1
|
Song R, Yin S, Wu J, Yan J. Neuronal regulated cell death in aging-related neurodegenerative diseases: key pathways and therapeutic potentials. Neural Regen Res 2025; 20:2245-2263. [PMID: 39104166 PMCID: PMC11759035 DOI: 10.4103/nrr.nrr-d-24-00025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/08/2024] [Revised: 05/13/2024] [Accepted: 06/18/2024] [Indexed: 08/07/2024] Open
Abstract
Regulated cell death (such as apoptosis, necroptosis, pyroptosis, autophagy, cuproptosis, ferroptosis, disulfidptosis) involves complex signaling pathways and molecular effectors, and has been proven to be an important regulatory mechanism for regulating neuronal aging and death. However, excessive activation of regulated cell death may lead to the progression of aging-related diseases. This review summarizes recent advances in the understanding of seven forms of regulated cell death in age-related diseases. Notably, the newly identified ferroptosis and cuproptosis have been implicated in the risk of cognitive impairment and neurodegenerative diseases. These forms of cell death exacerbate disease progression by promoting inflammation, oxidative stress, and pathological protein aggregation. The review also provides an overview of key signaling pathways and crosstalk mechanisms among these regulated cell death forms, with a focus on ferroptosis, cuproptosis, and disulfidptosis. For instance, FDX1 directly induces cuproptosis by regulating copper ion valency and dihydrolipoamide S-acetyltransferase aggregation, while copper mediates glutathione peroxidase 4 degradation, enhancing ferroptosis sensitivity. Additionally, inhibiting the Xc- transport system to prevent ferroptosis can increase disulfide formation and shift the NADP + /NADPH ratio, transitioning ferroptosis to disulfidptosis. These insights help to uncover the potential connections among these novel regulated cell death forms and differentiate them from traditional regulated cell death mechanisms. In conclusion, identifying key targets and their crosstalk points among various regulated cell death pathways may aid in developing specific biomarkers to reverse the aging clock and treat age-related neurodegenerative conditions.
Collapse
Affiliation(s)
- Run Song
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Shiyi Yin
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Jiannan Wu
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| | - Junqiang Yan
- Department of Neurology, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
- Neuromolecular Biology Laboratory, The First Affiliated Hospital, College of Clinical Medicine of Henan University of Science and Technology, Luoyang, Henan Province, China
| |
Collapse
|
2
|
Cheng C, McCauley BS, Matulionis N, Vogelauer M, Camacho D, Christofk HR, Dang W, Irwin NAT, Kurdistani SK. Histone H3 cysteine 110 enhances iron metabolism and modulates replicative life span in Saccharomyces cerevisiae. SCIENCE ADVANCES 2025; 11:eadv4082. [PMID: 40215312 PMCID: PMC11988410 DOI: 10.1126/sciadv.adv4082] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/17/2024] [Accepted: 03/06/2025] [Indexed: 04/14/2025]
Abstract
The discovery of histone H3 copper reductase activity provides a novel metabolic framework for understanding the functions of core histone residues, which, unlike N-terminal residues, have remained largely unexplored. We previously demonstrated that histone H3 cysteine 110 (H3C110) contributes to cupric (Cu2+) ion binding and its reduction to the cuprous (Cu1+) form. However, this residue is absent in Saccharomyces cerevisiae, raising questions about its evolutionary and functional significance. Here, we report that H3C110 has been lost in many fungal lineages despite near-universal conservation across eukaryotes. Introduction of H3C110 into S. cerevisiae increased intracellular Cu1+ levels and ameliorated the iron homeostasis defects caused by inactivation of the Cup1 metallothionein or glutathione depletion. Enhanced histone copper reductase activity also extended replicative life span under oxidative growth conditions but reduced it under fermentative conditions. Our findings suggest that a trade-off between histone copper reductase activity, iron metabolism, and life span may underlie the loss or retention of H3C110 across eukaryotes.
Collapse
Affiliation(s)
- Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Brenna S. McCauley
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nedas Matulionis
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Dimitrios Camacho
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
| | - Heather R. Christofk
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- UCLA Jonsson Comprehensive Cancer Center, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Weiwei Dang
- Huffington Center on Aging, Department of Molecular and Human Genetics, Baylor College of Medicine, Houston, TX 77030, USA
| | - Nicholas A. T. Irwin
- Gregor Mendel Institute (GMI), Austrian Academy of Sciences, Vienna BioCenter (VBC), Vienna, Austria
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Molecular and Cell Biology, University of California, Berkeley, Berkeley, CA 94720, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
3
|
Zhang J, Xue Y, Zhang X, Qi R, Zhang Y, Lu C, Luo Z. Histone acetylases are required for iron homeostasis in yeast. Acta Biochim Biophys Sin (Shanghai) 2025. [PMID: 40087978 DOI: 10.3724/abbs.2025040] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/17/2025] Open
Affiliation(s)
- Jian Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yong Xue
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Xinya Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Renjie Qi
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Yaqi Zhang
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| | - Chen Lu
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
- Jiangsu Institute of Marine Resources Development, Lianyungang 222005, China
| | - Zhidan Luo
- Jiangsu Key Laboratory of Marine Biological Resources and Environment, Jiangsu Key Laboratory of Marine Pharmaceutical Compound Screening, Jiangsu Ocean University, Lianyungang 222005, China
- Co-Innovation Center of Jiangsu Marine Bio-industry Technology, Jiangsu Ocean University, Lianyungang 222005, China
| |
Collapse
|
4
|
Xu Y, Reheman A, Feng W. Recent research progress on metal ions and metal-based nanomaterials in tumor therapy. Front Bioeng Biotechnol 2025; 13:1550089. [PMID: 39991139 PMCID: PMC11842396 DOI: 10.3389/fbioe.2025.1550089] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2024] [Accepted: 01/20/2025] [Indexed: 02/25/2025] Open
Abstract
Tumors, as a disease that seriously threatens human health, have always been a major challenge in the field of medicine. Currently, the main methods of tumor treatment include surgery, radiotherapy, chemotherapy, etc., but these traditional treatment methods often have certain limitations. In addition, tumor recurrence and metastasis are also difficult problems faced in clinical treatment. In this context, the importance of metal-based nanomaterials in tumor therapy is increasingly highlighted. Metal-based nanomaterials possess unique physical, chemical, and biological properties, providing new ideas and methods for tumor treatment. Metal-based nanomaterials can achieve targeted therapy for tumors through various mechanisms, reducing damage to normal tissues; they can also serve as drug carriers, improving the stability and bioavailability of drugs; at the same time, some metal-based nanomaterials also have photothermal, photodynamic, and other characteristics, which can be used for phototherapy of tumors. This review examines the latest advances in the application of metal-based nanomaterials in tumor therapy within past 5 years, and presents prospective insights into the future applications.
Collapse
Affiliation(s)
- Yongcheng Xu
- The Second School of Clinical Medicine, Shenyang Medical College, Shenyang, China
| | - Aikebaier Reheman
- Fujian Key Laboratory of Toxicant and Drug Toxicology, Medical College, Ningde Normal University, Ningde, Fujian, China
| | - Wenhua Feng
- Department of Human Anatomy, School of Basic Medicine, Shenyang Medical College, Shenyang, China
- Liaoning Province Key Laboratory for Phenomics of Human Ethnic Specificity and Critical Illness, Shenyang, China
- Shenyang Key Laboratory for Phenomics, Shenyang Medical College, Shenyang, China
| |
Collapse
|
5
|
Acharjee S, Pal R, Anand S, Thakur P, Anjana V, Singh R, Paul M, Biswas A, Tomar RS. Mutations in histones dysregulate copper homeostasis leading to defect in Sec61-dependent protein translocation mechanism in Saccharomyces cerevisiae. J Biol Chem 2025; 301:108163. [PMID: 39793894 PMCID: PMC11847117 DOI: 10.1016/j.jbc.2025.108163] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 12/19/2024] [Accepted: 12/30/2024] [Indexed: 01/13/2025] Open
Abstract
The translocation of proteins from the cytoplasm to the endoplasmic reticulum occurs via a conserved Sec61 protein channel. Previously, we reported that mutations in histones cause downregulation of a CUP1 copper metallothionein, and copper exposure inhibits the activity of Sec61. However, the role of epigenetic dysregulation on the activity of channel is not clear. Identification of cellular factors regulating copper metabolism and Sec61 activity is needed as the dysregulation can cause human diseases. In this study, we elucidate the intricate relationship between copper homeostasis and Sec61-mediated protein translocation. Utilizing copper-sensitive yeast histone mutants exhibiting deficiencies in the expression of CUP1, we uncover a copper-specific impairment of the protein translocation process, causing a reduction in the maturation of secretory proteins. Our findings highlight the inhibitory effect of copper on both cotranslational and posttranslational protein translocations. We demonstrate that supplementation with a copper-specific chelator or amino acids such as cysteine, histidine, and reduced glutathione, zinc, and overexpression of CUP1 restores the translocation process and growth. This study, for the first time provides a functional insight on epigenetic and metabolic regulation of copper homeostasis in governing Sec61-dependent protein translocation process and may be useful to understand human disorders of copper metabolism.
Collapse
Affiliation(s)
- Santoshi Acharjee
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Rajshree Pal
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Smriti Anand
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Prateeksha Thakur
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Vandana Anjana
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Ranu Singh
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Mrittika Paul
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Ashis Biswas
- Department of Earth and Environmental Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India
| | - Raghuvir Singh Tomar
- Department of Biological Sciences, Indian Institute of Science Education and Research Bhopal, Bhopal, Madhya Pradesh, India.
| |
Collapse
|
6
|
Dai S, Guo H, Li Y, Hou J, Wang Y, Zhu T, Ni BJ, Liu Y. Application of organic silicon quaternary ammonium salt (QSA) to reduce carbon footprint of sewers: Long-term inhibition on sulfidogenesis and methanogenesis. WATER RESEARCH X 2024; 25:100275. [PMID: 39583337 PMCID: PMC11585731 DOI: 10.1016/j.wroa.2024.100275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/27/2024] [Revised: 10/09/2024] [Accepted: 11/01/2024] [Indexed: 11/26/2024]
Abstract
Sulfidogenic and methanogenic processes are undesirable in sewer management, yet the derived problems regarding organic losses are often neglected. Traditional chemical dosing methods aimed at sulfide and methane control commonly involve similar mechanisms of oxidation and/or precipitation. Moreover, previous focuses were centered on elevating control efficacy rather than investigating interactions between dosed chemicals and biofilms. In this work, organic silicon quaternary ammonium salt (QSA) of 75 mg-N/L was firstly applied in laboratory pressurized sewer reactors. After three dosing events, it took 20 days for sulfidogenic activities to recover to 50 % without further elevations. Meantime, methanogenic activities were stable ca. 11 % without significant inclinations to recover. Notably, consumption rate of chemical oxygen demand (COD) was suppressed to 50 % at most, and no microbial resistance to QSA but better control efficacy was observed. Characterizations of physicochemistry, microbial community and metabolism were conducted to elucidate mechanisms. Results showed that QSA was attached on sewer biofilms via electrostatic attraction to exert enduring control efficacy. Biofilms tended to become more hydrophobic and compact after QSA exposure. Microbial analyses indicated that relative abundances of microbes regarding hydrolysis, acidogenesis and methanogenesis were sharply decreased together with down-regulation of pivotal enzymatic activities. Additionally, denitrification batch tests initially suggested that the biodegradability of effluent was significantly enhanced, which ensured the safety of QSA dosing into sewers. Overall, results of this work were expected to lay a theoretical foundation on employing QSA to wastewater management.
Collapse
Affiliation(s)
- Suwan Dai
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Haixiao Guo
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yiming Li
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Jiaqi Hou
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Yufen Wang
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Tingting Zhu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| | - Bing-Jie Ni
- School of Civil and Environmental Engineering, University of New South Wales, Sydney, New South Wales, 2052, Australia
| | - Yiwen Liu
- School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, PR China
| |
Collapse
|
7
|
Fitisemanu FM, Padilla-Benavides T. Emerging perspectives of copper-mediated transcriptional regulation in mammalian cell development. Metallomics 2024; 16:mfae046. [PMID: 39375833 PMCID: PMC11503025 DOI: 10.1093/mtomcs/mfae046] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2024] [Accepted: 10/04/2024] [Indexed: 10/09/2024]
Abstract
Copper (Cu) is a vital micronutrient necessary for proper development and function of mammalian cells and tissues. Cu mediates the function of redox active enzymes that facilitate metabolic processes and signaling pathways. Cu levels are tightly regulated by a network of Cu-binding transporters, chaperones, and small molecule ligands. Extensive research has focused on the mammalian Cu homeostasis (cuprostasis) network and pathologies, which result from mutations and perturbations. There are roles for Cu-binding proteins as transcription factors (Cu-TFs) and regulators that mediate metal homeostasis through the activation or repression of genes associated with Cu handling. Emerging evidence suggests that Cu and some Cu-TFs may be involved in the regulation of targets related to development-expanding the biological roles of Cu-binding proteins. Cu and Cu-TFs are implicated in embryonic and tissue-specific development alongside the mediation of the cellular response to oxidative stress and hypoxia. Cu-TFs are also involved in the regulation of targets implicated in neurological disorders, providing new biomarkers and therapeutic targets for diseases such as Parkinson's disease, prion disease, and Friedreich's ataxia. This review provides a critical analysis of the current understanding of the role of Cu and cuproproteins in transcriptional regulation.
Collapse
|
8
|
Rodriguez P, Kalia V, Fenollar-Ferrer C, Gibson CL, Gichi Z, Rajoo A, Matier CD, Pezacki AT, Xiao T, Carvelli L, Chang CJ, Miller GW, Khamoui AV, Boerner J, Blakely RD. Glial swip-10 controls systemic mitochondrial function, oxidative stress, and neuronal viability via copper ion homeostasis. Proc Natl Acad Sci U S A 2024; 121:e2320611121. [PMID: 39288174 PMCID: PMC11441482 DOI: 10.1073/pnas.2320611121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2023] [Accepted: 08/01/2024] [Indexed: 09/19/2024] Open
Abstract
Cuprous copper [Cu(I)] is an essential cofactor for enzymes that support many fundamental cellular functions including mitochondrial respiration and suppression of oxidative stress. Neurons are particularly reliant on mitochondrial production of ATP, with many neurodegenerative diseases, including Parkinson's disease, associated with diminished mitochondrial function. The gene MBLAC1 encodes a ribonuclease that targets pre-mRNA of replication-dependent histones, proteins recently found in yeast to reduce Cu(II) to Cu(I), and when mutated disrupt ATP production, elevates oxidative stress, and severely impacts cell growth. Whether this process supports neuronal and/or systemic physiology in higher eukaryotes is unknown. Previously, we identified swip-10, the putative Caenorhabditis elegans ortholog of MBLAC1, establishing a role for glial swip-10 in limiting dopamine (DA) neuron excitability and sustaining DA neuron viability. Here, we provide evidence from computational modeling that SWIP-10 protein structure mirrors that of MBLAC1 and locates a loss of function coding mutation at a site expected to disrupt histone RNA hydrolysis. Moreover, we find through genetic, biochemical, and pharmacological studies that deletion of swip-10 in worms negatively impacts systemic Cu(I) levels, leading to deficits in mitochondrial respiration and ATP production, increased oxidative stress, and neurodegeneration. These phenotypes can be offset in swip-10 mutants by the Cu(I) enhancing molecule elesclomol and through glial expression of wildtype swip-10. Together, these studies reveal a glial-expressed pathway that supports systemic mitochondrial function and neuronal health via regulation of Cu(I) homeostasis, a mechanism that may lend itself to therapeutic strategies to treat devastating neurodegenerative diseases.
Collapse
Affiliation(s)
- Peter Rodriguez
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
| | - Vrinda Kalia
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Cristina Fenollar-Ferrer
- Laboratory of Molecular Genetics, National Institute on Deafness and Other Communication Disorders, Bethesda, MD20892
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Chelsea L. Gibson
- Department of Biological Sciences, Charles E. Schmidt College of Science, Boca Raton, FL33412
- Oak Ridge Institute for Science and Education, Oak Ridge, TN37830
| | - Zayna Gichi
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| | - Andre Rajoo
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Carson D. Matier
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
| | - Aidan T. Pezacki
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Tong Xiao
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Lucia Carvelli
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
- Department of Biology, Harriet L. Wilkes Honors College, Florida Atlantic University, Jupiter, FL33458
| | - Christopher J. Chang
- Department of Chemistry, University of California, Berkeley, CA94720
- Department of Molecular and Cell Biology, University of California, Berkeley, CA94720
- Princeton University, Princeton, NJ08544
| | - Gary W. Miller
- Department of Environmental Health Sciences, Mailman School of Public Health, Columbia University, New York, NY10032
| | - Andy V. Khamoui
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Exercise Science and Health Promotion, Charles E. Schmidt College of Science, Florida Atlantic University, Boca Raton, FL33431
| | - Jana Boerner
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
| | - Randy D. Blakely
- Stiles-Nicholson Brain Institute, Florida Atlantic University, Jupiter, FL33458
- Department of Biomedical Science, Charles E. Schmidt College of Medicine, Jupiter, FL33458
| |
Collapse
|
9
|
Jiayi H, Ziyuan T, Tianhua X, Mingyu Z, Yutong M, Jingyu W, Hongli Z, Li S. Copper homeostasis in chronic kidney disease and its crosstalk with ferroptosis. Pharmacol Res 2024; 202:107139. [PMID: 38484857 DOI: 10.1016/j.phrs.2024.107139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 03/05/2024] [Accepted: 03/11/2024] [Indexed: 03/27/2024]
Abstract
Chronic kidney disease (CKD) has become a global public health problem with high morbidity and mortality. Renal fibrosis can lead to end-stage renal disease (ESRD). However, there is still no effective treatment to prevent or delay the progression of CKD into ESRD. Therefore, exploring the pathogenesis of CKD is essential for preventing and treating CKD. There are a variety of trace elements in the human body that interact with each other within a complex regulatory network. Iron and copper are both vital trace elements in the body. They are critical for maintaining bodily functions, and the dysregulation of their metabolism can cause many diseases, including kidney disease. Ferroptosis is a new form of cell death characterized by iron accumulation and lipid peroxidation. Studies have shown that ferroptosis is closely related to kidney disease. However, the role of abnormal copper metabolism in kidney disease and its relationship with ferroptosis remains unclear. Here, our current knowledge regarding copper metabolism, its regulatory mechanism, and the role of abnormal copper metabolism in kidney diseases is summarized. In addition, we discuss the relationship between abnormal copper metabolism and ferroptosis to explore the possible pathogenesis and provide a potential therapeutic target for CKD.
Collapse
Affiliation(s)
- Huang Jiayi
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Tong Ziyuan
- China Medical University, Shenyang 110122, People's Republic of China
| | - Xu Tianhua
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Zhang Mingyu
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Ma Yutong
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China
| | - Wang Jingyu
- Renal Division, Peking University First Hospital, Beijing 100034, People's Republic of China
| | - Zhou Hongli
- Department of Nephrology, The First Hospital of Jinzhou Medical University, Jinzhou, Liaoning Province 110004, People's Republic of China
| | - Sun Li
- Department of Nephrology, The First Hospital of China Medical University, Shenyang 110001, People's Republic of China.
| |
Collapse
|
10
|
Vogelauer M, Cheng C, Karimian A, Iranpour HG, Kurdistani SK. Zinc is Essential for the Copper Reductase Activity of Yeast Nucleosomes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.09.14.557765. [PMID: 37745536 PMCID: PMC10515886 DOI: 10.1101/2023.09.14.557765] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 09/26/2023]
Abstract
The histone H3-H4 tetramer is a copper reductase enzyme, facilitating the production of cuprous (Cu1+) ions for distribution to copper-dependent enzymes. It was, however, unknown if this enzymatic activity occurred within nucleosomes. To investigate this, we obtained native nucleosomes from Saccharomyces cerevisiae using micrococcal nuclease digestion of chromatin in isolated nuclei and ion-exchange chromatographic purification. The purified nucleosomal fragments robustly reduced Cu2+ to Cu1+ ions, with the optimal activity dependent on the presence of zinc ions. Mutation of the histone H3 histidine 113 (H3H113) residue at the active site substantially reduced the enzymatic activity of nucleosomes, underscoring the catalytic role of histone H3. Consistently, limiting zinc ions reduced intracellular Cu1+ levels and compromised growth, phenotypes that were mitigated by genetically enhancing the copper reductase activity of histone H3. These results indicate that yeast nucleosomes possess copper reductase activity, suggesting that the fundamental unit of eukaryotic chromatin is an enzyme complex.
Collapse
Affiliation(s)
- Maria Vogelauer
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Chen Cheng
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Ansar Karimian
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Hooman Golshan Iranpour
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Siavash K. Kurdistani
- Department of Biological Chemistry, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Department of Pathology and Laboratory Medicine, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
- Molecular Biology Institute, University of California Los Angeles, Los Angeles, CA 90095, USA
- Eli and Edythe Broad Center of Regenerative Medicine and Stem Cell Research, David Geffen School of Medicine, University of California Los Angeles, Los Angeles, CA 90095, USA
| |
Collapse
|
11
|
Yang Y, Feng Q, Luan Y, Liu H, Jiao Y, Hao H, Yu B, Luan Y, Ren K. Exploring cuproptosis as a mechanism and potential intervention target in cardiovascular diseases. Front Pharmacol 2023; 14:1229297. [PMID: 37637426 PMCID: PMC10450925 DOI: 10.3389/fphar.2023.1229297] [Citation(s) in RCA: 14] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/26/2023] [Accepted: 08/02/2023] [Indexed: 08/29/2023] Open
Abstract
Copper (Cu) is a vital trace element for maintaining human health. Current evidence suggests that genes responsible for regulating copper influx and detoxification help preserve its homeostasis. Adequate Cu levels sustain normal cardiac and blood vessel activity by maintaining mitochondrial function. Cuproptosis, unlike other forms of cell death, is characterized by alterations in mitochondrial enzymes. Therapeutics targeting cuproptosis in cardiovascular diseases (CVDs) mainly include copper chelators, inhibitors of copper chaperone proteins, and copper ionophores. In this review, we expound on the primary mechanisms, critical proteins, and signaling pathways involved in cuproptosis, along with its impact on CVDs and the role it plays in different types of cells. Additionally, we explored the influence of key regulatory proteins and signaling pathways associated with cuproptosis on CVDs and determined whether intervening in copper metabolism and cuproptosis can enhance the outcomes of CVDs. The insights from this review provide a fresh perspective on the pathogenesis of CVDs and new targets for intervention in these diseases.
Collapse
Affiliation(s)
- Yang Yang
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Qi Feng
- Research Institute of Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Department of Integrated Traditional and Western Nephrology, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Ying Luan
- State Key Laboratory for Artificial Microstructures and Mesoscopic Physics, School of Physics, Peking University, Beijing, China
| | - Hui Liu
- School of Laboratory Medicine, Xinxiang Medical University, Xinxiang, Henan, China
| | - Yuxue Jiao
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Huijie Hao
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Bo Yu
- Tianjin Key Laboratory of Retinal Functions and Diseases, Tianjin Branch of National Clinical Research Center for Ocular Disease, Eye Institute and School of Optometry, Tianjin Medical University Eye Hospital, Tianjin, China
| | - Yi Luan
- Clinical Systems Biology Research Laboratories, Translational Medicine Center, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Kaidi Ren
- Department of Pharmacy, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
- Henan Key Laboratory of Precision Clinical Pharmacy, Zhengzhou University, Zhengzhou, China
| |
Collapse
|