1
|
Lin R, Huang Z, Liu Y, Zhou Y. Analysis of Personalized Cardiovascular Drug Therapy: From Monitoring Technologies to Data Integration and Future Perspectives. BIOSENSORS 2025; 15:191. [PMID: 40136988 PMCID: PMC11940481 DOI: 10.3390/bios15030191] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/16/2025] [Revised: 03/09/2025] [Accepted: 03/15/2025] [Indexed: 03/27/2025]
Abstract
Cardiovascular diseases have long been a major challenge to human health, and the treatment differences caused by individual variability remain unresolved. In recent years, personalized cardiovascular drug therapy has attracted widespread attention. This paper reviews the strategies for achieving personalized cardiovascular drug therapy through traditional dynamic monitoring and multidimensional data integration and analysis. It focuses on key technologies for dynamic monitoring, dynamic monitoring based on individual differences, and multidimensional data integration and analysis. By systematically reviewing the relevant literature, the main challenges in current research and the proposed potential directions for future studies were summarized.
Collapse
Affiliation(s)
| | | | | | - Yinning Zhou
- Joint Key Laboratory of the Ministry of Education, Institute of Applied Physics and Materials Engineering, University of Macau, Avenida da Universidade, Taipa 999078, Macau
| |
Collapse
|
2
|
Tremmel R, Pirmann S, Zhou Y, Lauschke VM. Translating pharmacogenomic sequencing data into drug response predictions-How to interpret variants of unknown significance. Br J Clin Pharmacol 2025; 91:252-263. [PMID: 37759374 PMCID: PMC11773106 DOI: 10.1111/bcp.15915] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Revised: 09/20/2023] [Accepted: 09/22/2023] [Indexed: 09/29/2023] Open
Abstract
The rapid development of sequencing technologies during the past 20 years has provided a variety of methods and tools to interrogate human genomic variations at the population level. Pharmacogenes are well known to be highly polymorphic and a plethora of pharmacogenomic variants has been identified in population sequencing data. However, so far only a small number of these variants have been functionally characterized regarding their impact on drug efficacy and toxicity and the significance of the vast majority remains unknown. It is therefore of high importance to develop tools and frameworks to accurately infer the effects of pharmacogenomic variants and, eventually, aggregate the effect of individual variations into personalized drug response predictions. To address this challenge, we here first describe the technological advances, including sequencing methods and accompanying bioinformatic processing pipelines that have enabled reliable variant identification. Subsequently, we highlight advances in computational algorithms for pharmacogenomic variant interpretation and discuss the added value of emerging strategies, such as machine learning and the integrative use of omics techniques that have the potential to further contribute to the refinement of personalized pharmacological response predictions. Lastly, we provide an overview of experimental and clinical approaches to validate in silico predictions. We conclude that the iterative feedback between computational predictions and experimental validations is likely to rapidly improve the accuracy of pharmacogenomic prediction models, which might soon allow for an incorporation of the entire pharmacogenetic profile into personalized response predictions.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
| | - Sebastian Pirmann
- Computational Oncology Group, Molecular Precision Oncology ProgramNational Center for Tumor Diseases (NCT) Heidelberg and German Cancer Research Center (DKFZ)HeidelbergGermany
- Helmholtz Information and Data Science School for HealthKarlsruhe/HeidelbergGermany
- Faculty of BiosciencesHeidelberg UniversityHeidelbergGermany
| | - Yitian Zhou
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| | - Volker M. Lauschke
- Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany
- University of TübingenTübingenGermany
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden
| |
Collapse
|
3
|
Weitzberg E, Ingelman-Sundberg M, Lundberg JO, Engberg G, Schulte G, Lauschke VM. The 75-Year Anniversary of the Department of Physiology and Pharmacology at Karolinska Institutet-Examples of Recent Accomplishments and Future Perspectives. Pharmacol Rev 2024; 76:1089-1101. [PMID: 39414365 DOI: 10.1124/pharmrev.124.001433] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2024] [Accepted: 09/09/2024] [Indexed: 10/18/2024] Open
Abstract
Karolinska Institutet is a medical university encompassing 21 departments distributed across three departmental or campus groups. Pharmacological research has a long and successful tradition at the institute with a multitude of seminal findings in the areas of neuronal control of vasodilatation, cardiovascular pharmacology, neuropsychopharmacology, receptor pharmacology, and pharmacogenomics that resulted in, among many other recognitions, two Nobel prizes in Physiology and Medicine, one in 1970 to Ulf von Euler for his discovery of the processes involved in storage, release, and inactivation of neurotransmitters and the other in 1982 to Sune Bergström and Bengt Samuelsson for their work on prostaglandins and the discovery of leukotrienes. Pharmacology at Karolinska Institutet has over the last decade been ranked globally among the top 10 according to the QS World University Ranking. With the Department of Physiology and Pharmacology now celebrating its 75-year anniversary, we wanted to take this as an opportunity to showcase recent research achievements and how they paved the way for current activities at the department. We emphasize examples from preclinical and clinical research where the dpartment's integrative environment and robust infrastructure have successfully facilitated the translation of findings into clinical applications and patient benefits. The close collaboration between preclinical scientists and clinical researchers across various disciplines, along with a strong network of partnerships within the department and beyond, positions us to continue leading world-class pharmacological research at the Department of Physiology and Pharmacology for decades to come. SIGNIFICANCE STATEMENT: Pharmacological research at Karolinska Institutet has a long and successful history. Given the 75-year anniversary of the Department of Physiology and Pharmacology, this perspective provides an overview of recent departmental achievements and future trajectories. For these developments, interdisciplinary and intersectoral collaborations and a clear focus on result translation are key elements to continue its legacy of world-leading pharmacological research.
Collapse
Affiliation(s)
- Eddie Weitzberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Jon O Lundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Göran Engberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Gunnar Schulte
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (E.W., M.I.-S., J.O.L., G.E., G.S., V.M.L.); Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
4
|
Reis J, Spencer PS. An introduction to environmental neurotoxicology: Lessons from a clinical perspective. J Neurol Sci 2024; 463:123108. [PMID: 38991324 DOI: 10.1016/j.jns.2024.123108] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
In 1992, the Committee on Neurotoxicology and Models for Assessing Risk of the National Academy of Sciences in Washington DC focused with a scientific perspective on the identification of substances with neurotoxic potential, studies of exposed populations, risk assessment, and biologic markers of disease. This Committee recommended: "all physicians should be trained to take a thorough occupational-exposure history and to be aware of other possible sources of toxic exposure". Although convened after several outbreaks of neurotoxic syndromes, clinical neurological considerations were lacking. After defining keys words, namely Environment, Neurotoxicology and Neurotoxicants, we present some demonstrative cases; e.g., the Epidemic Neuropathy in Cuba, Minamata disease, ALS/PDC on Guam, and the ALS hot spot in the French Alps. Always with a clinical and practical approach, we will then review the milieux that contain and convey potential neurotoxicants, the different exposure routes and the clinical presentations. Drawing lessons from clinical cases, we offer some thoughts concerning the future of Environmental Neurotoxicology (ENT). Pointing notably to the diffuse chemical contamination of ecosystems and living beings, including Homo sapiens, we question the real impact of agents with neurotoxic potential on the human brain, considering the effects, for example, of air pollution, endocrine disruptors and nanoparticles. Concern is expressed over the lack of knowledge of the non-monotonic kinetics of many of these chemicals, the major concern being related to mixtures and low-dose exposures, as well as the delayed appearance in clinical expression of prevalent neurodegenerative diseases.
Collapse
Affiliation(s)
- J Reis
- Department of Neurology, University Hospital of Strasbourg, 67000 Strasbourg, France; Association RISE, 67205 Oberhausbergen, France.
| | - P S Spencer
- Department of Neurology, School of Medicine, and Oregon Institute of Occupational Health Sciences, Oregon Health & Science University, Portland, OR 97239, USA
| |
Collapse
|
5
|
Sun KY, Bai X, Chen S, Bao S, Zhang C, Kapoor M, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke AE, Ganel L, Hawes A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Di Gioia A, Rajagopal VM, Lopez A, Varela JR, Alegre-Díaz J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Cantor M, Thornton T, Kang HM, Overton JD, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalogue of protein-coding variation in 983,578 individuals. Nature 2024; 631:583-592. [PMID: 38768635 PMCID: PMC11254753 DOI: 10.1038/s41586-024-07556-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2023] [Accepted: 05/10/2024] [Indexed: 05/22/2024]
Abstract
Rare coding variants that substantially affect function provide insights into the biology of a gene1-3. However, ascertaining the frequency of such variants requires large sample sizes4-8. Here we present a catalogue of human protein-coding variation, derived from exome sequencing of 983,578 individuals across diverse populations. In total, 23% of the Regeneron Genetics Center Million Exome (RGC-ME) data come from individuals of African, East Asian, Indigenous American, Middle Eastern and South Asian ancestry. The catalogue includes more than 10.4 million missense and 1.1 million predicted loss-of-function (pLOF) variants. We identify individuals with rare biallelic pLOF variants in 4,848 genes, 1,751 of which have not been previously reported. From precise quantitative estimates of selection against heterozygous loss of function (LOF), we identify 3,988 LOF-intolerant genes, including 86 that were previously assessed as tolerant and 1,153 that lack established disease annotation. We also define regions of missense depletion at high resolution. Notably, 1,482 genes have regions that are depleted of missense variants despite being tolerant of pLOF variants. Finally, we estimate that 3% of individuals have a clinically actionable genetic variant, and that 11,773 variants reported in ClinVar with unknown significance are likely to be deleterious cryptic splice sites. To facilitate variant interpretation and genetics-informed precision medicine, we make this resource of coding variation from the RGC-ME dataset publicly accessible through a variant allele frequency browser.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | | | - Liron Ganel
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | - Jesús Alegre-Díaz
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Jaime Berumen
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Roberto Tapia-Conyer
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
| | - Pablo Kuri-Morales
- Faculty of Medicine, National Autonomous University of Mexico (UNAM), Mexico City, Mexico
- Instituto Tecnológico y de Estudios Superiores de Monterrey, Monterrey, Mexico
| | - Jason Torres
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit and Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
6
|
Ingelman-Sundberg M, Lauschke VM. Individualized Pharmacotherapy Utilizing Genetic Biomarkers and Novel In Vitro Systems As Predictive Tools for Optimal Drug Development and Treatment. Drug Metab Dispos 2024; 52:467-475. [PMID: 38575185 DOI: 10.1124/dmd.123.001302] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 02/15/2024] [Accepted: 03/12/2024] [Indexed: 04/06/2024] Open
Abstract
In the area of drug development and clinical pharmacotherapy, a profound understanding of the pharmacokinetics and potential adverse reactions associated with the drug under investigation is paramount. Essential to this endeavor is a comprehensive understanding about interindividual variations in absorption, distribution, metabolism, and excretion (ADME) genetics and the predictive capabilities of in vitro systems, shedding light on metabolite formation and the risk of adverse drug reactions (ADRs). Both the domains of pharmacogenomics and the advancement of in vitro systems are experiencing rapid expansion. Here we present an update on these burgeoning fields, providing an overview of their current status and illuminating potential future directions. SIGNIFICANCE STATEMENT: There is very rapid development in the area of pharmacogenomics and in vitro systems for predicting drug pharmacokinetics and risk for adverse drug reactions. We provide an update of the current status of pharmacogenomics and developed in vitro systems on these aspects aimed to achieve a better personalized pharmacotherapy.
Collapse
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden (M.I.-S., V.M.L.); Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany (V.M.L.); and University of Tübingen, Tübingen, Germany (V.M.L.)
| |
Collapse
|
7
|
Lauschke VM, Zhou Y, Ingelman-Sundberg M. Pharmacogenomics Beyond Single Common Genetic Variants: The Way Forward. Annu Rev Pharmacol Toxicol 2024; 64:33-51. [PMID: 37506333 DOI: 10.1146/annurev-pharmtox-051921-091209] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/30/2023]
Abstract
Interindividual variability in genes encoding drug-metabolizing enzymes, transporters, receptors, and human leukocyte antigens has a major impact on a patient's response to drugs with regard to efficacy and safety. Enabled by both technological and conceptual advances, the field of pharmacogenomics is developing rapidly. Major progress in omics profiling methods has enabled novel genotypic and phenotypic characterization of patients and biobanks. These developments are paralleled by advances in machine learning, which have allowed us to parse the immense wealth of data and establish novel genetic markers and polygenic models for drug selection and dosing. Pharmacogenomics has recently become more widespread in clinical practice to personalize treatment and to develop new drugs tailored to specific patient populations. In this review, we provide an overview of the latest developments in the field and discuss the way forward, including how to address the missing heritability, develop novel polygenic models, and further improve the clinical implementation of pharmacogenomics.
Collapse
Affiliation(s)
- Volker M Lauschke
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | - Yitian Zhou
- Dr. Margarete Fischer-Bosch Institute for Clinical Pharmacology, Stuttgart, Germany
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden;
- Tübingen University, Tübingen, Germany
| | | |
Collapse
|
8
|
Zhou Y, Zhang Y, Zhao D, Yu X, Shen X, Zhou Y, Wang S, Qiu Y, Chen Y, Zhu F. TTD: Therapeutic Target Database describing target druggability information. Nucleic Acids Res 2024; 52:D1465-D1477. [PMID: 37713619 PMCID: PMC10767903 DOI: 10.1093/nar/gkad751] [Citation(s) in RCA: 173] [Impact Index Per Article: 173.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/05/2023] [Revised: 07/31/2023] [Accepted: 09/05/2023] [Indexed: 09/17/2023] Open
Abstract
Target discovery is one of the essential steps in modern drug development, and the identification of promising targets is fundamental for developing first-in-class drug. A variety of methods have emerged for target assessment based on druggability analysis, which refers to the likelihood of a target being effectively modulated by drug-like agents. In the therapeutic target database (TTD), nine categories of established druggability characteristics were thus collected for 426 successful, 1014 clinical trial, 212 preclinical/patented, and 1479 literature-reported targets via systematic review. These characteristic categories were classified into three distinct perspectives: molecular interaction/regulation, human system profile and cell-based expression variation. With the rapid progression of technology and concerted effort in drug discovery, TTD and other databases were highly expected to facilitate the explorations of druggability characteristics for the discovery and validation of innovative drug target. TTD is now freely accessible at: https://idrblab.org/ttd/.
Collapse
Affiliation(s)
- Ying Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| | - Yintao Zhang
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Donghai Zhao
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyuan Yu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Xinyi Shen
- Department of Environmental Health Sciences, Yale School of Public Health, Yale University, New Haven 06510, USA
| | - Yuan Zhou
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
| | - Shanshan Wang
- Qian Xuesen Collaborative Research Center of Astrochemistry and Space Life Sciences, Institute of Drug Discovery Technology, Ningbo University, Ningbo 315211, China
| | - Yunqing Qiu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- National Key Laboratory of Diagnosis and Treatment of Severe Infectious Disease, National Clinical Research Center for Infectious Diseases, Collaborative Innovation Center for Diagnosis and Treatment of Infectious Diseases, Zhejiang Provincial Key Laboratory for Drug Clinical Research and Evaluation, The First Affiliated Hospital, Zhejiang University, Hangzhou, Zhejiang 310000, China
| | - Yuzong Chen
- State Key Laboratory of Chemical Oncogenomics, Key Laboratory of Chemical Biology, The Graduate School at Shenzhen, Tsinghua University, Shenzhen 518055, China
- Institute of Biomedical Health Technology and Engineering, Shenzhen Bay Laboratory, Shenzhen 518000, China
| | - Feng Zhu
- College of Pharmaceutical Sciences, The Second Affiliated Hospital, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou 310058, China
- Innovation Institute for Artificial Intelligence in Medicine of Zhejiang University, Alibaba-Zhejiang University Joint Research Center of Future Digital Healthcare, Hangzhou 330110, China
| |
Collapse
|
9
|
Sun KY, Bai X, Chen S, Bao S, Kapoor M, Zhang C, Backman J, Joseph T, Maxwell E, Mitra G, Gorovits A, Mansfield A, Boutkov B, Gokhale S, Habegger L, Marcketta A, Locke A, Kessler MD, Sharma D, Staples J, Bovijn J, Gelfman S, Gioia AD, Rajagopal V, Lopez A, Varela JR, Alegre J, Berumen J, Tapia-Conyer R, Kuri-Morales P, Torres J, Emberson J, Collins R, Cantor M, Thornton T, Kang HM, Overton J, Shuldiner AR, Cremona ML, Nafde M, Baras A, Abecasis G, Marchini J, Reid JG, Salerno W, Balasubramanian S. A deep catalog of protein-coding variation in 985,830 individuals. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.05.09.539329. [PMID: 37214792 PMCID: PMC10197621 DOI: 10.1101/2023.05.09.539329] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Coding variants that have significant impact on function can provide insights into the biology of a gene but are typically rare in the population. Identifying and ascertaining the frequency of such rare variants requires very large sample sizes. Here, we present the largest catalog of human protein-coding variation to date, derived from exome sequencing of 985,830 individuals of diverse ancestry to serve as a rich resource for studying rare coding variants. Individuals of African, Admixed American, East Asian, Middle Eastern, and South Asian ancestry account for 20% of this Exome dataset. Our catalog of variants includes approximately 10.5 million missense (54% novel) and 1.1 million predicted loss-of-function (pLOF) variants (65% novel, 53% observed only once). We identified individuals with rare homozygous pLOF variants in 4,874 genes, and for 1,838 of these this work is the first to document at least one pLOF homozygote. Additional insights from the RGC-ME dataset include 1) improved estimates of selection against heterozygous loss-of-function and identification of 3,459 genes intolerant to loss-of-function, 83 of which were previously assessed as tolerant to loss-of-function and 1,241 that lack disease annotations; 2) identification of regions depleted of missense variation in 457 genes that are tolerant to loss-of-function; 3) functional interpretation for 10,708 variants of unknown or conflicting significance reported in ClinVar as cryptic splice sites using splicing score thresholds based on empirical variant deleteriousness scores derived from RGC-ME; and 4) an observation that approximately 3% of sequenced individuals carry a clinically actionable genetic variant in the ACMG SF 3.1 list of genes. We make this important resource of coding variation available to the public through a variant allele frequency browser. We anticipate that this report and the RGC-ME dataset will serve as a valuable reference for understanding rare coding variation and help advance precision medicine efforts.
Collapse
Affiliation(s)
| | | | - Siying Chen
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Suying Bao
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | | | | | | | - Adam Locke
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | | | | | | | | | | - Jesus Alegre
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jaime Berumen
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Roberto Tapia-Conyer
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Pablo Kuri-Morales
- Experimental Research Unit from the Faculty of Medicine (UIME), National Autonomous University of Mexico (UNAM)
| | - Jason Torres
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Jonathan Emberson
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
- MRC Population Health Research Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | - Rory Collins
- Clinical Trial Service Unit & Epidemiological Studies Unit, Nuffield Department of Population Health, University of Oxford, Oxford, UK
| | | | | | | | | | | | | | | | | | - Mona Nafde
- Regeneron Genetics Center, Tarrytown, NY, USA
| | - Aris Baras
- Regeneron Genetics Center, Tarrytown, NY, USA
| | | | | | | | | | | |
Collapse
|
10
|
Tremmel R, Zhou Y, Schwab M, Lauschke VM. Structural variation of the coding and non-coding human pharmacogenome. NPJ Genom Med 2023; 8:24. [PMID: 37684227 PMCID: PMC10491600 DOI: 10.1038/s41525-023-00371-y] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/05/2023] [Accepted: 08/29/2023] [Indexed: 09/10/2023] Open
Abstract
Genetic variants in drug targets and genes encoding factors involved in drug absorption, distribution, metabolism and excretion (ADME) can have pronounced impacts on drug pharmacokinetics, response, and toxicity. While the landscape of genetic variability at the level of single nucleotide variants (SNVs) has been extensively studied in these pharmacogenetic loci, their structural variation is only poorly understood. Thus, we systematically analyzed the genetic structural variability across 908 pharmacogenes (344 ADME genes and 564 drug targets) based on publicly available whole genome sequencing data from 10,847 unrelated individuals. Overall, we extracted 14,984 distinct structural variants (SVs) ranging in size from 50 bp to 106 Mb. Each individual harbored on average 10.3 and 1.5 SVs with putative functional effects that affected the coding regions of ADME genes and drug targets, respectively. In addition, by cross-referencing pharmacogenomic SVs with experimentally determined binding data of 224 transcription factors across 130 cell types, we identified 1276 non-coding SVs that overlapped with gene regulatory elements. Based on these data, we estimate that non-coding structural variants account for 22% of the genetically encoded pharmacogenomic variability. Combined, these analyses provide the first comprehensive map of structural variability across pharmacogenes, derive estimates for the functional impact of non-coding SVs and incentivize the incorporation of structural genomic data into personalized drug response predictions.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University Tübingen, Tübingen, Germany
- Departments of Clinical Pharmacology and Pharmacy and Biochemistry, University Tübingen, Tübingen, Germany
| | - Volker M Lauschke
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University Tübingen, Tübingen, Germany.
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
11
|
Mohan B, Kumari R, Singh G, Singh K, Pombeiro AJL, Yang X, Ren P. Covalent organic frameworks (COFs) and metal-organic frameworks (MOFs) as electrochemical sensors for the efficient detection of pharmaceutical residues. ENVIRONMENT INTERNATIONAL 2023; 175:107928. [PMID: 37094512 DOI: 10.1016/j.envint.2023.107928] [Citation(s) in RCA: 27] [Impact Index Per Article: 13.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/11/2023] [Revised: 03/21/2023] [Accepted: 04/09/2023] [Indexed: 05/03/2023]
Abstract
Pharmaceutical residues are the undecomposed remains from drugs used in the medical and food industries. Due to their potential adverse effects on human health and natural ecosystems, they are of increasing worldwide concern. The acute detection of pharmaceutical residues can give a rapid examination of their quantity and then prevent them from further contamination. Herein, this study summarizes and discusses the most recent porous covalent-organic frameworks (COFs) and metal-organic frameworks (MOFs) for the electrochemical detection of various pharmaceutical residues. The review first introduces a brief overview of drug toxicity and its effects on living organisms. Subsequently, different porous materials and drug detection techniques are discussed with materials' properties and applications. Then the development of COFs and MOFs has been addressed with their structural properties and sensing applications. Further, the stability, reusability, and sustainability of MOFs/COFs are reviewed and discussed. Besides, COFs and MOFs' detection limits, linear ranges, the role of functionalities, and immobilized nanoparticles are analyzed and discussed. Lastly, this review summarized and discussed the MOF@COF composite as sensors, the fabrication strategies to enhance detection potential, and the current challenges in this area.
Collapse
Affiliation(s)
- Brij Mohan
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China; Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Ritu Kumari
- Department of Chemistry, Kurukshetra University Kurukshetra -136119, India
| | - Gurjaspreet Singh
- Department of Chemistry and Centre of Advanced Studies Panjab University, Chandigarh-160014, India
| | - Kamal Singh
- Department of Physics, Chaudhary Bansi Lal University, Bhiwani, Haryana-127021, India
| | - Armando J L Pombeiro
- Centro de Química Estrutural, Institute of Molecular Sciences, Instituto Superior Técnico, Universidade de Lisboa, Av. Rovisco Pais, 1049-001 Lisboa, Portugal
| | - Xuemei Yang
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| | - Peng Ren
- School of Science, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China.
| |
Collapse
|
12
|
Zhou Y, Lauschke VM. Challenges Related to the Use of Next-Generation Sequencing for the Optimization of Drug Therapy. Handb Exp Pharmacol 2023; 280:237-260. [PMID: 35792943 DOI: 10.1007/164_2022_596] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/15/2023]
Abstract
Over the last decade, next-generation sequencing (NGS) methods have become increasingly used in various areas of human genomics. In routine clinical care, their use is already implemented in oncology to profile the mutational landscape of a tumor, as well as in rare disease diagnostics. However, its utilization in pharmacogenomics is largely lacking behind. Recent population-scale genome data has revealed that human pharmacogenes carry a plethora of rare genetic variations that are not interrogated by conventional array-based profiling methods and it is estimated that these variants could explain around 30% of the genetically encoded functional pharmacogenetic variability.To interpret the impact of such variants on drug response a multitude of computational tools have been developed, but, while there have been major advancements, it remains to be shown whether their accuracy is sufficient to improve personalized pharmacogenetic recommendations in robust trials. In addition, conventional short-read sequencing methods face difficulties in the interrogation of complex pharmacogenes and high NGS test costs require stringent evaluations of cost-effectiveness to decide about reimbursement by national healthcare programs. Here, we illustrate current challenges and discuss future directions toward the clinical implementation of NGS to inform genotype-guided decision-making.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
- University of Tuebingen, Tuebingen, Germany.
| |
Collapse
|
13
|
Zhou Y, Koutsilieri S, Eliasson E, Lauschke VM. A paradigm shift in pharmacogenomics: From candidate polymorphisms to comprehensive sequencing. Basic Clin Pharmacol Toxicol 2022; 131:452-464. [PMID: 35971800 PMCID: PMC9805052 DOI: 10.1111/bcpt.13779] [Citation(s) in RCA: 10] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 07/28/2022] [Accepted: 08/09/2022] [Indexed: 01/09/2023]
Abstract
Genetic factors have long been recognized as important determinants of interindividual variability in drug efficacy and toxicity. However, despite the increasing number of established gene-drug associations, candidate polymorphisms can only explain a fraction of the genetically encoded functional variability in drug disposition. Advancements in genetic profiling methods now allow to analyse the landscape of human pharmacogenetic variations comprehensively, which opens new opportunities to identify novel factors that could explain the "missing heritability." Here, we provide an updated overview of the landscape of pharmacogenomic variability based on recent analyses of population-scale sequencing projects. We then summarize the current state-of-the-art how the functional consequences of variants with unknown effects can be quantitatively estimated while discussing challenges and peculiarities that are specific to pharmacogenes. In the last sections, we discuss the importance of considering ethnogeographic diversity to provide equitable benefits of pharmacogenomics and summarize current roadblocks for the implementation of sequencing-based guidance of clinical decision-making. Based on the current state of the field, we conclude that testing is likely to gradually shift from the interrogation of selected candidate polymorphisms to comprehensive sequencing, which allows to consider the full spectrum of pharmacogenomic variations for a true personalization of genomic prescribing.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden,Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | | | - Erik Eliasson
- Department of Laboratory MedicineKarolinska InstitutetStockholmSweden
| | - Volker M. Lauschke
- Department of Physiology and PharmacologyKarolinska InstitutetStockholmSweden,Dr Margarete Fischer‐Bosch Institute of Clinical PharmacologyStuttgartGermany,University of TübingenTübingenGermany
| |
Collapse
|
14
|
Jukic M, Milosavljević F, Molden E, Ingelman-Sundberg M. Pharmacogenomics in treatment of depression and psychosis: an update. Trends Pharmacol Sci 2022; 43:1055-1069. [PMID: 36307251 DOI: 10.1016/j.tips.2022.09.011] [Citation(s) in RCA: 28] [Impact Index Per Article: 9.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/08/2022] [Revised: 09/28/2022] [Accepted: 09/29/2022] [Indexed: 11/11/2022]
Abstract
Genetic factors can, to a certain extent, successfully predict the therapeutic effects, metabolism, and adverse reactions of drugs. This research field, pharmacogenomics, is well developed in oncology and is currently expanding in psychiatry. Here, we summarize the latest development in pharmacogenomic psychiatry, where results of several recent large studies indicate a true benefit and cost-effectiveness of pre-emptive genotyping for more successful psychotherapy. However, it is apparent that we still lack knowledge of many additional heritable genetic factors of importance for explanation of the interindividual differences in response to psychiatric drugs. Thus, more effort to further develop pharmacogenomic psychiatry should be invested to achieve a broader clinical implementation.
Collapse
Affiliation(s)
- Marin Jukic
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Filip Milosavljević
- Department of Physiology, Faculty of Pharmacy, University of Belgrade, Belgrade, Serbia
| | - Espen Molden
- Center for Psychopharmacology, Diakonhjemmet Hospital, Oslo, Norway; Section for Pharmacology and Pharmaceutical Biosciences, Department of Pharmacy, University of Oslo, Oslo, Norway
| | - Magnus Ingelman-Sundberg
- Pharmacogenetics Section, Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden.
| |
Collapse
|
15
|
Zhou Y, Tremmel R, Schaeffeler E, Schwab M, Lauschke VM. Challenges and opportunities associated with rare-variant pharmacogenomics. Trends Pharmacol Sci 2022; 43:852-865. [PMID: 36008164 DOI: 10.1016/j.tips.2022.07.002] [Citation(s) in RCA: 11] [Impact Index Per Article: 3.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 06/15/2022] [Accepted: 07/29/2022] [Indexed: 12/26/2022]
Abstract
Recent advances in next-generation sequencing (NGS) have resulted in the identification of tens of thousands of rare pharmacogenetic variations with unknown functional effects. However, although such pharmacogenetic variations have been estimated to account for a considerable amount of the heritable variability in drug response and toxicity, accurate interpretation at the level of the individual patient remains challenging. We discuss emerging strategies and concepts to close this translational gap. We illustrate how massively parallel experimental assays, artificial intelligence (AI), and machine learning can synergize with population-scale biobank projects to facilitate the interpretation of NGS data to individualize clinical decision-making and personalized medicine.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden
| | - Roman Tremmel
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany
| | - Elke Schaeffeler
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany; Cluster of Excellence iFIT (EXC2180) Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany
| | - Matthias Schwab
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; Cluster of Excellence iFIT (EXC2180) Image-Guided and Functionally Instructed Tumor Therapies, University of Tübingen, Tübingen, Germany; Department of Clinical Pharmacology, and Department of Biochemistry and Pharmacy, University of Tübingen, Tübingen, Germany
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77 Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tübingen, Tübingen, Germany.
| |
Collapse
|
16
|
Tremmel R, Nies AT, van Eijck BAC, Handin N, Haag M, Winter S, Büttner FA, Kölz C, Klein F, Mazzola P, Hofmann U, Klein K, Hoffmann P, Nöthen MM, Gaugaz FZ, Artursson P, Schwab M, Schaeffeler E. Hepatic Expression of the Na+-Taurocholate Cotransporting Polypeptide Is Independent from Genetic Variation. Int J Mol Sci 2022; 23:ijms23137468. [PMID: 35806468 PMCID: PMC9267852 DOI: 10.3390/ijms23137468] [Citation(s) in RCA: 6] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2022] [Revised: 06/29/2022] [Accepted: 06/29/2022] [Indexed: 11/16/2022] Open
Abstract
The hepatic Na+-taurocholate cotransporting polypeptide NTCP/SLC10A1 is important for the uptake of bile salts and selected drugs. Its inhibition results in increased systemic bile salt concentrations. NTCP is also the entry receptor for the hepatitis B/D virus. We investigated interindividual hepatic SLC10A1/NTCP expression using various omics technologies. SLC10A1/NTCP mRNA expression/protein abundance was quantified in well-characterized 143 human livers by real-time PCR and LC-MS/MS-based targeted proteomics. Genome-wide SNP arrays and SLC10A1 next-generation sequencing were used for genomic analyses. SLC10A1 DNA methylation was assessed through MALDI-TOF MS. Transcriptomics and untargeted metabolomics (UHPLC-Q-TOF-MS) were correlated to identify NTCP-related metabolic pathways. SLC10A1 mRNA and NTCP protein levels varied 44-fold and 10.4-fold, respectively. Non-genetic factors (e.g., smoking, alcohol consumption) influenced significantly NTCP expression. Genetic variants in SLC10A1 or other genes do not explain expression variability which was validated in livers (n = 50) from The Cancer Genome Atlas. The identified two missense SLC10A1 variants did not impair transport function in transfectants. Specific CpG sites in SLC10A1 as well as single metabolic alterations and pathways (e.g., peroxisomal and bile acid synthesis) were significantly associated with expression. Inter-individual variability of NTCP expression is multifactorial with the contribution of clinical factors, DNA methylation, transcriptional regulation as well as hepatic metabolism, but not genetic variation.
Collapse
Affiliation(s)
- Roman Tremmel
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Anne T. Nies
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| | - Barbara A. C. van Eijck
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Niklas Handin
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Mathias Haag
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Stefan Winter
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Florian A. Büttner
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Charlotte Kölz
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Franziska Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Pascale Mazzola
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Ute Hofmann
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Kathrin Klein
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
| | - Per Hoffmann
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Division of Medical Genetics, Department of Biomedicine, University of Basel, 4001 Basel, Switzerland
| | - Markus M. Nöthen
- Institute of Human Genetics, University of Bonn, 53127 Bonn, Germany; (P.H.); (M.M.N.)
- Department of Genomics, Life & Brain Center, University of Bonn, 53127 Bonn, Germany
| | - Fabienne Z. Gaugaz
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Per Artursson
- Department of Pharmacy, Uppsala University, 75123 Uppsala, Sweden; (N.H.); (F.Z.G.); (P.A.)
| | - Matthias Schwab
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
- Departments of Clinical Pharmacology, and of Pharmacy and Biochemistry, University of Tuebingen, 72076 Tuebingen, Germany
- Correspondence: ; Tel.: +49-711-8101-3700
| | - Elke Schaeffeler
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, 70376 Stuttgart, Germany; (R.T.); (A.T.N.); (B.A.C.v.E.); (M.H.); (S.W.); (F.A.B.); (C.K.); (F.K.); (P.M.); (U.H.); (K.K.); (E.S.)
- University of Tuebingen, 72076 Tuebingen, Germany
- iFIT Cluster of Excellence (EXC2180) “Image Guided and Functionally Instructed Tumor Therapies”, University of Tuebingen, 72076 Tuebingen, Germany
| |
Collapse
|
17
|
Zhou Y, Lauschke VM. Population pharmacogenomics: an update on ethnogeographic differences and opportunities for precision public health. Hum Genet 2022; 141:1113-1136. [PMID: 34652573 PMCID: PMC9177500 DOI: 10.1007/s00439-021-02385-x] [Citation(s) in RCA: 18] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/10/2021] [Accepted: 10/05/2021] [Indexed: 11/25/2022]
Abstract
Both safety and efficacy of medical treatment can vary depending on the ethnogeographic background of the patient. One of the reasons underlying this variability is differences in pharmacogenetic polymorphisms in genes involved in drug disposition, as well as in drug targets. Knowledge and appreciation of these differences is thus essential to optimize population-stratified care. Here, we provide an extensive updated analysis of population pharmacogenomics in ten pharmacokinetic genes (CYP2D6, CYP2C19, DPYD, TPMT, NUDT15 and SLC22A1), drug targets (CFTR) and genes involved in drug hypersensitivity (HLA-A, HLA-B) or drug-induced acute hemolytic anemia (G6PD). Combined, polymorphisms in the analyzed genes affect the pharmacology, efficacy or safety of 141 different drugs and therapeutic regimens. The data reveal pronounced differences in the genetic landscape, complexity and variant frequencies between ethnogeographic groups. Reduced function alleles of CYP2D6, SLC22A1 and CFTR were most prevalent in individuals of European descent, whereas DPYD and TPMT deficiencies were most common in Sub-Saharan Africa. Oceanian populations showed the highest frequencies of CYP2C19 loss-of-function alleles while their inferred CYP2D6 activity was among the highest worldwide. Frequencies of HLA-B*15:02 and HLA-B*58:01 were highest across Asia, which has important implications for the risk of severe cutaneous adverse reactions upon treatment with carbamazepine and allopurinol. G6PD deficiencies were most frequent in Africa, the Middle East and Southeast Asia with pronounced differences in variant composition. These variability data provide an important resource to inform cost-effectiveness modeling and guide population-specific genotyping strategies with the goal of optimizing the implementation of precision public health.
Collapse
Affiliation(s)
- Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, 171 77, Stockholm, Sweden.
- Dr. Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany.
| |
Collapse
|
18
|
Ingelman-Sundberg M. The missing heritability in pharmacogenomics: role of NFIB and other factors. Pharmacogenomics 2022; 23:453-455. [PMID: 35546341 DOI: 10.2217/pgs-2022-0054] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022] Open
Affiliation(s)
- Magnus Ingelman-Sundberg
- Department of Physiology & Pharmacology, Section of Pharmacogenetics, Biomedicum 5B, Karolinska Institutet, SE-171 77 Stockholm, Sweden
| |
Collapse
|
19
|
Siamoglou S, Koromina M, Hishinuma E, Yamazaki S, Tsermpini EE, Kordou Z, Fukunaga K, Chantratita W, Zhou Y, Lauschke V, Mushiroda T, Hiratsuka M, Patrinos GP. Identification and functional validation of novel pharmacogenomic variants using a next-generation sequencing-based approach for clinical pharmacogenomics. Pharmacol Res 2022; 176:106087. [PMID: 35033648 DOI: 10.1016/j.phrs.2022.106087] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Revised: 01/11/2022] [Accepted: 01/11/2022] [Indexed: 01/10/2023]
Abstract
Inter-individual variability in pharmacokinetics and drug response is heavily influenced by single-nucleotide variants (SNVs) and copy-number variations (CNVs) in genes with importance for drug disposition. Nowadays, a plethora of studies implement next generation sequencing to capture rare and novel pharmacogenomic (PGx) variants that influence drug response. To address these issues, we present a comprehensive end-to-end analysis workflow, beginning from targeted PGx panel re-sequencing to in silico analysis pipelines and in vitro validation assays. Specifically, we show that novel pharmacogenetic missense variants that are predicted or putatively predicted to be functionally deleterious, significantly alter protein activity levels of CYP2D6 and CYP2C19 proteins. We further demonstrate that variant priorization pipelines tailored with functional in vitro validation assays provide supporting evidence for the deleterious effect of novel PGx variants. The proposed workflow could provide the basis for integrating next-generation sequencing for PGx testing into routine clinical practice.
Collapse
Affiliation(s)
- Stavroula Siamoglou
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Maria Koromina
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Eiji Hishinuma
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Shuki Yamazaki
- Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan
| | - Evangelia-Eirini Tsermpini
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Zoe Kordou
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece
| | - Koya Fukunaga
- Laboratory for Pharmacogenomics, RIKEN Center for Integrative Medical Sciences, Yokohama, Japan
| | - Wasun Chantratita
- Center for Medical Genomics, Faculty of Medicine Ramathibodi Hospital, Mahidol University, Bangkok, Thailand
| | - Yitian Zhou
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden
| | - Volker Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Stockholm, Sweden; Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany; University of Tuebingen, Tuebingen, Germany
| | - Taisei Mushiroda
- Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan
| | - Masahiro Hiratsuka
- Advanced Research Center for Innovations in Next-Generation Medicine, Tohoku University, Sendai, Japan; Tohoku Medical Megabank Organization, Tohoku University, Sendai, Japan; Laboratory of Pharmacotherapy of Life-Style Related Diseases, Graduate School of Pharmaceutical Sciences, Tohoku University, Sendai, Japan; Department of Pharmaceutical Sciences, Tohoku University Hospital, Sendai, Japan
| | - George P Patrinos
- University of Patras School of Health Sciences, Department of Pharmacy, Laboratory of Pharmacogenomics and Individualized Therapy, Patras, Greece; United Arab Emirates University, College of Medicine and Health Sciences, Department of Pathology, Al-Ain, United Arab Emirates; United Arab Emirates University, Zayed Center for Health Sciences, Al-Ain, United Arab Emirates.
| |
Collapse
|