1
|
Zhou S, Hui X, Wang W, Zhao C, Jin M, Qin Y, Chen M. SARS-CoV-2 and HCoV-OC43 regulate host m6A modification via activation of the mTORC1 signalling pathway to facilitate viral replication. Emerg Microbes Infect 2025; 14:2447620. [PMID: 39745173 PMCID: PMC11852242 DOI: 10.1080/22221751.2024.2447620] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/08/2024] [Accepted: 12/22/2024] [Indexed: 02/25/2025]
Abstract
N6-methyladenosine (m6A) is the most prevalent post-transcriptional modification in eukaryotic RNA and is also present in various viral RNAs, where it plays a crucial role in regulating the viral life cycle. However, the molecular mechanisms through which viruses regulate host RNA m6A methylation are not fully understood. In this study, we reveal that SARS-CoV-2 and HCoV-OC43 infection enhance host m6A modification by activating the mTORC1 signalling pathway. Specifically, the viral non-structural protein nsp14 upregulates the expression of S-adenosylmethionine synthase MAT2A in an mTORC1-dependent manner. This mTORC1-MAT2A axis subsequently stimulates the synthesis of S-adenosylmethionine (SAM). The increase of SAM then enhances the m6A methylation of host RNA and facilitates viral replication. Our findings uncover a molecular mechanism by which viruses regulate host m6A methylation and provide insights into how SARS-CoV-2 hijacks host cellular epitranscriptomic modifications to promote its replication.
Collapse
Affiliation(s)
- Shixiong Zhou
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Xianfeng Hui
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Weiwei Wang
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Chunbei Zhao
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
| | - Meilin Jin
- National key laboratory of agricultural microbiology, Huazhong Agricultural University, Wuhan, People’s Republic of China
| | - Yali Qin
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| | - Mingzhou Chen
- State Key Laboratory of Virology, College of Life Sciences, Wuhan University, Wuhan, People’s Republic of China
- School of Life Sciences, Hubei University, Wuhan, People’s Republic of China
| |
Collapse
|
2
|
Faal B, Purslow JA, Venditti V. 1H, 15N, 13C backbone resonance assignment of human Alkbh7. BIOMOLECULAR NMR ASSIGNMENTS 2025; 19:65-69. [PMID: 39881053 PMCID: PMC12116241 DOI: 10.1007/s12104-025-10219-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Received: 12/05/2024] [Accepted: 01/16/2025] [Indexed: 01/31/2025]
Abstract
The Alkbh7 protein, a member of the Alkylation B (AlkB) family of dioxygenases, plays a crucial role in epigenetic regulation of cellular metabolism. This paper focuses on the NMR backbone resonance assignment of Alkbh7, a fundamental step in understanding its three-dimensional structure and dynamic behavior at the atomic level. Herein, we report the backbone 1H, 15N, 13C chemical shift assignment of the full-length human Alkbh7. Experiments were acquired at 25 °C by heteronuclear multidimensional NMR spectroscopy. Collectively, 70% of the backbone NH resonances were assigned, with 144 out of a possible 205 residues assigned in the 1H-15N TROSY spectrum. Interestingly, peaks from the active site and the C-terminal end of Alkbh7 are not NMR visible, suggesting that these regions are dynamic on the intermediate exchange regime. Using the program TALOS+, a secondary structure prediction was generated from the assigned backbone resonance that is consistent with the previously reported X-ray structure of the enzyme. The reported assignment will permit investigations of the protein structural dynamics anticipated to provide crucial insight regarding fundamental aspects in the recognition and enzyme regulation processes.
Collapse
Affiliation(s)
- Baboucarr Faal
- Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA
| | - Jeffrey A Purslow
- Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Hach Hall, 2438 Pammel Drive, Ames, IA, 50011, USA.
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA, 50011, USA.
| |
Collapse
|
3
|
Fang Y, Gong W, Yang L. Fe ion coordination direction and refresh mechanism in off-line αKG-dependent hydroxylase. Int J Biol Macromol 2025; 305:140942. [PMID: 39954892 DOI: 10.1016/j.ijbiomac.2025.140942] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/26/2024] [Revised: 02/09/2025] [Accepted: 02/10/2025] [Indexed: 02/17/2025]
Abstract
In non-heme iron/α-ketoglutarate (αKG)-dependent enzyme which is one of the main forms of iron present in living organisms, αKG can bind in two different modes, "in-line" and "off-line", depending on the orientation of its C-1 carboxyl. A classical mechanism involving a Fe(IV) = O intermediate has been proposed in in-line enzymes. However, no reasonable catalytic mechanism had been proposed for off-line αKG-dependent enzyme because αKG in this binding mode hinders the activated oxygen on Fe ion from approaching the substrate. In this study, we find the fixed coordination direction of Fe ion and propose a potential catalytic mechanism involving Fe ion release and refresh in non-heme αKG enzymes based on reaction intermediate crystal structures and enzyme assay of UbPH, an off-line αKG dependent trans-L-proline hydroxylase.
Collapse
Affiliation(s)
- Yijun Fang
- School of Life Sciences, Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China
| | - Weimin Gong
- School of Life Sciences, Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| | - Lin Yang
- School of Life Sciences, Department of Life Sciences and Medicine, University of Science and Technology of China, Hefei, Anhui 230027, China.
| |
Collapse
|
4
|
Burns D, Venditti V, Potoyan DA. Illuminating Protein Allostery by Chemically Accurate Contact Response Analysis (ChACRA). J Chem Theory Comput 2024; 20:8711-8723. [PMID: 39038177 PMCID: PMC11840831 DOI: 10.1021/acs.jctc.4c00414] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 07/24/2024]
Abstract
Decoding allostery at the atomic level is essential for understanding the relationship between a protein's sequence, structure, and dynamics. Recently, we have shown that decomposing temperature responses of inter-residue contacts can reveal allosteric couplings and provide useful insight into the functional dynamics of proteins. The details of this Chemically Accurate Contact Response Analysis (ChACRA) are presented here along with its application to two well-known allosteric proteins. The first protein, IGPS, is a model of ensemble allostery that lacks clear structural differences between the active and inactive states. We show that the application of ChACRA reveals the experimentally identified allosteric coupling between effector and active sites of IGPS. The second protein, ATCase, is a classic example of allostery with distinct active and inactive structural states. Using ChACRA, we directly identify the most significant residue level interactions underlying the enzyme's cooperative behavior. Both test cases demonstrate the utility of ChACRA's unsupervised machine learning approach for dissecting allostery at the residue level.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames IA 50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology
| | - Davit A Potoyan
- Department of Chemistry, Iowa State University, Ames IA 50011
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology
| |
Collapse
|
5
|
Burns D, Khatiwada B, Singh A, Purslow JA, Potoyan DA, Venditti V. An α-ketoglutarate conformational switch controls iron accessibility, activation, and substrate selection of the human FTO protein. Proc Natl Acad Sci U S A 2024; 121:e2404457121. [PMID: 38865275 PMCID: PMC11194561 DOI: 10.1073/pnas.2404457121] [Citation(s) in RCA: 2] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2024] [Accepted: 05/20/2024] [Indexed: 06/14/2024] Open
Abstract
The fat mass and obesity-associated fatso (FTO) protein is a member of the Alkb family of dioxygenases and catalyzes oxidative demethylation of N6-methyladenosine (m6A), N1-methyladenosine (m1A), 3-methylthymine (m3T), and 3-methyluracil (m3U) in single-stranded nucleic acids. It is well established that the catalytic activity of FTO proceeds via two coupled reactions. The first reaction involves decarboxylation of alpha-ketoglutarate (αKG) and formation of an oxyferryl species. In the second reaction, the oxyferryl intermediate oxidizes the methylated nucleic acid to reestablish Fe(II) and the canonical base. However, it remains unclear how binding of the nucleic acid activates the αKG decarboxylation reaction and why FTO demethylates different methyl modifications at different rates. Here, we investigate the interaction of FTO with 5-mer DNA oligos incorporating the m6A, m1A, or m3T modifications using solution NMR, molecular dynamics (MD) simulations, and enzymatic assays. We show that binding of the nucleic acid to FTO activates a two-state conformational equilibrium in the αKG cosubstrate that modulates the O2 accessibility of the Fe(II) catalyst. Notably, the substrates that provide better stabilization to the αKG conformation in which Fe(II) is exposed to O2 are demethylated more efficiently by FTO. These results indicate that i) binding of the methylated nucleic acid is required to expose the catalytic metal to O2 and activate the αKG decarboxylation reaction, and ii) the measured turnover of the demethylation reaction (which is an ensemble average over the entire sample) depends on the ability of the methylated base to favor the Fe(II) state accessible to O2.
Collapse
Affiliation(s)
- Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
| | | | - Aayushi Singh
- Department of Chemistry, Iowa State University, Ames, IA50011
| | | | - Davit A. Potoyan
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
- Department of Chemistry, Iowa State University, Ames, IA50011
| | - Vincenzo Venditti
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA50011
- Department of Chemistry, Iowa State University, Ames, IA50011
| |
Collapse
|
6
|
Suo D, Gao X, Chen Q, Zeng T, Zhan J, Li G, Zheng Y, Zhu S, Yun J, Guan XY, Li Y. HSPA4 upregulation induces immune evasion via ALKBH5/CD58 axis in gastric cancer. J Exp Clin Cancer Res 2024; 43:106. [PMID: 38589927 PMCID: PMC11000359 DOI: 10.1186/s13046-024-03029-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2024] [Accepted: 03/26/2024] [Indexed: 04/10/2024] Open
Abstract
INTRODUCTION Gastric cancer (GC) is one of the leading causes of cancer-related death worldwide. Recently, targeted therapies including PD1 (programmed cell death 1) antibodies have been used in advanced GC patients. However, identifying new biomarker for immunotherapy is still urgently needed. The objective of this study is to unveil the immune evasion mechanism of GC cells and identify new biomarkers for immune checkpoint blockade therapy in patients with GC. METHODS Coimmunoprecipitation and meRIP were performed to investigate the mechanism of immune evasion of GC cells. Cocuture system was established to evaluate the cytotoxicity of cocultured CD8+ T cells. The clinical significance of HSPA4 upregulation was analyzed by multiplex fluorescent immunohistochemistry staining in GC tumor tissues. RESULTS Histone acetylation causes HSPA4 upregulation in GC tumor tissues. HSPA4 upregulation increases the protein stability of m6A demethylase ALKBH5. ALKBH5 decreases CD58 in GC cells through m6A methylation regulation. The cytotoxicity of CD8+ T cells are impaired and PD1/PDL1 axis is activated when CD8+ T cells are cocultured with HSPA4 overexpressed GC cells. HSPA4 upregulation is associated with worse 5-year overall survival of GC patients receiving only surgery. It is an independent prognosis factor for worse survival of GC patients. In GC patients receiving the combined chemotherapy with anti-PD1 immunotherapy, HSPA4 upregulation is observed in responders compared with non-responders. CONCLUSION HSPA4 upregulation causes the decrease of CD58 in GC cells via HSPA4/ALKBH5/CD58 axis, followed by PD1/PDL1 activation and impairment of CD8+ T cell's cytotoxicity, finally induces immune evasion of GC cells. HSPA4 upregulation is associated with worse overall survival of GC patients with only surgery. Meanwhile, HSPA4 upregulation predicts for better response in GC patients receiving the combined immunotherapy.
Collapse
Affiliation(s)
- Daqin Suo
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xiaoling Gao
- The clinical Laboratory Center, Hainan General Hospital, Hainan affiliated Hospital of Hainan Medical University, Haikou, 570311, China
| | - Qingyun Chen
- Medical Research Institute, Guangdong Provincial People's Hospital (Guangdong Academy of Medical Sciences), Southern Medical University, Guangzhou, 510080, China
| | - Tingting Zeng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Jiarong Zhan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Guanghui Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Yinli Zheng
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Senlin Zhu
- The First Affiliated Hospital, Sun Yat-sen University, Guangzhou, 510080, China
| | - Jingping Yun
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
| | - Xin-Yuan Guan
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China
- Department of Clinical Oncology, The University of Hongkong, Hong Kong, China
| | - Yan Li
- State Key Laboratory of Oncology in South China, Guangdong Provincial Clinical Research Center for Cancer, Sun Yat-sen University Cancer Center, Guangzhou, 510060, China.
| |
Collapse
|
7
|
Lai GQ, Li Y, Zhu H, Zhang T, Gao J, Zhou H, Yang CG. A covalent compound selectively inhibits RNA demethylase ALKBH5 rather than FTO. RSC Chem Biol 2024; 5:335-343. [PMID: 38576724 PMCID: PMC10989504 DOI: 10.1039/d3cb00230f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Accepted: 02/11/2024] [Indexed: 04/06/2024] Open
Abstract
N 6-Methyladenosine (m6A) is the most prevalent mRNA modification and is required for gene regulation in eukaryotes. ALKBH5, an m6A demethylase, is a promising target, particularly for anticancer drug discovery. However, the development of selective and potent inhibitors of ALKBH5 rather than FTO remains challenging. Herein, we used a targeted covalent inhibition strategy and identified a covalent inhibitor, TD19, which selectively inhibits ALKBH5 compared with FTO demethylase in protein-based and tumor cell-based assays. TD19 irreversibly modifies the residues C100 and C267, preventing ALKBH5 from binding to m6A-containing RNA. Moreover, TD19 displays good anticancer efficacy in acute myeloid leukemia and glioblastoma multiforme cell lines. Thus, the ALKBH5 inhibitor developed in this study, which selectively targets ALKBH5 compared with FTO, can potentially be used as a probe for investigating the biological functions of RNA demethylase and as a lead compound in anticancer research.
Collapse
Affiliation(s)
- Gan-Qiang Lai
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Yali Li
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Heping Zhu
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
| | - Tao Zhang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Jing Gao
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
| | - Hu Zhou
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
| | - Cai-Guang Yang
- State Key Laboratory of Drug Research, Shanghai Institute of Materia Medica, Chinese Academy of Sciences Shanghai 201203 China
- School of Pharmaceutical Science and Technology, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences Hangzhou 310024 China
- University of Chinese Academy of Sciences Beijing 100049 China
- Shandong Laboratory of Yantai Drug Discovery, Bohai Rim Advanced Research Institute for Drug Discovery Yantai 264117 China
| |
Collapse
|
8
|
Sedinkin SL, Burns D, Shukla D, Potoyan DA, Venditti V. Solution Structure Ensembles of the Open and Closed Forms of the ∼130 kDa Enzyme I via AlphaFold Modeling, Coarse Grained Simulations, and NMR. J Am Chem Soc 2023; 145:13347-13356. [PMID: 37278728 PMCID: PMC10772991 DOI: 10.1021/jacs.3c03425] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/07/2023]
Abstract
Large-scale interdomain rearrangements are essential to protein function, governing the activity of large enzymes and molecular machineries. Yet, obtaining an atomic-resolution understanding of how the relative domain positioning is affected by external stimuli is a hard task in modern structural biology. Here, we show that combining structural modeling by AlphaFold2 with coarse-grained molecular dynamics simulations and NMR residual dipolar coupling data is sufficient to characterize the spatial domain organization of bacterial enzyme I (EI), a ∼130 kDa multidomain oligomeric protein that undergoes large-scale conformational changes during its catalytic cycle. In particular, we solve conformational ensembles for EI at two different experimental temperatures and demonstrate that a lower temperature favors sampling of the catalytically competent closed state of the enzyme. These results suggest a role for conformational entropy in the activation of EI and demonstrate the ability of our protocol to detect and characterize the effect of external stimuli (such as mutations, ligand binding, and post-translational modifications) on the interdomain organization of multidomain proteins. We expect the ensemble refinement protocol described here to be easily transferrable to the investigation of the structure and dynamics of other uncharted multidomain systems and have assembled a Google Colab page (https://potoyangroup.github.io/Seq2Ensemble/) to facilitate implementation of the presented methodology elsewhere.
Collapse
Affiliation(s)
| | - Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Divyanshu Shukla
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, Iowa 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, Iowa 50011, USA
| |
Collapse
|
9
|
Petri BJ, Klinge CM. m6A readers, writers, erasers, and the m6A epitranscriptome in breast cancer. J Mol Endocrinol 2023; 70:JME-22-0110. [PMID: 36367225 PMCID: PMC9790079 DOI: 10.1530/jme-22-0110] [Citation(s) in RCA: 16] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Accepted: 11/11/2022] [Indexed: 11/13/2022]
Abstract
Epitranscriptomic modification of RNA regulates human development, health, and disease. The true diversity of the transcriptome in breast cancer including chemical modification of transcribed RNA (epitranscriptomics) is not well understood due to limitations of technology and bioinformatic analysis. N-6-methyladenosine (m6A) is the most abundant epitranscriptomic modification of mRNA and regulates splicing, stability, translation, and intracellular localization of transcripts depending on m6A association with reader RNA-binding proteins. m6A methylation is catalyzed by the METTL3 complex and removed by specific m6A demethylase ALKBH5, with the role of FTO as an 'eraser' uncertain. In this review, we provide an overview of epitranscriptomics related to mRNA and focus on m6A in mRNA and its detection. We summarize current knowledge on altered levels of writers, readers, and erasers of m6A and their roles in breast cancer and their association with prognosis. We summarize studies identifying m6A peaks and sites in genes in breast cancer cells.
Collapse
Affiliation(s)
- Belinda J. Petri
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
| | - Carolyn M. Klinge
- Department of Biochemistry & Molecular Genetics, University of Louisville School of Medicine; Louisville, KY 40292 USA
- University of Louisville Center for Integrative Environmental Health Sciences (CIEHS)
| |
Collapse
|
10
|
Singh A, Burns D, Sedinkin SL, Van Veller B, Potoyan DA, Venditti V. Protein Conformational Dynamics Underlie Selective Recognition of Thermophilic over Mesophilic Enzyme I by a Substrate Analogue. Biomolecules 2023; 13:biom13010160. [PMID: 36671545 PMCID: PMC9856155 DOI: 10.3390/biom13010160] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 01/05/2023] [Accepted: 01/10/2023] [Indexed: 01/15/2023] Open
Abstract
Substrate selectivity is an important preventive measure to decrease the possibility of cross interactions between enzymes and metabolites that share structural similarities. In addition, understanding the mechanisms that determine selectivity towards a particular substrate increases the knowledge base for designing specific inhibitors for target enzymes. Here, we combine NMR, molecular dynamics (MD) simulations, and protein engineering to investigate how two substrate analogues, allylicphosphonate (cPEP) and sulfoenolpyruvate (SEP), recognize the mesophilic (eEIC) and thermophilic (tEIC) homologues of the receptor domain of bacterial Enzyme I, which has been proposed as a target for antimicrobial research. Chemical Shift Perturbation (CSP) experiments show that cPEP and SEP recognize tEIC over the mesophilic homologue. Combined Principal Component Analysis of half-microsecond-long MD simulations reveals that incomplete quenching of a breathing motion in the eEIC-ligand complex destabilizes the interaction and makes the investigated substrate analogues selective toward the thermophilic enzyme. Our results indicate that residual protein motions need to be considered carefully when optimizing small molecule inhibitors of EI. In general, our work demonstrates that protein conformational dynamics can be exploited in the rational design and optimization of inhibitors with subfamily selectivity.
Collapse
Affiliation(s)
- Aayushi Singh
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Daniel Burns
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
| | | | - Brett Van Veller
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
| | - Davit A. Potoyan
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence: (D.A.P.); (V.V.); Tel.: +515-294-9971 (D.A.P.); +515-294-1044 (V.V.); Fax: +515-294-7550 (D.A.P. & V.V.)
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University, Ames, IA 50011, USA
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University, Ames, IA 50011, USA
- Correspondence: (D.A.P.); (V.V.); Tel.: +515-294-9971 (D.A.P.); +515-294-1044 (V.V.); Fax: +515-294-7550 (D.A.P. & V.V.)
| |
Collapse
|
11
|
Wang J, Yang Y, Sun F, Luo Y, Yang Y, Li J, Hu W, Tao H, Lu C, Yang JJ. ALKBH5 attenuates mitochondrial fission and ameliorates liver fibrosis by reducing Drp1 methylation. Pharmacol Res 2023; 187:106608. [PMID: 36566000 DOI: 10.1016/j.phrs.2022.106608] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 08/18/2022] [Revised: 12/06/2022] [Accepted: 12/09/2022] [Indexed: 12/24/2022]
Abstract
Mitochondrial metabolism plays a pivotal role in various cellular processes and fibrosis. However, the mechanism underlying mitochondrial metabolic function and liver fibrosis remains poorly understood. In this study, we determined whether mitochondrial metabolism mediates liver fibrosis using cells, animal models, and clinical samples to elucidate the potential effects and underlying mechanism of mitochondrial metabolism in liver fibrosis. We report that AlkB Homolog 5 (ALKBH5) decreases mitochondrial membrane potential (MMP) and oxygen consumption rate (OCR), suppresses mitochondrial fission and hepatic stellate cell (HSC) proliferation and migration and ameliorates liver fibrosis. Enhancement of mitochondrial fission, an essential event during HSC proliferation and migration, is dependent on decreased ALKBH5 expression. Furthermore, we reveal that low ALKBH5 expression is associated with elevated N6-methyladenosine (m6A) mRNA levels. Mechanistically, ALKBH5 mediates m6A demethylation in the 3'UTR of Drp1 mRNA and induces its translation in a YTH domain family proteins 1 (YTHDF1)-independent manner. Subsequently, in transforming growth factor-β1 (TGF-β1) induced HSC, Dynamin-related protein 1 (Drp1) mediates mitochondrial fission and increases cell proliferation and migration. Decreased Drp1 expression inhibits mitochondrial fission and suppresses HSC proliferation and migration. Notably, human fibrotic liver and heart tissue exhibited enhanced mitochondrial fission; increased YTHDF1, Drp1, alpha-smooth muscle actin (α-SMA) and collagen I expression; decreased ALKBH5 expression and increased liver fibrosis. Our results highlight a novel mechanism by which ALKBH5 suppresses mitochondrial fission and HSC proliferation and migration by reducing Drp1 methylation in an m6A-YTHDF1-dependent manner, which may indicate a demethylation-based approach for liver fibrosis diagnosis and therapy.
Collapse
Affiliation(s)
- Juan Wang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yang Yang
- Department of Surgical Oncology, Suzhou Science & Technology Town Hospital, Suzhou 215153, China
| | - Feng Sun
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Yong Luo
- Department of Scientific research and experimental center, The Second Hospital of Anhui Medical University, Hefei 230601, China
| | - Yan Yang
- Department of Pharmacology, School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
| | - Jun Li
- School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Wei Hu
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China
| | - Hui Tao
- Department of Anesthesiology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| | - Chao Lu
- First Affiliated Hospital, Anhui University of Science & Technology, Huainan 232001, China; School of Pharmacy, Anhui Medical University, Hefei 230032, China.
| | - Jing-Jing Yang
- Department of Clinical Pharmacology, The Second Hospital of Anhui Medical University, Hefei 230601, China.
| |
Collapse
|
12
|
Piomponi V, Fröhlking T, Bernetti M, Bussi G. Molecular Simulations Matching Denaturation Experiments for N 6-Methyladenosine. ACS CENTRAL SCIENCE 2022; 8:1218-1228. [PMID: 36032773 PMCID: PMC9413829 DOI: 10.1021/acscentsci.2c00565] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 05/11/2022] [Indexed: 06/15/2023]
Abstract
Post-transcriptional modifications are crucial for RNA function and can affect its structure and dynamics. Force-field-based classical molecular dynamics simulations are a fundamental tool to characterize biomolecular dynamics, and their application to RNA is flourishing. Here, we show that the set of force-field parameters for N6-methyladenosine (m6A) developed for the commonly used AMBER force field does not reproduce duplex denaturation experiments and, specifically, cannot be used to describe both paired and unpaired states. Then, we use reweighting techniques to derive new parameters matching available experimental data. The resulting force field can be used to properly describe paired and unpaired m6A in both syn and anti conformation, which thus opens the way to the use of molecular simulations to investigate the effects of N6 methylations on RNA structural dynamics.
Collapse
|
13
|
An Y, Sedinkin SL, Venditti V. Solution NMR methods for structural and thermodynamic investigation of nanoparticle adsorption equilibria. NANOSCALE ADVANCES 2022; 4:2583-2607. [PMID: 35769933 PMCID: PMC9195484 DOI: 10.1039/d2na00099g] [Citation(s) in RCA: 7] [Impact Index Per Article: 2.3] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2022] [Accepted: 05/07/2022] [Indexed: 05/09/2023]
Abstract
Characterization of dynamic processes occurring at the nanoparticle (NP) surface is crucial for developing new and more efficient NP catalysts and materials. Thus, a vast amount of research has been dedicated to developing techniques to characterize sorption equilibria. Over recent years, solution NMR spectroscopy has emerged as a preferred tool for investigating ligand-NP interactions. Indeed, due to its ability to probe exchange dynamics over a wide range of timescales with atomic resolution, solution NMR can provide structural, kinetic, and thermodynamic information on sorption equilibria involving multiple adsorbed species and intermediate states. In this contribution, we review solution NMR methods for characterizing ligand-NP interactions, and provide examples of practical applications using these methods as standalone techniques. In addition, we illustrate how the integrated analysis of several NMR datasets was employed to elucidate the role played by support-substrate interactions in mediating the phenol hydrogenation reaction catalyzed by ceria-supported Pd nanoparticles.
Collapse
Affiliation(s)
- Yeongseo An
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
| | - Sergey L Sedinkin
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
| | - Vincenzo Venditti
- Department of Chemistry, Iowa State University Hach Hall, 2438 Pammel Drive Ames Iowa 50011 USA +1-515-294-7550 +1-515-294-1044
- Roy J. Carver Department of Biochemistry, Biophysics and Molecular Biology, Iowa State University Ames Iowa 50011 USA
| |
Collapse
|
14
|
Kaur S, Tam NY, McDonough MA, Schofield CJ, Aik W. Mechanisms of substrate recognition and N6-methyladenosine demethylation revealed by crystal structures of ALKBH5-RNA complexes. Nucleic Acids Res 2022; 50:4148-4160. [PMID: 35333330 PMCID: PMC9023255 DOI: 10.1093/nar/gkac195] [Citation(s) in RCA: 41] [Impact Index Per Article: 13.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/24/2022] [Revised: 03/10/2022] [Accepted: 03/14/2022] [Indexed: 01/12/2023] Open
Abstract
AlkB homologue 5 (ALKBH5) is a ferrous iron and 2-oxoglutarate dependent oxygenase that demethylates RNA N6-methyladenosine (m6A), a post-transcriptional RNA modification with an emerging set of regulatory roles. Along with the fat mass and obesity-associated protein (FTO), ALKBH5 is one of only two identified human m6A RNA oxidizing enzymes and is a potential target for cancer treatment. Unlike FTO, ALKBH5 efficiently catalyzes fragmentation of its proposed nascent hemiaminal intermediate to give formaldehyde and a demethylated nucleoside. A detailed analysis of the molecular mechanisms used by ALKBH5 for substrate recognition and m6A demethylation is lacking. We report three crystal structures of ALKBH5 in complex with an m6A-ssRNA 8-mer substrate and supporting biochemical analyses. Strikingly, the single-stranded RNA substrate binds to the active site of ALKBH5 in a 5'-3' orientation that is opposite to single-stranded or double-stranded DNA substrates observed for other AlkB subfamily members, including single-stranded DNA bound to FTO. The combined structural and biochemical results provide insight into the preference of ALKBH5 for substrates containing a (A/G)m6AC consensus sequence motif. The results support a mechanism involving formation of an m6A hemiaminal intermediate, followed by efficient ALKBH5 catalyzed demethylation, enabled by a proton shuttle network involving Lys132 and Tyr139.
Collapse
Affiliation(s)
- Simranjeet Kaur
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Nok Yin Tam
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| | - Michael A McDonough
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Christopher J Schofield
- The Department of Chemistry and the Ineos Oxford Institute for Antimicrobial Research, Chemistry Research Laboratory, University of Oxford, 12 Mansfield Road, Oxford, OX1 3TA, UK
| | - Wei Shen Aik
- Department of Chemistry, Hong Kong Baptist University, Kowloon Tong, Hong Kong SAR, China
| |
Collapse
|
15
|
Solution structure ensemble of human obesity-associated protein FTO reveals druggable surface pockets at the interface between the N- and C-terminal domain. J Biol Chem 2022; 298:101907. [PMID: 35398093 PMCID: PMC9065727 DOI: 10.1016/j.jbc.2022.101907] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Revised: 04/02/2022] [Accepted: 04/04/2022] [Indexed: 12/17/2022] Open
|
16
|
Liu Q. Current Advances in N6-Methyladenosine Methylation Modification During Bladder Cancer. Front Genet 2022; 12:825109. [PMID: 35087575 PMCID: PMC8787278 DOI: 10.3389/fgene.2021.825109] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2021] [Accepted: 12/22/2021] [Indexed: 12/14/2022] Open
Abstract
N6-methyladenosine (m6A) is a dynamic, reversible post-transcriptional modification, and the most common internal modification of eukaryotic messenger RNA (mRNA). Considerable evidence now shows that m6A alters gene expression, thereby regulating cell self-renewal, differentiation, invasion, and apoptotic processes. M6A methylation disorders are directly related to abnormal RNA metabolism, which may lead to tumor formation. M6A methyltransferase is the dominant catalyst during m6A modification; it removes m6A demethylase, promotes recognition by m6A binding proteins, and regulates mRNA metabolic processes. Bladder cancer (BC) is a urinary system malignant tumor, with complex etiology and high incidence rates. A well-differentiated or moderately differentiated pathological type at initial diagnosis accounts for most patients with BC. For differentiated superficial bladder urothelial carcinoma, the prognosis is normally good after surgery. However, due to poor epithelial cell differentiation, BC urothelial cell proliferation and infiltration may lead to invasive or metastatic BC, which lowers the 5-years survival rate and significantly affects clinical treatments in elderly patients. Here, we review the latest progress in m6A RNA methylation research and investigate its regulation on BC occurrence and development.
Collapse
Affiliation(s)
- Qiang Liu
- Department of Urology, Cancer Hospital of China Medical University, Liaoning Cancer Hospital and Institute, Shenyang, China
| |
Collapse
|
17
|
Qu J, Yan H, Hou Y, Cao W, Liu Y, Zhang E, He J, Cai Z. RNA demethylase ALKBH5 in cancer: from mechanisms to therapeutic potential. J Hematol Oncol 2022; 15:8. [PMID: 35063010 PMCID: PMC8780705 DOI: 10.1186/s13045-022-01224-4] [Citation(s) in RCA: 127] [Impact Index Per Article: 42.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2021] [Accepted: 01/03/2022] [Indexed: 12/16/2022] Open
Abstract
RNA demethylase ALKBH5 takes part in the modulation of N6-methyladenosine (m6A) modification and controls various cell processes. ALKBH5-mediated m6A demethylation regulates gene expression by affecting multiple events in RNA metabolism, e.g., pre-mRNA processing, mRNA decay and translation. Mounting evidence shows that ALKBH5 plays critical roles in a variety of human malignancies, mostly via post-transcriptional regulation of oncogenes or tumor suppressors in an m6A-dependent manner. Meanwhile, increasing non-coding RNAs are recognized as functional targets of ALKBH5 in cancers. Here we reviewed up-to-date findings about the pathological roles of ALKBH5 in cancer, the molecular mechanisms by which it exerts its functions, as well as the underlying mechanism of its dysregulation. We also discussed the therapeutic implications of targeting ALKBH5 in cancer and potential ALKBH5-targeting strategies.
Collapse
Affiliation(s)
- Jianwei Qu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Haimeng Yan
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yifan Hou
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Wen Cao
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Yang Liu
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Enfan Zhang
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Jingsong He
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China
| | - Zhen Cai
- Bone Marrow Transplantation Center, The First Affiliated Hospital, School of Medicine, Zhejiang University, Hangzhou, Zhejiang, China.
- Institute of Hematology, Zhejiang University, Hangzhou, Zhejiang, China.
| |
Collapse
|
18
|
Guo L, Chen S, Ou L, Li S, Ye ZN, Liu HF. Disrupted Alpha-Ketoglutarate Homeostasis: Understanding Kidney Diseases from the View of Metabolism and Beyond. Diabetes Metab Syndr Obes 2022; 15:1961-1974. [PMID: 35783031 PMCID: PMC9248815 DOI: 10.2147/dmso.s369090] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Accepted: 06/17/2022] [Indexed: 11/26/2022] Open
Abstract
Alpha-ketoglutarate (AKG) is a key intermediate of various metabolic pathways including tricarboxylic acid (TCA) cycle, anabolic and catabolic reactions of amino acids, and collagen biosynthesis. Meanwhile, AKG also participates in multiple signaling pathways related to cellular redox regulation, epigenetic processes, and inflammation response. Emerging evidence has shown that kidney diseases like diabetic nephropathy and renal ischemia/reperfusion injury are associated with metabolic disorders. In consistence with metabolic role of AKG, further metabolomics study demonstrated a dysregulated AKG level in kidney diseases. Intriguingly, earlier studies during the years of 1980s and 1990s indicated that AKG may benefit wound healing and surgery recovery. Recently, interests on AKG are arising again due to its protective roles on healthy ageing, which may shed light on developing novel therapeutic strategies against age-related diseases including renal diseases. This review will summarize the physiological and pathological properties of AKG, as well as the underlying molecular mechanisms, with a special emphasis on kidney diseases.
Collapse
Affiliation(s)
- Lijing Guo
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shihua Chen
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Liping Ou
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Shangmei Li
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| | - Zhen-Nan Ye
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Correspondence: Zhen-Nan Ye; Hua-Feng Liu, Email ;
| | - Hua-Feng Liu
- Guangdong Provincial Key Laboratory of Autophagy and Major Chronic Non-Communicable Diseases, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
- Institute of Nephrology, Affiliated Hospital of Guangdong Medical University, Zhanjiang, 524001, People’s Republic of China
| |
Collapse
|