1
|
Yeboah IO, Young RT, Mosioma M, Sensale S. A mean-field theory for characterizing the closing rates of DNA origami hinges. J Chem Phys 2024; 161:074901. [PMID: 39145564 DOI: 10.1063/5.0222446] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Accepted: 08/01/2024] [Indexed: 08/16/2024] Open
Abstract
The evolution of dynamic DNA nanostructures has propelled DNA nanotechnology into a robust and versatile field, offering groundbreaking applications in nanoscale communication, drug delivery, and molecular computing. Yet, the full potential of this technology awaits further enhancement through optimization of kinetic properties governing conformational changes. In this work, we introduce a mean-field theory to characterize the kinetic behavior of a dynamic DNA origami hinge where each arm bears complementary single-stranded DNA overhangs of different lengths, which can latch the hinge at a closed conformation. This device is currently being investigated for multiple applications, being of particular interest the development of DNA-based rapid diagnostic tests for coronavirus. Drawing from classical statistical mechanics theories, we derive analytical expressions for the mean binding time of these overhangs within a constant hinge. This analysis is then extended to flexible hinges, where the angle diffuses within a predetermined energy landscape. We validate our model by comparing it with experimental measurements of the closing rates of DNA nanocalipers with different energy landscapes and overhang lengths, demonstrating excellent agreement and suggesting fast angular relaxation relative to binding. These findings offer insights that can guide the optimization of devices for specific state lifetimes. Moreover, the framework introduced here lays the groundwork for further advancements in modeling the kinetics of dynamic DNA nanostructures.
Collapse
Affiliation(s)
- Isaac O Yeboah
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Robert T Young
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Mark Mosioma
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
| | - Sebastian Sensale
- Department of Physics, Cleveland State University, Cleveland, Ohio 44115, USA
- Department of Physics, Indiana University Indianapolis, Indianapolis, Indiana 46202, USA
| |
Collapse
|
2
|
Samanta A, Baranda Pellejero L, Masukawa M, Walther A. DNA-empowered synthetic cells as minimalistic life forms. Nat Rev Chem 2024; 8:454-470. [PMID: 38750171 DOI: 10.1038/s41570-024-00606-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 04/12/2024] [Indexed: 06/13/2024]
Abstract
Cells, the fundamental units of life, orchestrate intricate functions - motility, adaptation, replication, communication, and self-organization within tissues. Originating from spatiotemporally organized structures and machinery, coupled with information processing in signalling networks, cells embody the 'sensor-processor-actuator' paradigm. Can we glean insights from these processes to construct primitive artificial systems with life-like properties? Using de novo design approaches, what can we uncover about the evolutionary path of life? This Review discusses the strides made in crafting synthetic cells, utilizing the powerful toolbox of structural and dynamic DNA nanoscience. We describe how DNA can serve as a versatile tool for engineering entire synthetic cells or subcellular entities, and how DNA enables complex behaviour, including motility and information processing for adaptive and interactive processes. We chart future directions for DNA-empowered synthetic cells, envisioning interactive systems wherein synthetic cells communicate within communities and with living cells.
Collapse
Affiliation(s)
- Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
- Centre for Nanotechnology, Indian Institute of Technology Roorkee, Roorkee, India.
| | | | - Marcos Masukawa
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Mainz, Germany.
| |
Collapse
|
3
|
van den Akker WP, van Benthem RATM, Voets IK, van Hest JCM. Dampened Transient Actuation of Hydrogels Autonomously Controlled by pH-Responsive Bicontinuous Nanospheres. ACS APPLIED MATERIALS & INTERFACES 2024; 16:19642-19650. [PMID: 38569110 DOI: 10.1021/acsami.4c02643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/05/2024]
Abstract
The fabrication of a soft actuator with a dampened actuation response is presented. This was achieved via the incorporation into an actuating hydrogel of urease-loaded pH-responsive bicontinuous nanospheres (BCNs), whose membrane was able to regulate the permeability and thus conversion of fuel urea into ammonia. The dampened response of these nanoreactors to the enzymatically induced pH change was translated to a pH-responsive soft actuator. In hydrogels composed of a pH-responsive and nonresponsive layer, the transient pH gradient yielded an asymmetric swelling behavior, which induced a bending response. The transient actuation profile could be controlled by varying the external fuel concentrations. Furthermore, we showed that the spatial organization of the BCNs within the actuator had a great influence on the actuation response. Embedding the urease-loaded nanoreactors within the active, pH-responsive layer resulted in a reduced response due to local substrate conversion in comparison to embedding them within the passive layer of the bilayer hydrogel. Finally, we were able to induce transient actuation in a hydrogel comprising two identical active layers by the immobilization of the BCNs within one specific layer. Upon addition of urea, a local pH gradient was generated, which caused accelerated swelling in the BCN layer and transient bending of the device before the pH gradient was attenuated over time.
Collapse
Affiliation(s)
- Wouter P van den Akker
- Department of Chemistry & Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Department of Chemistry & Chemical Engineering, Self-Organizing Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Rolf A T M van Benthem
- Department of Chemistry & Chemical Engineering, Laboratory of Physical Chemistry, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
- Shell Energy Transition Center Amsterdam, Grasweg 31, 1031 HW Amsterdam, The Netherlands
| | - Ilja K Voets
- Department of Chemistry & Chemical Engineering, Self-Organizing Soft Matter, Eindhoven University of Technology, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| | - Jan C M van Hest
- Department of Chemistry & Chemical Engineering, Institute for Complex Molecular Systems, Bio-Organic Chemistry, Eindhoven University of Technology, Helix, P.O. Box 513, 5600MB Eindhoven, The Netherlands
| |
Collapse
|
4
|
Sharma C, Sarkar A, Walther A. Transient co-assemblies of micron-scale colloids regulated by ATP-fueled reaction networks. Chem Sci 2023; 14:12299-12307. [PMID: 37969603 PMCID: PMC10631234 DOI: 10.1039/d3sc04017h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2023] [Accepted: 10/15/2023] [Indexed: 11/17/2023] Open
Abstract
Self-assembly of colloidal particles offers an attractive bottom-up approach to functional materials. Current design strategies for colloidal assemblies are mostly based on thermodynamically controlled principles and lack autonomous behavior. The next advance in the properties of colloidal assemblies will come from coupling these structures to out-of-equilibrium chemical reaction networks furnishing them with autonomous and dynamic behavior. This, however, constitutes a major challenge of carefully modulating the interparticle potentials on a temporal circuit program and avoiding kinetic trapping and irreversible aggregation. Herein, we report the coupling of a fuel-driven DNA-based enzymatic reaction network (ERN) to micron-sized colloidal particles to achieve their transient co-assembly. The ERN operating on the molecular level transiently releases an Output strand which links two DNA functionalized microgel particles together into co-assemblies with a programmable assembly lifetime. The system generates minimal waste and recovers all components of the ERN after the consumption of the ATP fuel. The system can be reactivated by addition of new fuel as shown for up to three cycles. The design can be applied to organize other building blocks into hierarchical structures and materials with advanced biomimetic properties.
Collapse
Affiliation(s)
- Charu Sharma
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Aritra Sarkar
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| | - Andreas Walther
- Department of Chemistry, Life-Like Materials and Systems, University of Mainz Duesbergweg 10-14 55128 Mainz Germany
| |
Collapse
|
5
|
Sharma C, Samanta A, Schmidt RS, Walther A. DNA-Based Signaling Networks for Transient Colloidal Co-Assemblies. J Am Chem Soc 2023; 145:17819-17830. [PMID: 37543962 DOI: 10.1021/jacs.3c04807] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/08/2023]
Abstract
Programmable chemical circuits inspired by signaling networks in living cells are a promising approach for the development of adaptive and autonomous self-assembling molecular systems and material functions. Progress has been made at the molecular level, but connecting molecular control circuits to self-assembling larger elements such as colloids that enable real-space studies and access to functional materials is sparse and can suffer from kinetic traps, flocculation, or difficult system integration protocols. Herein, we report a toehold-mediated DNA strand displacement reaction network capable of autonomously directing two different microgels into transient and self-regulating co-assemblies. The microgels are functionalized with DNA and become elemental components of the network. The flexibility of the circuit design allows the installation of delay phases or accelerators by chaining additional circuit modules upstream or downstream of the core circuit. The design provides an adaptable and robust route to regulate other building blocks for advanced biomimetic functions.
Collapse
Affiliation(s)
- Charu Sharma
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Avik Samanta
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Ricarda Sophia Schmidt
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| | - Andreas Walther
- Life-Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128 Mainz, Germany
| |
Collapse
|
6
|
Zeng C, Liu X, Wang B, Qin R, Zhang Q. Multifunctional Exo III-assisted scalability strategy for constructing DNA molecular logic circuits. Analyst 2023; 148:1954-1960. [PMID: 36994799 DOI: 10.1039/d3an00086a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/31/2023]
Abstract
The construction of logic circuits is critical to DNA computing. Simple and effective scalability methods have been the focus of attention in various fields related to constructing logic circuits. We propose a double-stranded separation (DSS) strategy to facilitate the construction of complex circuits. The strategy combines toehold-mediated strand displacement with exonuclease III (Exo III), which is a multifunctional nuclease. Exo III can quickly recognize an apurinic/apyrimidinic (AP) site. DNA oligos with an AP site can generate an output signal by the strand displacement reaction. However, in contrast to traditional strand displacement reactions, the double-stranded waste from the strand displacement can be further hydrolysed by the endonuclease function of Exo III, thus generating an additional output signal. The DSS strategy allows for the effective scalability of molecular logic circuits, enabling multiple logic computing capabilities simultaneously. In addition, we succeeded in constructing a logic circuit with dual logic functions that provides foundations for more complex circuits in the future and has a broad scope for development in logic computing, biosensing, and nanomachines.
Collapse
Affiliation(s)
- Chenyi Zeng
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Xin Liu
- School of Computer Science and Technology, Dalian University of Technology, Dalian 116024, China.
| | - Bin Wang
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Rui Qin
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| | - Qiang Zhang
- Key Laboratory of Advanced Design and Intelligent Computing, School of Software Engineering, Dalian University, Dalian 116622, China.
| |
Collapse
|
7
|
Abstract
Hierarchical assembly of programmable DNA frameworks─such as DNA origami─paves the way for versatile nanometer-precise parallel nanopatterning up to macroscopic scales. As of now, the rapid evolution of the DNA nanostructure design techniques and the accessibility of these methods provide a feasible platform for building highly ordered DNA-based assemblies for various purposes. So far, a plethora of different building blocks based on DNA tiles and DNA origami have been introduced, but the dynamics of the large-scale lattice assembly of such modules is still poorly understood. Here, we focus on the dynamics of two-dimensional surface-assisted DNA origami lattice assembly at mica and lipid substrates and the techniques for prospective three-dimensional assemblies, and finally, we summarize the potential applications of such systems.
Collapse
Affiliation(s)
- Sofia Julin
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
| | - Adrian Keller
- Paderborn University, Technical and Macromolecular Chemistry, Warburger Str. 100, 33098 Paderborn, Germany
| | - Veikko Linko
- Biohybrid Materials, Department of Bioproducts and Biosystems, Aalto University, 00076 Aalto, Finland
- LIBER Center of Excellence, Aalto University, 00076 Aalto, Finland
| |
Collapse
|
8
|
Sun M, Deng J, Walther A. Communication and Cross-Regulation between Chemically Fueled Sender and Receiver Reaction Networks. Angew Chem Int Ed Engl 2023; 62:e202214499. [PMID: 36354214 PMCID: PMC10107503 DOI: 10.1002/anie.202214499] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Indexed: 11/11/2022]
Abstract
Nature connects multiple fuel-driven chemical/enzymatic reaction networks (CRNs/ERNs) via cross-regulation to hierarchically control biofunctions for a tailored adaption in complex sensory landscapes. Herein, we introduce a facile example of communication and cross-regulation among two fuel-driven DNA-based ERNs regulated by a concatenated RNA transcription regulator. ERN1 ("sender") is designed for the fuel-driven promoter formation for T7 RNA polymerase, which activates RNA transcription. The produced RNA can deactivate or activate DNA in ERN2 ("receiver") by toehold-mediated strand displacement, leading to a communication between two ERNs. The RNA from ERN1 can repress or promote the fuel-driven state of ERN2; ERN2 in turn feedbacks to regulate the lifetime of ERN1. Furthermore, the incorporation of RNase H allows for RNA degradation and enables the autonomous recovery of ERN2. We believe that concatenation of multiple CRNs/ERNs provides a basis for the design of more elaborate autonomous regulatory mechanisms in systems chemistry and synthetic biology.
Collapse
Affiliation(s)
- Mo Sun
- Department of Chemistry, Fudan University, Shanghai, 200438, China.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| | - Jie Deng
- Life Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Dana-Farber Cancer Institute, Wyss Institute for Biologically Inspired Engineering, Harvard Medical School, Boston, MA 02115, USA
| | - Andreas Walther
- Life Like Materials and Systems, Department of Chemistry, University of Mainz, Duesbergweg 10-14, 55128, Mainz, Germany.,Cluster of Excellence livMatS @ FIT - Freiburg Center for Interactive Materials and Bioinspired Technologies, University of Freiburg, Georges-Köhler-Allee 105, 79110, Freiburg, Germany
| |
Collapse
|
9
|
Escárcega-Bobadilla MV, Maldonado-Domínguez M, Romero-Ávila M, Zelada-Guillén GA. Turing patterns by supramolecular self-assembly of a single salphen building block. iScience 2022; 25:104545. [PMID: 35747384 PMCID: PMC9209723 DOI: 10.1016/j.isci.2022.104545] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/07/2022] [Revised: 05/15/2022] [Accepted: 06/02/2022] [Indexed: 11/02/2022] Open
Abstract
In the 1950s, Alan Turing showed that concerted reactions and diffusion of activating and inhibiting chemical species can autonomously generate patterns without previous positional information, thus providing a chemical basis for morphogenesis in Nature. However, access to these patterns from only one molecular component that contained all the necessary information to execute agonistic and antagonistic signaling is so far an elusive goal, since two or more participants with different diffusivities are a must. Here, we report on a single-molecule system that generates Turing patterns arrested in the solid state, where supramolecular interactions are used instead of chemical reactions, whereas diffusional differences arise from heterogeneously populated self-assembled products. We employ a family of hydroxylated organic salphen building blocks based on a bis-Schiff-base scaffold with portions responsible for either activation or inhibition of assemblies at different hierarchies through purely supramolecular reactions, only depending upon the solvent dielectric constant and evaporation as fuel.
Collapse
Affiliation(s)
- Martha V Escárcega-Bobadilla
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Mauricio Maldonado-Domínguez
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico.,Department of Computational Chemistry, J. Heyrovský Institute of Physical Chemistry, The Czech Academy of Sciences, Dolejškova 3, 18223 Prague 8, Czech Republic
| | - Margarita Romero-Ávila
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| | - Gustavo A Zelada-Guillén
- School of Chemistry, National Autonomous University of Mexico (UNAM), Circuito Escolar s/n, Ciudad Universitaria, 04510 Mexico City, Mexico
| |
Collapse
|
10
|
Cui H, Zhang T, Kong Y, Xing H, Wei B. Controllable assembly of synthetic constructs with programmable ternary DNA interaction. Nucleic Acids Res 2022; 50:7188-7196. [PMID: 35713533 PMCID: PMC9262601 DOI: 10.1093/nar/gkac478] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2022] [Revised: 04/28/2022] [Accepted: 06/15/2022] [Indexed: 12/24/2022] Open
Abstract
Compared with the dual binding components in a binary interaction, the third component of a ternary interaction often serves as modulator or regulator in biochemical processes. Here, we presented a programmable ternary interaction strategy based on the natural DNA triplex structure. With the DNA triplex-based ternary interaction, we have successfully demonstrated controllable hierarchical assemblies from nanometer scale synthetic DNA nanostructure units to micrometer scale live bacteria. A selective signaling system responsive to orthogonal nucleic acid signals via ternary interaction was also demonstrated. This assembly method could further enrich the diversified design schemes of DNA nanotechnology.
Collapse
Affiliation(s)
- Huangchen Cui
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Tianqing Zhang
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Hang Xing
- Institute of Chemical Biology and Nanomedicine; State Key Laboratory of Chemo/Biosensing and Chemometrics; Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology; College of Chemistry and Chemical Engineering; Hunan University, Changsha 410082, China
| | - Bryan Wei
- School of Life Sciences, Tsinghua University-Peking University Center for Life Sciences, Center for Synthetic and Systems Biology, Tsinghua University, Beijing 100084, China
| |
Collapse
|
11
|
Molecular communications in complex systems of dynamic supramolecular polymers. Nat Commun 2022; 13:2162. [PMID: 35443756 PMCID: PMC9021206 DOI: 10.1038/s41467-022-29804-5] [Citation(s) in RCA: 13] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2021] [Accepted: 03/29/2022] [Indexed: 11/21/2022] Open
Abstract
Supramolecular polymers are composed of monomers that self-assemble non-covalently, generating distributions of monodimensional fibres in continuous communication with each other and with the surrounding solution. Fibres, exchanging molecular species, and external environment constitute a sole complex system, which intrinsic dynamics is hard to elucidate. Here we report coarse-grained molecular simulations that allow studying supramolecular polymers at the thermodynamic equilibrium, explicitly showing the complex nature of these systems, which are composed of exquisitely dynamic molecular entities. Detailed studies of molecular exchange provide insights into key factors controlling how assemblies communicate with each other, defining the equilibrium dynamics of the system. Using minimalistic and finer chemically relevant molecular models, we observe that a rich concerted complexity is intrinsic in such self-assembling systems. This offers a new dynamic and probabilistic (rather than structural) picture of supramolecular polymer systems, where the travelling molecular species continuously shape the assemblies that statistically emerge at the equilibrium. The dynamic structure of supramolecular polymers is challenging to determine both in experiments and in simulations. Here the authors use coarse-grained molecular models to provide a comprehensive analysis of the molecular communication in these complex molecular systems.
Collapse
|