1
|
Chambellant F, Gaveau J, Papaxanthis C, Thomas E. Deactivation and collective phasic muscular tuning for pointing direction: Insights from machine learning. Heliyon 2024; 10:e33461. [PMID: 39050418 PMCID: PMC11268187 DOI: 10.1016/j.heliyon.2024.e33461] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Revised: 06/20/2024] [Accepted: 06/21/2024] [Indexed: 07/27/2024] Open
Abstract
Arm movements in our daily lives have to be adjusted for several factors in response to the demands of the environment, for example, speed, direction or distance. Previous research has shown that arm movement kinematics is optimally tuned to take advantage of gravity effects and minimize muscle effort in various pointing directions and gravity contexts. Here we build upon these results and focus on muscular adjustments. We used Machine Learning to analyze the ensemble activities of multiple muscles recorded during pointing in various directions. The advantage of such a technique would be the observation of patterns in collective muscular activity that may not be noticed using univariate statistics. By providing an index of multimuscle activity, the Machine Learning (ML) analysis brought to light several features of tuning for pointing direction. In attempting to trace tuning curves, all comparisons were done with respects to pointing in the horizontal, gravity free plane. We demonstrated that tuning for direction does not take place in a uniform fashion but in a modular manner in which some muscle groups play a primary role. The antigravity muscles were more finely tuned to pointing direction than the gravity muscles. Of note, was their tuning during the first half of downward pointing. As the antigravity muscles were deactivated during this phase, it supported the idea that deactivation is not an on-off function but is tuned to pointing direction. Further support for the tuning of the negative portions of the phasic EMG was provided by the observation of progressively improving classification accuracies with increasing angular distance from the horizontal. We also demonstrated that the durations of these negative phases, without information on their amplitudes, is tuned to pointing directions. Overall, these results show that the motor system tunes muscle commands to exploit gravity effects and reduce muscular effort. It quantitatively demonstrates that phasic EMG negativity is an essential feature of muscle control. The ML analysis was done using Linear Discriminant analysis (LDA) and Support Vector Machines (SVM). The two led to the same conclusions concerning the movements being investigated, hence showing that the former, computationally inexpensive technique is a viable tool for regular investigation of motor control.
Collapse
|
2
|
Brambilla C, Russo M, d'Avella A, Scano A. Phasic and tonic muscle synergies are different in number, structure and sparseness. Hum Mov Sci 2023; 92:103148. [PMID: 37708594 DOI: 10.1016/j.humov.2023.103148] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Revised: 08/02/2023] [Accepted: 09/05/2023] [Indexed: 09/16/2023]
Abstract
In the last two decades, muscle synergies analysis has been commonly used to assess the neurophysiological mechanisms underlying human motor control. Several synergy models and algorithms have been employed for processing the electromyographic (EMG) signal, and it has been shown that the coordination of motor control is characterized by the presence of phasic (movement-related) and tonic (anti-gravity and related to co-contraction) EMG components. Neural substrates indicate that phasic and tonic components have non-homogeneous origin; however, it is still unclear if these components are generated by the same set of synergies or by distinct synergies. This study aims at testing whether phasic and tonic components are generated by distinct phasic and tonic synergies or by the same set of synergies with phasic and tonic activation coefficients. The study also aims at characterizing the differences between the phasic and the tonic synergies. Using a comprehensive mapping of upper-limb point-to-point movements, synergies were extracted from phasic and tonic EMG signal separately, estimating the tonic components with a linear ramp model. The goodness of reconstruction (R2) as a function of the number of synergies was compared, and sets of synergies extracted from each dataset at three R2 threshold levels (0.80, 0.85, 0.90) were retained for further analysis. Then, shared, phasic-specific, and tonic-specific synergies were extracted from the two datasets concatenated. The dimensionality of the synergies shared between the phasic and the tonic datasets was estimated with a bootstrap procedure based on the evaluation of the distribution of principal angles between the subspaces spanned by phasic and tonic synergies due to noise. We found only few shared synergies, indicating that phasic and tonic synergies have in general different structures. To compare consistent differences in synergy composition, shared, phasic-specific, and tonic-specific synergies were clustered separately. Phasic-specific clusters were more numerous than tonic-specific ones, suggesting that they were more differentiated among subjects. The structure of phasic clusters and the higher sparseness indicated that phasic synergies capture specific muscle activation patterns related to the movement while tonic synergies show co-contraction of multiple muscles for joint stabilization and holding postures. These results suggest that in many scenarios phasic and tonic synergies should be extracted separately, especially when performing muscle synergy analysis in patients with abnormal tonic activity and for tuning devices with gravity support.
Collapse
Affiliation(s)
- Cristina Brambilla
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Lecco, Italy.
| | - Marta Russo
- Department of Neurology, Tor Vergata Polyclinic, Rome, Italy; Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy.
| | - Andrea d'Avella
- Laboratory of Neuromotor Physiology, IRCCS Fondazione Santa Lucia, Rome, Italy; Department of Biomedical and Dental Sciences and Morphofunctional Imaging, University of Messina, Messina, Italy.
| | - Alessandro Scano
- Institute of Intelligent Industrial Systems and Technologies for Advanced Manufacturing (STIIMA), Italian Council of National Research (CNR), Lecco, Italy.
| |
Collapse
|
3
|
Verdel D, Bastide S, Geffard F, Bruneau O, Vignais N, Berret B. Reoptimization of single-joint motor patterns to non-Earth gravity torques induced by a robotic exoskeleton. iScience 2023; 26:108350. [PMID: 38026148 PMCID: PMC10665922 DOI: 10.1016/j.isci.2023.108350] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/21/2022] [Revised: 01/29/2023] [Accepted: 10/24/2023] [Indexed: 12/01/2023] Open
Abstract
Gravity is a ubiquitous component of our environment that we have learned to optimally integrate in movement control. Yet, altered gravity conditions arise in numerous applications from space exploration to rehabilitation, thereby pressing the sensorimotor system to adapt. Here, we used a robotic exoskeleton to reproduce the elbow joint-level effects of arbitrary gravity fields ranging from 1g to -1g, passing through Mars- and Moon-like gravities, and tested whether humans can reoptimize their motor patterns accordingly. By comparing the motor patterns of actual arm movements with those predicted by an optimal control model, we show that our participants (N = 61 ) adapted optimally to each gravity-like torque. These findings suggest that the joint-level effects of a large range of gravities can be efficiently apprehended by humans, thus opening new perspectives in arm weight support training in manipulation tasks, whether it be for patients or astronauts.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Simon Bastide
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | | | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
4
|
Verdel D, Bruneau O, Sahm G, Vignais N, Berret B. The value of time in the invigoration of human movements when interacting with a robotic exoskeleton. SCIENCE ADVANCES 2023; 9:eadh9533. [PMID: 37729420 PMCID: PMC10511201 DOI: 10.1126/sciadv.adh9533] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Accepted: 08/18/2023] [Indexed: 09/22/2023]
Abstract
Time and effort are thought to be subjectively balanced during the planning of goal-directed actions, thereby setting the vigor of volitional movements. Theoretical models predicted that the value of time should then amount to high levels of effort. However, the time-effort trade-off has so far only been studied for a narrow range of efforts. To investigate the extent to which humans can invest in a time-saving effort, we used a robotic exoskeleton to substantially vary the energetic cost associated with a certain vigor during reaching movements. In this situation, minimizing the time-effort trade-off should lead to high and low human efforts for upward and downward movements, respectively. Consistently, all participants expended substantial amounts of energy upward and remained essentially inactive by harnessing the work of gravity downward, while saving time in both cases. A common time-effort trade-off may therefore determine the vigor of reaching movements for a wide range of efforts.
Collapse
Affiliation(s)
- Dorian Verdel
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Université Paris-Saclay, 91190 Gif-sur-Yvette, France
| | - Guillaume Sahm
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Nicolas Vignais
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Bastien Berret
- Université Paris-Saclay, CIAMS, 91405 Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|
5
|
VanHaitsma TA, Gonzalez SP, Kajitani S, Gabriano E, Hoiosen GE, Oldach MC, Kingsley KL. Three weeks of mental training changes physiological outcomes during a time trial to exhaustion. Eur J Appl Physiol 2023; 123:1977-1989. [PMID: 37129629 PMCID: PMC10460752 DOI: 10.1007/s00421-023-05206-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/06/2022] [Accepted: 04/17/2023] [Indexed: 05/03/2023]
Abstract
Mental training (MT) can increase endurance performance. The purpose of this study was to examine the minimum dose of mental training needed to increase performance and elucidate the physiological mechanisms underlying this improvement. In a randomized between groups pre-test-post-test design, 33 participants visited the lab on 6 separate days. A VO2peak with ventilatory threshold (VT) was performed on day 1. The subsequent visits consisted of time trials to exhaustion (TTE) performed at 10% above VT. Between visit 3 and 6, the MT group (n = 16) watched a video for 10-15 min each day for 3 weeks, while the control group (CON; n = 17) did no mental training. Heart rate (HR), rate of perceived exertion (RPE), VAS scores for pain and fatigue, electromyography, and metabolic and neuromuscular data were collected and recorded during the time trials. The GRIT-S and CD-RISC 10 surveys were completed before study days 3 and 6. TTE increased significantly for MT beginning after 2 weeks (10.0 ± 13.1%) with no further change after 3 weeks (10.4 ± 13.2). TTE also significantly decreased during the last TTE for CON (-10.3 ± 12.7). VO2, ventilation, and frequency of breathing were significantly reduced in the latter stages of the TTE for MT. EMG was also significantly decreased for MT as compared for CON throughout the trial. Three weeks of mental training improves performance by reducing EMG, decreasing activation of the muscle and reducing metabolic factors during the latter stages of exercise.
Collapse
Affiliation(s)
| | - Stephen P Gonzalez
- Department of Kinesiology, Sport Studies, and Physical Education, Dartmouth College, Hanover, NH, USA
| | - Sten Kajitani
- Department of Kinesiology, Westmont College, Santa Barbara, CA, USA
| | - Emma Gabriano
- Department of Kinesiology, Westmont College, Santa Barbara, CA, USA
| | - Gavin E Hoiosen
- Department of Kinesiology, Westmont College, Santa Barbara, CA, USA
| | - Michael C Oldach
- Department of Kinesiology, Westmont College, Santa Barbara, CA, USA
| | - Karly L Kingsley
- Department of Kinesiology, Westmont College, Santa Barbara, CA, USA
| |
Collapse
|
6
|
Gueugneau N, Martin A, Gaveau J, Papaxanthis C. Gravity-efficient motor control is associated with contraction-dependent intracortical inhibition. iScience 2023; 26:107150. [PMID: 37534144 PMCID: PMC10391940 DOI: 10.1016/j.isci.2023.107150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/21/2022] [Revised: 06/04/2023] [Accepted: 06/12/2023] [Indexed: 08/04/2023] Open
Abstract
In humans, moving efficiently along the gravity axis requires shifts in muscular contraction modes. Raising the arm up involves shortening contractions of arm flexors, whereas the reverse movement can rely on lengthening contractions with the help of gravity. Although this control mode is universal, the neuromuscular mechanisms that drive gravity-oriented movements remain unknown. Here, we designed neurophysiological experiments that aimed to track the modulations of cortical, spinal, and muscular outputs of arm flexors during vertical movements with specific kinematics (i.e., optimal motor commands). We report a specific drop of corticospinal excitability during lengthening versus shortening contractions, with an increase of intracortical inhibition and no change in spinal motoneuron responsiveness. We discuss these contraction-dependent modulations of the supraspinal motor output in the light of feedforward mechanisms that may support gravity-tuned motor control. Generally, these results shed a new perspective on the neural policy that optimizes movement control along the gravity axis.
Collapse
Affiliation(s)
- Nicolas Gueugneau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| | - Alain Martin
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| | - Charalambos Papaxanthis
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, 21000 Dijon, France
| |
Collapse
|
7
|
Thomas E, Ali FB, Tolambiya A, Chambellant F, Gaveau J. Too much information is no information: how machine learning and feature selection could help in understanding the motor control of pointing. Front Big Data 2023; 6:921355. [PMID: 37546547 PMCID: PMC10399757 DOI: 10.3389/fdata.2023.921355] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2022] [Accepted: 06/16/2023] [Indexed: 08/08/2023] Open
Abstract
The aim of this study was to develop the use of Machine Learning techniques as a means of multivariate analysis in studies of motor control. These studies generate a huge amount of data, the analysis of which continues to be largely univariate. We propose the use of machine learning classification and feature selection as a means of uncovering feature combinations that are altered between conditions. High dimensional electromyogram (EMG) vectors were generated as several arm and trunk muscles were recorded while subjects pointed at various angles above and below the gravity neutral horizontal plane. We used Linear Discriminant Analysis (LDA) to carry out binary classifications between the EMG vectors for pointing at a particular angle, vs. pointing at the gravity neutral direction. Classification success provided a composite index of muscular adjustments for various task constraints-in this case, pointing angles. In order to find the combination of features that were significantly altered between task conditions, we conducted a post classification feature selection i.e., investigated which combination of features had allowed for the classification. Feature selection was done by comparing the representations of each category created by LDA for the classification. In other words computing the difference between the representations of each class. We propose that this approach will help with comparing high dimensional EMG patterns in two ways; (i) quantifying the effects of the entire pattern rather than using single arbitrarily defined variables and (ii) identifying the parts of the patterns that convey the most information regarding the investigated effects.
Collapse
Affiliation(s)
- Elizabeth Thomas
- INSERMU1093, UFR STAPS, Université de Bourgogne Franche Comté, Dijon, France
| | - Ferid Ben Ali
- School of Engineering and Computer Science, University of Hertfordshire, Hatfield, United Kingdom
| | - Arvind Tolambiya
- Applied Intelligence Hub, Accenture Solutions Private Ltd., Hyderabad, Telangana, India
| | - Florian Chambellant
- INSERMU1093, UFR STAPS, Université de Bourgogne Franche Comté, Dijon, France
| | - Jérémie Gaveau
- INSERMU1093, UFR STAPS, Université de Bourgogne Franche Comté, Dijon, France
| |
Collapse
|
8
|
Marciniak Dg Agra K, Dg Agra P. F = ma. Is the macaque brain Newtonian? Cogn Neuropsychol 2023; 39:376-408. [PMID: 37045793 DOI: 10.1080/02643294.2023.2191843] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/14/2023]
Abstract
Intuitive Physics, the ability to anticipate how the physical events involving mass objects unfold in time and space, is a central component of intelligent systems. Intuitive physics is a promising tool for gaining insight into mechanisms that generalize across species because both humans and non-human primates are subject to the same physical constraints when engaging with the environment. Physical reasoning abilities are widely present within the animal kingdom, but monkeys, with acute 3D vision and a high level of dexterity, appreciate and manipulate the physical world in much the same way humans do.
Collapse
Affiliation(s)
- Karolina Marciniak Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| | - Pedro Dg Agra
- The Rockefeller University, Laboratory of Neural Circuits, New York, NY, USA
- Center for Brain, Minds and Machines, Cambridge, MA, USA
| |
Collapse
|
9
|
Torricelli F, Tomassini A, Pezzulo G, Pozzo T, Fadiga L, D'Ausilio A. Motor invariants in action execution and perception. Phys Life Rev 2023; 44:13-47. [PMID: 36462345 DOI: 10.1016/j.plrev.2022.11.003] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/18/2022] [Accepted: 11/21/2022] [Indexed: 11/27/2022]
Abstract
The nervous system is sensitive to statistical regularities of the external world and forms internal models of these regularities to predict environmental dynamics. Given the inherently social nature of human behavior, being capable of building reliable predictive models of others' actions may be essential for successful interaction. While social prediction might seem to be a daunting task, the study of human motor control has accumulated ample evidence that our movements follow a series of kinematic invariants, which can be used by observers to reduce their uncertainty during social exchanges. Here, we provide an overview of the most salient regularities that shape biological motion, examine the role of these invariants in recognizing others' actions, and speculate that anchoring socially-relevant perceptual decisions to such kinematic invariants provides a key computational advantage for inferring conspecifics' goals and intentions.
Collapse
Affiliation(s)
- Francesco Torricelli
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alice Tomassini
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Giovanni Pezzulo
- Institute of Cognitive Sciences and Technologies, National Research Council, Via San Martino della Battaglia 44, 00185 Rome, Italy
| | - Thierry Pozzo
- Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; INSERM UMR1093-CAPS, UFR des Sciences du Sport, Université Bourgogne Franche-Comté, F-21000, Dijon, France
| | - Luciano Fadiga
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy
| | - Alessandro D'Ausilio
- Department of Neuroscience and Rehabilitation, University of Ferrara, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy; Center for Translational Neurophysiology of Speech and Communication, Italian Institute of Technology, Via Fossato di Mortara, 17-19, 44121 Ferrara, Italy.
| |
Collapse
|
10
|
Bergevin M, Steele J, Payen de la Garanderie M, Feral-Basin C, Marcora SM, Rainville P, Caron JG, Pageaux B. Pharmacological Blockade of Muscle Afferents and Perception of Effort: A Systematic Review with Meta-analysis. Sports Med 2023; 53:415-435. [PMID: 36318384 DOI: 10.1007/s40279-022-01762-4] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/03/2022] [Indexed: 01/27/2023]
Abstract
BACKGROUND The perception of effort provides information on task difficulty and influences physical exercise regulation and human behavior. This perception differs from other-exercise related perceptions such as pain. There is no consensus on the role of group III/IV muscle afferents as a signal processed by the brain to generate the perception of effort. OBJECTIVE The aim of this meta-analysis was to investigate the effect of pharmacologically blocking muscle afferents on the perception of effort. METHODS Six databases were searched to identify studies measuring the ratings of perceived effort during physical exercise, with and without pharmacological blockade of muscle afferents. Articles were coded based on the operational measurement used to distinguish studies in which perception of effort was assessed specifically (effort dissociated) or as a composite experience including other exercise-related perceptions (effort not dissociated). Articles that did not provide enough information for coding were assigned to the unclear group. RESULTS The effort dissociated group (n = 6) demonstrated a slight increase in ratings of perceived effort with reduced muscle afferent feedback (standard mean change raw, 0.39; 95% confidence interval 0.13-0.64). The group effort not dissociated (n = 2) did not reveal conclusive results (standard mean change raw, - 0.29; 95% confidence interval - 2.39 to 1.8). The group unclear (n = 8) revealed a slight ratings of perceived effort decrease with reduced muscle afferent feedback (standard mean change raw, - 0.27; 95% confidence interval - 0.50 to - 0.04). CONCLUSIONS The heterogeneity in results between groups reveals that the inclusion of perceptions other than effort in its rating influences the ratings of perceived effort reported by the participants. The absence of decreased ratings of perceived effort in the effort dissociated group suggests that muscle afferent feedback is not a sensory signal for the perception of effort.
Collapse
Affiliation(s)
- Maxime Bergevin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - James Steele
- School of Sport, Health and Social Sciences, Southampton, UK
| | - Marie Payen de la Garanderie
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Camille Feral-Basin
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada
| | - Samuele M Marcora
- Department of Biomedical and Neuromotor Sciences (DiBiNeM), University of Bologna, Bologna, Italy
| | - Pierre Rainville
- Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada.,Département de stomatologie, Faculté de médecine dentaire, Université de Montréal, Montreal, QC, Canada
| | - Jeffrey G Caron
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada.,Centre de recherche interdisciplinaire en réadaptation du Montréal métropolitain, Montreal, QC, Canada
| | - Benjamin Pageaux
- École de kinésiologie et des sciences de l'activite physique (EKSAP), Faculté de médecine, Université́ de Montréal, Montreal, QC, Canada. .,Centre de recherche de l'Institut universitaire de gériatrie de Montréal (CRIUGM), Montreal, Canada. .,Centre interdisciplinaire de recherche sur le cerveau et l'apprentissage (CIRCA), Montreal, QC, Canada.
| |
Collapse
|
11
|
de la Garanderie MP, Courtay A, Féral-Basin C, Rainville P, Gaveau J, Pageaux B. Perception of effort and the allocation of physical resources: A generalization to upper-limb motor tasks. Front Psychol 2023; 13:974172. [PMID: 36760904 PMCID: PMC9904170 DOI: 10.3389/fpsyg.2022.974172] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/20/2022] [Accepted: 11/28/2022] [Indexed: 01/26/2023] Open
Abstract
Purpose The perception of effort (PE) is widely used to prescribe and monitor exercise during locomotor and resistance tasks. The present study examines the validity of PE to prescribe and monitor exercise during upper-limb motor tasks under various loads and speed requirements. Methods Forty participants volunteered in two experiments. In experiment 1, we used four PE intensities to prescribe exercise on a modified version of the box and block test (BBT) and a pointing task. We investigated the possibility of monitoring the exercise intensity by tracking changes in PE rating in response to three different tempos or additional weights. Experiment 2 replicated the possibility of prescribing the exercise with the PE intensity during the BBT and explored the impact of additional weights on performance and PE during the standardized version of the BBT. Muscle activation, heart rate, and respiratory frequencies were recorded. Results In experiment 1, increasing the PE intensity to prescribe exercise induced an increased performance between each intensity. Increasing task difficulty with faster movement tempo and adding weight on the forearm increased the rating of PE. Experiment 2 replicated the possibility to use PE intensity for exercise prescription during the BBT. When completing the BBT with an additional weight on the forearm, participants maintained performance at the cost of a higher PE. In both experiments, changes in PE were associated with changes in muscle activation. Conclusion Our results suggest that PE is a valid tool to prescribe and monitor exercise during upper-limb motor tasks.
Collapse
Affiliation(s)
- Marie Payen de la Garanderie
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
| | - Aymeric Courtay
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Camille Féral-Basin
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
| | - Pierre Rainville
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- Département de Stomatologie, Faculté de Médecine Dentaire, Université de Montréal, Montreal, QC, Canada
| | - Jérémie Gaveau
- INSERM UMR1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
- Espace d’Etude du Mouvement—Etienne Jules MAREY, Université Bourgogne Franche-Comte, UFR des Sciences du Sport, Dijon, France
| | - Benjamin Pageaux
- École de Kinésiologie et des Sciences de l’Activité Physique (EKSAP), Faculté de Médecine, Université de Montréal, Montreal, QC, Canada
- Centre de Recherche de l’Institut Universitaire de Gériatrie de Montréal (CRIUGM), Montreal, QC, Canada
- Centre Interdisciplinaire de Recherche sur le Cerveau et l’Apprentissage (CIRCA), Montreal, QC, Canada
| |
Collapse
|
12
|
Boulenger V, Finos L, Koun E, Salemme R, Desoche C, Roy AC. Up right, not right up: Primacy of verticality in both language and movement. Front Hum Neurosci 2022; 16:981330. [PMID: 36248682 PMCID: PMC9558293 DOI: 10.3389/fnhum.2022.981330] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/29/2022] [Accepted: 09/09/2022] [Indexed: 11/28/2022] Open
Abstract
When describing motion along both the horizontal and vertical axes, languages from different families express the elements encoding verticality before those coding for horizontality (e.g., going up right instead of right up). In light of the motor grounding of language, the present study investigated whether the prevalence of verticality in Path expression also governs the trajectory of arm biological movements. Using a 3D virtual-reality setting, we tracked the kinematics of hand pointing movements in five spatial directions, two of which implied the vertical and horizontal vectors equally (i.e., up right +45° and bottom right −45°). Movement onset could be prompted by visual or auditory verbal cues, the latter being canonical in French (“en haut à droite”/up right) or not (“à droite en haut”/right up). In two experiments, analyses of the index finger kinematics revealed a significant effect of gravity, with earlier acceleration, velocity, and deceleration peaks for upward (+45°) than downward (−45°) movements, irrespective of the instructions. Remarkably, confirming the linguistic observations, we found that vertical kinematic parameters occurred earlier than horizontal ones for upward movements, both for visual and congruent verbal cues. Non-canonical verbal instructions significantly affected this temporal dynamic: for upward movements, the horizontal and vertical components temporally aligned, while they reversed for downward movements where the kinematics of the vertical axis was delayed with respect to that of the horizontal one. This temporal dynamic is so deeply anchored that non-canonical verbal instructions allowed for horizontality to precede verticality only for movements that do not fight against gravity. Altogether, our findings provide new insights into the embodiment of language by revealing that linguistic path may reflect the organization of biological movements, giving priority to the vertical axis.
Collapse
Affiliation(s)
- Véronique Boulenger
- Laboratoire Dynamique Du Langage, UMR 5596, CNRS/University Lyon 2, Lyon, France
- *Correspondence: Véronique Boulenger,
| | - Livio Finos
- Department of Statistical Sciences, University of Padua, Padua, Italy
| | - Eric Koun
- Integrative Multisensory Perception Action & Cognition Team (IMPACT), Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, University Lyon 1, Lyon, France
| | - Roméo Salemme
- Integrative Multisensory Perception Action & Cognition Team (IMPACT), Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, University Lyon 1, Lyon, France
- Neuro-Immersion, Lyon Neuroscience Research Center, Lyon, France
| | - Clément Desoche
- Integrative Multisensory Perception Action & Cognition Team (IMPACT), Lyon Neuroscience Research Center, INSERM U1028, CNRS U5292, University Lyon 1, Lyon, France
- Neuro-Immersion, Lyon Neuroscience Research Center, Lyon, France
| | - Alice C. Roy
- Laboratoire Dynamique Du Langage, UMR 5596, CNRS/University Lyon 2, Lyon, France
| |
Collapse
|
13
|
Li Q, Xia Y, Wang X, Xin P, Chen W, Xiong C. Muscle-Effort-Minimization-Inspired Kinematic Redundancy Resolution for Replicating Natural Posture of Human Arm. IEEE Trans Neural Syst Rehabil Eng 2022; 30:2341-2351. [PMID: 35951574 DOI: 10.1109/tnsre.2022.3198400] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
Abstract
Replicating natural postures of human arms is essential to generate human-like behaviors in robotic applications for humans nearby. However, how to realize this requirement in interactive scenarios remains a challenge due to the kinematic redundancy and unknown postural control strategy of human arms. Inspired by the physiological characteristics that the musculoskeletal system is coordinated to minimize muscle effort in human behaviors, this paper aims to address the issue by solving a muscle effort minimization problem. It adopts a high-fidelity human arm musculoskeletal model (HAMM) and considers the implicit constraint (desired hand pose) and the inequality constraints (range of joint motion). The constrained minimization is in general nonconvex, consequently sensitive to initial guesses in iterative procedures. So, it is impracticable to solve it directly with existing gradient-based deterministic approaches or standard evolutionary algorithms. As the main contribution, a hybrid inverse kinematics algorithm was proposed for the HAMM with 7 independent and 13 mimic joints to obtain the feasible arm postures satisfying the minimization constraints. Using the arm swivel angle that parametrizes the kinematic redundancy of the HAMM, geometrically equidistant initial guess candidates can be generated over the 1-dimension feasible posture manifold. As another contribution, we present a two-phase global minimization algorithm to handle the nonconvexity of the constrained minimization. It consists of a local-search phase on the null-space of the geometric Jacobian matrix and a global-search phase with an initial guess resampling strategy. The proposed approach was validated by replicating the natural arm postures of 5 right-handed subjects in daily tasks.
Collapse
|
14
|
Poirier G, Papaxanthis C, Mourey F, Lebigre M, Gaveau J. Muscle effort is best minimized by the right-dominant arm in the gravity field. J Neurophysiol 2022; 127:1117-1126. [PMID: 35353617 DOI: 10.1152/jn.00324.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
The central nervous system (CNS) develops motor strategies that minimize various hidden criteria, such as end-point variance or effort. A large body of literature suggests that the dominant arm is specialized for such open-loop optimization-like processes, whilst the non-dominant arm is specialized for closed-loop postural control. Building on recent results suggesting that the brain plans arm movements that take advantage of gravity effects to minimize muscle effort, the present study tests the hypothesized superiority of the dominant arm motor system for effort minimization. Thirty participants (22.5 ± 2.1 years old; all right-handed) performed vertical arm movements between two targets (40° amplitude), in two directions (upwards and downwards) with their two arms (dominant and non-dominant). We recorded the arm kinematics and electromyographic activities of the anterior and posterior deltoid to compare two motor signatures of the gravity-related optimization process; i.e., directional asymmetries and negative epochs on phasic muscular activity. We found that these motor signatures were still present during movements performed with the non-dominant arm, indicating that the effort-minimization process also occurs for the non-dominant motor system. However, these markers were reduced compared with movements performed with the dominant arm. This difference was especially prominent during downward movements, where the optimization of gravity effects occurs early in the movement. Assuming that the dominant arm is optimal to minimize muscle effort, as demonstrated by previous studies, the present results support the hypothesized superiority of the dominant arm motor system for effort-minimization.
Collapse
Affiliation(s)
- Gabriel Poirier
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Charalambos Papaxanthis
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - France Mourey
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Melanie Lebigre
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| | - Jérémie Gaveau
- INSERM U1093-CAPS, Université Bourgogne Franche-Comté, UFR des Sciences du Sport, Dijon, France
| |
Collapse
|
15
|
Berret B, Baud-Bovy G. Evidence for a cost of time in the invigoration of isometric reaching movements. J Neurophysiol 2022; 127:689-701. [PMID: 35138953 DOI: 10.1152/jn.00536.2021] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022] Open
Abstract
How the brain determines the vigor of goal-directed movements is a fundamental question in neuroscience. Recent evidence has suggested that vigor results from a trade-off between a cost related to movement production (cost of movement) and a cost related to our brain's tendency to temporally discount the value of future reward (cost of time). However, whether it is critical to hypothesize a cost of time to explain the vigor of basic reaching movements with intangible reward is unclear because the cost of movement may be theoretically sufficient for this purpose. Here we directly address this issue by designing an isometric reaching task whose completion can be accurate and effortless in prefixed durations. The cost of time hypothesis predicts that participants should be prone to spend energy to save time even if the task can be accomplished at virtually no motor cost. Accordingly, we found that all participants generated substantial amounts of force to invigorate task accomplishment, especially when the prefixed duration was long enough. Remarkably, the time saved by each participant was linked to their original vigor in the task and predicted by an optimal control model balancing out movement and time costs. Taken together, these results supports the existence of an idiosyncratic, cognitive cost of time that underlies the invigoration of basic isometric reaching movements.
Collapse
Affiliation(s)
- Bastien Berret
- Université Paris-Saclay CIAMS, 91405, Orsay, France.,CIAMS, Université d'Orléans, 45067, Orléans, France.,Institut Universitaire de France, Paris, France
| | - Gabriel Baud-Bovy
- Robotics, Brain and Cognitive Sciences Unit, Istituto Italiano di Tecnologia, Genoa, Italy.,Faculty of Psychology, Vita-Salute San Raffaele University, Milan, Italy
| |
Collapse
|
16
|
Verdel D, Bastide S, Vignais N, Bruneau O, Berret B. Human Weight Compensation With a Backdrivable Upper-Limb Exoskeleton: Identification and Control. Front Bioeng Biotechnol 2022; 9:796864. [PMID: 35096793 PMCID: PMC8793740 DOI: 10.3389/fbioe.2021.796864] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/17/2021] [Accepted: 12/13/2021] [Indexed: 11/17/2022] Open
Abstract
Active exoskeletons are promising devices for improving rehabilitation procedures in patients and preventing musculoskeletal disorders in workers. In particular, exoskeletons implementing human limb’s weight support are interesting to restore some mobility in patients with muscle weakness and help in occupational load carrying tasks. The present study aims at improving weight support of the upper limb by providing a weight model considering joint misalignments and a control law including feedforward terms learned from a prior population-based analysis. Three experiments, for design and validation purposes, are conducted on a total of 65 participants who performed posture maintenance and elbow flexion/extension movements. The introduction of joint misalignments in the weight support model significantly reduced the model errors, in terms of weight estimation, and enhanced the estimation reliability. The introduced control architecture reduced model tracking errors regardless of the condition. Weight support significantly decreased the activity of antigravity muscles, as expected, but increased the activity of elbow extensors because gravity is usually exploited by humans to accelerate a limb downwards. These findings suggest that an adaptive weight support controller could be envisioned to further minimize human effort in certain applications.
Collapse
Affiliation(s)
- Dorian Verdel
- CIAMS, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- *Correspondence: Dorian Verdel,
| | - Simon Bastide
- CIAMS, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Nicolas Vignais
- CIAMS, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
| | - Olivier Bruneau
- LURPA, Mechanical Engineering Department, ENS Paris-Saclay, Cachan, France
| | - Bastien Berret
- CIAMS, Sport Sciences Department, Université Paris-Saclay, Orsay, France
- CIAMS, Université d’Orléans, Orléans, France
- Institut Universitaire de France, Paris, France
| |
Collapse
|