1
|
Sanchez-Fernandez A, Insua I, Montenegro J. Supramolecular fibrillation in coacervates and other confined systems towards biomimetic function. Commun Chem 2024; 7:223. [PMID: 39349583 PMCID: PMC11442845 DOI: 10.1038/s42004-024-01308-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2023] [Accepted: 09/13/2024] [Indexed: 10/04/2024] Open
Abstract
As in natural cytoskeletons, the cooperative assembly of fibrillar networks can be hosted inside compartments to engineer biomimetic functions, such as mechanical actuation, transport, and reaction templating. Coacervates impose an optimal liquid-liquid phase separation within the aqueous continuum, functioning as membrane-less compartments that can organise such self-assembling processes as well as the exchange of information with their environment. Furthermore, biological fibrillation can often be controlled or assisted by intracellular compartments. Thus, the reconstitution of analogues of natural filaments in simplified artificial compartments, such as coacervates, offer a suitable model to unravel, mimic, and potentially exploit cellular functions. This perspective summarises the latest developments towards assembling fibrillar networks under confinement inside coacervates and related compartments, including a selection of examples ranging from biological to fully synthetic monomers. Comparative analysis between coacervates, lipid vesicles, and droplet emulsions showcases the interplay between supramolecular fibres and the boundaries of the corresponding compartment. Combining inspiration from natural systems and the custom properties of tailored synthetic fibrillators, rational monomer and compartment design will contribute towards engineering increasingly complex and more realistic artificial protocells.
Collapse
Affiliation(s)
- Adrian Sanchez-Fernandez
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Enxeñaría Química, Universidade de Santaigo de Compostela, Santiago de Compostela, Spain
| | - Ignacio Insua
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain
- Departamento de Farmacoloxía, Farmacia e Tecnoloxía Farmacéutica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain
| | - Javier Montenegro
- Centro Singular de Investigación en Química Biolóxica e Materiais Moleculares (CIQUS), Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
- Departamento de Química Orgánica, Universidade de Santiago de Compostela, Santiago de Compostela, Spain.
| |
Collapse
|
2
|
Vassilopoulos S, Montagnac G. Clathrin assemblies at a glance. J Cell Sci 2024; 137:jcs261674. [PMID: 38668719 DOI: 10.1242/jcs.261674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/01/2024] Open
Abstract
Clathrin assembles into honeycomb-like lattices at the plasma membrane but also on internal membranes, such as at the Golgi and tubular endosomes. Clathrin assemblies primarily regulate the intracellular trafficking of different cargoes, but clathrin also has non-endocytic functions in cell adhesion through interactions with specific integrins, contributes to intraluminal vesicle formation by forming flat bilayered coats on endosomes and even assembles on kinetochore k-fibers during mitosis. In this Cell Science at a Glance article and the accompanying poster, we review our current knowledge on the different types of canonical and non-canonical membrane-associated clathrin assemblies in mammalian cells, as observed by thin-section or platinum replica electron microscopy in various cell types, and discuss how the structural plasticity of clathrin contributes to its functional diversity.
Collapse
Affiliation(s)
- Stéphane Vassilopoulos
- Sorbonne Université, Inserm U974, Institut de Myologie, Centre de Recherche en Myologie, 75013 Paris, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, 94800 Villejuif, France
| |
Collapse
|
3
|
Baschieri F, Illand A, Barbazan J, Zajac O, Henon C, Loew D, Dingli F, Vignjevic DM, Lévêque-Fort S, Montagnac G. Fibroblasts generate topographical cues that steer cancer cell migration. SCIENCE ADVANCES 2023; 9:eade2120. [PMID: 37585527 PMCID: PMC10431708 DOI: 10.1126/sciadv.ade2120] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/01/2022] [Accepted: 07/14/2023] [Indexed: 08/18/2023]
Abstract
Fibroblasts play a fundamental role in tumor development. Among other functions, they regulate cancer cells' migration through rearranging the extracellular matrix, secreting soluble factors, and establishing direct physical contacts with cancer cells. Here, we report that migrating fibroblasts deposit on the substrate a network of tubular structures that serves as a guidance cue for cancer cell migration. Such membranous tubular network, hereafter called tracks, is stably anchored to the substrate in a β5-integrin-dependent manner. We found that cancer cells specifically adhere to tracks by using clathrin-coated structures that pinch and engulf tracks. Tracks thus represent a spatial memory of fibroblast migration paths that is read and erased by cancer cells directionally migrating along them. We propose that fibroblast tracks represent a topography-based intercellular communication system capable of steering cancer cell migration.
Collapse
Affiliation(s)
- Francesco Baschieri
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Abigail Illand
- Université Paris Saclay, CNRS, Institut des sciences moléculaires d’Orsay, UMR8214, Orsay, France
| | - Jorge Barbazan
- Translational Medical Oncology Group (ONCOMET), Health Research Institute of Santiago de Compostela (IDIS), Santiago de Compostela, Spain
| | - Olivier Zajac
- Institut Curie, UMR144, PSL Research University, Centre Universitaire, Paris, France
| | - Clémence Henon
- Inserm U981, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| | - Damarys Loew
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | - Florent Dingli
- Institut Curie, PSL Research University, Centre de Recherche, Laboratoire de Spectrométrie de Masse Protéomique, Paris, France
| | | | - Sandrine Lévêque-Fort
- Université Paris Saclay, CNRS, Institut des sciences moléculaires d’Orsay, UMR8214, Orsay, France
| | - Guillaume Montagnac
- Inserm U1279, Gustave Roussy Institute, Université Paris-Saclay, Villejuif, France
| |
Collapse
|
4
|
Cresens C, Solís-Fernández G, Tiwari A, Nuyts R, Hofkens J, Barderas R, Rocha S. Flat clathrin lattices are linked to metastatic potential in colorectal cancer. iScience 2023; 26:107327. [PMID: 37539031 PMCID: PMC10393769 DOI: 10.1016/j.isci.2023.107327] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Revised: 06/09/2023] [Accepted: 07/05/2023] [Indexed: 08/05/2023] Open
Abstract
Clathrin assembles at the cells' plasma membrane in a multitude of clathrin-coated structures (CCSs). Among these are flat clathrin lattices (FCLs), alternative clathrin structures that have been found in specific cell types, including cancer cells. Here we show that these structures are also present in different colorectal cancer (CRC) cell lines, and that they are extremely stable with lifetimes longer than 8 h. By combining cell models representative of CRC metastasis with advanced fluorescence imaging and analysis, we discovered that the metastatic potential of CRC is associated with an aberrant membranous clathrin distribution, resulting in a higher prevalence of FCLs in cells with a higher metastatic potential. These findings suggest that clathrin organization might play an important yet unexplored role in cancer metastasis.
Collapse
Affiliation(s)
- Charlotte Cresens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Guillermo Solís-Fernández
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Astha Tiwari
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Rik Nuyts
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| | - Johan Hofkens
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
- Department of Molecular Spectroscopy, Max Planck Institute for Polymer Research, Ackermannweg 10, 55128 Mainz, Germany
| | - Rodrigo Barderas
- Chronic Disease Programme, UFIEC, Instituto de Salud Carlos III, 28220 Madrid, Spain
| | - Susana Rocha
- Molecular Imaging and Photonics Division, Chemistry Department, Faculty of Sciences, KU Leuven, Celestijnenlaan 200F, 3001 Heverlee, Belgium
| |
Collapse
|
5
|
In Vitro Interaction of Melanoma-Derived Extracellular Vesicles with Collagen. Int J Mol Sci 2023; 24:ijms24043703. [PMID: 36835115 PMCID: PMC9964759 DOI: 10.3390/ijms24043703] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2022] [Revised: 02/03/2023] [Accepted: 02/08/2023] [Indexed: 02/15/2023] Open
Abstract
Extracellular vesicles are now considered as active contributors to melanoma progression through their capacity to modify the tumor microenvironment and to favor the formation of a pre-metastatic niche. These prometastatic roles of tumor-derived EVs would pass through their interaction with the extracellular matrix (ECM) and its remodeling, in turn providing a substrate favoring persistent tumor cell migration. Nevertheless, the capacity of EVs to directly interact with ECM components is still questionable. In this study, we use electron microscopy and a pull-down assay to test the capacity of sEVs, derived from different melanoma cell lines, to physically interact with collagen I. We were able to generate collagen fibrils coated with sEVs and to show that melanoma cells release subpopulations of sEVs that can differentially interact with collagen.
Collapse
|