementary biophysical methods.
Collapse
Affiliation(s)
- Clara Nassrin Kriebel
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Johanna Becker-Baldus
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute of Biophysical Chemistry, Goethe University Frankfurt, Frankfurt am Main, Germany.
- Centre for Biomolecular Magnetic Resonance, Goethe University Frankfurt, Frankfurt am Main, Germany.
| |
Collapse
|
14
|
Silverstein TP. The Proton in Biochemistry: Impacts on Bioenergetics, Biophysical Chemistry, and Bioorganic Chemistry. Front Mol Biosci 2021; 8:764099. [PMID: 34901158 PMCID: PMC8661011 DOI: 10.3389/fmolb.2021.764099] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2021] [Accepted: 10/11/2021] [Indexed: 11/13/2022] Open
Abstract
The proton is the smallest atomic particle, and in aqueous solution it is the smallest hydrated ion, having only two waters in its first hydration shell. In this article we survey key aspects of the proton in chemistry and biochemistry, starting with the definitions of pH and pK a and their application inside biological cells. This includes an exploration of pH in nanoscale spaces, distinguishing between bulk and interfacial phases. We survey the Eigen and Zundel models of the structure of the hydrated proton, and how these can be used to explain: a) the behavior of protons at the water-hydrophobic interface, and b) the extraordinarily high mobility of protons in bulk water via Grotthuss hopping, and inside proteins via proton wires. Lastly, we survey key aspects of the effect of proton concentration and proton transfer on biochemical reactions including ligand binding and enzyme catalysis, as well as pH effects on biochemical thermodynamics, including the Chemiosmotic Theory. We find, for example, that the spontaneity of ATP hydrolysis at pH ≥ 7 is not due to any inherent property of ATP (or ADP or phosphate), but rather to the low concentration of H+. Additionally, we show that acidification due to fermentation does not derive from the organic acid waste products, but rather from the proton produced by ATP hydrolysis.
Collapse
Affiliation(s)
- Todd P Silverstein
- Chemistry Department (emeritus), Willamette University, Salem, OR, United States
| |
Collapse
|
15
|
Asido M, Kar RK, Kriebel CN, Braun M, Glaubitz C, Schapiro I, Wachtveitl J. Transient Near-UV Absorption of the Light-Driven Sodium Pump Krokinobacter eikastus Rhodopsin 2: A Spectroscopic Marker for Retinal Configuration. J Phys Chem Lett 2021; 12:6284-6291. [PMID: 34213348 DOI: 10.1021/acs.jpclett.1c01436] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/13/2023]
Abstract
We report a transient signature in the near-UV absorption of Krokinobacter eikastus rhodopsin 2 (KR2), which spans from the femtosecond up to the millisecond time scale. The signature rises with the all-trans to 13-cis isomerization of retinal and decays with the reisomerization to all-trans in the late photocycle, making it a promising marker band for retinal configuration. Hybrid quantum mechanics/molecular mechanics simulations show that the near-UV absorption signal corresponds to an S0 → S3 and/or an S0 → S5 transition, which is present in all photointermediates. These transitions exhibit a negligible spectral shift by the altering protein environment, in contrast to the main absorption band. This is rationalized by the extension of the transition densities that omits the Schiff base nitrogen. Further characterization and first steps into possible optogenetic applications were performed with near-UV quenching experiments of an induced photostationary state, yielding an ultrafast regeneration of the parent state of KR2.
Collapse
Affiliation(s)
- Marvin Asido
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Rajiv K Kar
- Fritz Haber Center for Molecular Dynamics Research at the Institute of Chemistry, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Clara Nassrin Kriebel
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Markus Braun
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry and Center for Biomolecular Magnetic Resonance (BMRZ), Goethe University Frankfurt, Max-von-Laue Straße 9, 60438 Frankfurt am Main, Germany
| | - Igor Schapiro
- Fritz Haber Center for Molecular Dynamics Research at the Institute of Chemistry, The Hebrew University of Jerusalem, 9190401 Jerusalem, Israel
| | - Josef Wachtveitl
- Institute of Physical and Theoretical Chemistry, Goethe University Frankfurt, Max-von-Laue Straße 7, 60438 Frankfurt am Main, Germany
| |
Collapse
|
16
|
Pintér G, Hohmann K, Grün J, Wirmer-Bartoschek J, Glaubitz C, Fürtig B, Schwalbe H. Real-time nuclear magnetic resonance spectroscopy in the study of biomolecular kinetics and dynamics. MAGNETIC RESONANCE (GOTTINGEN, GERMANY) 2021; 2:291-320. [PMID: 37904763 PMCID: PMC10539803 DOI: 10.5194/mr-2-291-2021] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 02/03/2021] [Accepted: 04/07/2021] [Indexed: 11/01/2023]
Abstract
The review describes the application of nuclear magnetic resonance (NMR) spectroscopy to study kinetics of folding, refolding and aggregation of proteins, RNA and DNA. Time-resolved NMR experiments can be conducted in a reversible or an irreversible manner. In particular, irreversible folding experiments pose large requirements for (i) signal-to-noise due to the time limitations and (ii) synchronising of the refolding steps. Thus, this contribution discusses the application of methods for signal-to-noise increases, including dynamic nuclear polarisation, hyperpolarisation and photo-CIDNP for the study of time-resolved NMR studies. Further, methods are reviewed ranging from pressure and temperature jump, light induction to rapid mixing to induce rapidly non-equilibrium conditions required to initiate folding.
Collapse
Affiliation(s)
- György Pintér
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Katharina F. Hohmann
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - J. Tassilo Grün
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Julia Wirmer-Bartoschek
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Clemens Glaubitz
- Institute for Biophysical Chemistry, Center for Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Boris Fürtig
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| | - Harald Schwalbe
- Institute for Organic Chemistry and Chemical Biology, Center for
Biomolecular Magnetic Resonance (BMRZ), Johann Wolfgang
Goethe-Universität Frankfurt, Frankfurt 60438, Germany
| |
Collapse
|