1
|
Wang H, Bai P, Cui H, Zhang X, Tang Y, Liang S, Li S, Zhou G. Bioinspired thermally conducting packaging for heat management of high performance electronic chips. COMMUNICATIONS ENGINEERING 2025; 4:1. [PMID: 39755785 DOI: 10.1038/s44172-024-00338-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Accepted: 12/23/2024] [Indexed: 01/06/2025]
Abstract
Conventional electronic chip packaging generates a huge thermal resistance due to the low thermal conductivity of the packaging materials that separate chip dies and coolant. Here we propose and fabricate a closed high-conducting heat chip package based on passive phase change, using silicon carbide which is physically and structurally compatible with chip die materials. Our "chip on vapor chamber" (CoVC) concept realizes rapid diffusion of hot spots, and eliminates the high energy consumption of refrigeration ordinarily required for heat management. Multi-scale wicks and bionic vein structures are applied to CoVC leading to an increase of 164% in heat transfer performance. The thermal resistance of the package was only a third that of traditional packaging systems. This means that the structure of CoVC has a good thermal conducting ability and can reduce energy consumption for heat dissipation.
Collapse
Affiliation(s)
- Huawei Wang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Pengfei Bai
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China.
| | - He Cui
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Xiaotong Zhang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Yifan Tang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Shaoyu Liang
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Shixiao Li
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
| | - Guofu Zhou
- Guangdong Provincial Key Laboratory of Optical Information Materials and Technology & Institute of Electronic Paper Displays, South China Academy of Advanced Optoelectronics, South China Normal University, Guangzhou, 510006, PR China
- Shenzhen Guohua Optoelectronics Tech. Co., Ltd., Shenzhen, 518110, PR China
- Academy of Shenzhen Guohua Optoelectronics, Shenzhen, 518110, PR China
| |
Collapse
|
2
|
Resistivity of solid and liquid Fe-Ni-Si with applications to the cores of Earth, Mercury and Venus. Sci Rep 2022; 12:9941. [PMID: 35705611 PMCID: PMC9200758 DOI: 10.1038/s41598-022-14130-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/17/2022] [Accepted: 06/01/2022] [Indexed: 11/24/2022] Open
Abstract
Electrical resistivity measurements of Fe–10wt%Ni–10wt%Si have been performed in a multi-anvil press from 3 to 20 GPa up to 2200 K. The temperature and pressure dependences of electrical resistivity are analyzed in term of changes in the electron mean free path. Similarities in the thermal properties of Fe–Si and Fe–Ni–Si alloys suggest the effect of Ni is negligible. Electrical resistivity is used to calculate thermal conductivity via the Wiedemann–Franz law, which is then used to estimate the adiabatic heat flow. The adiabatic heat flow at the top of Earth’s core is estimated to be 14 TW from the pressure and temperature dependences of thermal conductivity in the liquid state from this study, suggesting thermal convection may still be an active source to power the dynamo depending on the estimated value taken for the heat flow through the core mantle boundary. The calculated adiabatic heat flux density of 22.7–32.1 mW/m2 at the top of Mercury’s core suggests a chemically driven magnetic field from 0.02 to 0.21 Gyr after formation. A thermal conductivity of 140–148 Wm−1 K−1 is estimated at the center of a Fe–10wt%Ni–10wt%Si Venusian core, suggesting the presence of a solid inner core and an outer core that is at least partially liquid.
Collapse
|