1
|
Saito K, Morita M, Okada T, Wijitwongwan RP, Ogawa M. Designed functions of oxide/hydroxide nanosheets via elemental replacement/doping. Chem Soc Rev 2024; 53:10523-10574. [PMID: 39371019 DOI: 10.1039/d4cs00339j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/08/2024]
Abstract
Partial replacement of one structural element in a solid with another of a similar size was conducted to impart functionality to the solids and modify their properties. This phenomenon is found in nature in coloured gemstones and clay minerals and is used in materials chemistry and physics, endowing materials with useful properties that can be controlled by incorporated heteroelements and their amounts. Depending on the area of research (or expected functions), the replacement is referred to as "isomorphous substitution", "doping", etc. Herein, elemental replacement in two-dimensional (2D) oxides and hydroxides (nanosheets or layered materials) is summarised with emphasis on the uniqueness of their preparation, characterisation and application compared with those of the corresponding bulk materials. Among the 2D materials (graphene, metallenes, transition metal chalcogenides, metal phosphate/phosphonates, MXenes, etc.), 2D oxides and hydroxides are characterised by their presence in nature, facile synthesis and storage under ambient conditions, and possible structural variation from atomic-level nanosheets to thicker nanosheets composed of multilayered structures. The heteroelements to be doped were selected depending on the target application objectively; however, there are structural and synthetic limitations in the doping of heteroelements. In the case of layered double hydroxides (single layer) and layered alkali silicates (from single layer to multiple layers), including layered clay minerals (2 : 1 layer), the replacement (commonly called isomorphous substitution) is discussed to understand/design characteristics such as catalytic, adsorptive (including ion exchange), and swelling properties. Due to the variation in their main components, the design of layered transition metal oxide/hydroxide materials via isomorphous substitution is more versatile; in this case, tuning their band structure, doping both holes and electrons, and creating impurity levels are examined by the elemental replacement of the main components. As typical examples, material design for the photocatalytic function of an ion-exchangeable layered titanate (lepidocrocite-type titanate) and a perovskite niobate (KCa2Nb3O10) is discussed, where elemental replacement is effective in designing their multiple functions.
Collapse
Affiliation(s)
- Kanji Saito
- Department of Materials Science, Graduate School of Engineering Science, Akita University, 1-1 Tegatagakuen-machi, Akita-shi, Akita 010-8502, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0054, Japan
| | - Masashi Morita
- Department of Applied Chemistry, Tokyo University of Agriculture and Technology, Tokyo 184-8588, Japan
| | - Tomohiko Okada
- Department of Materials Chemistry, and Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, Nagano-shi 380-8553, Japan
| | - Rattanawadee Ploy Wijitwongwan
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology (VISTEC), 555 Moo 1, Payupnai, Wangchan, Rayong 21210, Thailand.
| |
Collapse
|
2
|
Shang H, Sun Y, Le X, Shen Y, Chen T. Dynamic metal-ligand coordination enables a hydrogel with rewritable dual-mode pattern display. MATERIALS HORIZONS 2024; 11:5244-5250. [PMID: 39279755 DOI: 10.1039/d4mh00996g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 09/18/2024]
Abstract
The realization of dual-mode information display in the same material is of great significance to the expansion of information capacity and the improvement of information security. However, the existing systems lose the ability to re-encode information once they are constructed. Here, dynamic metal-ligand coordination is introduced into a novel hydrogel-based optical platform that allows rewritable dual-mode information display. The hydrogel system consists of a hard lamellar structure of poly(dodecylglyceryl itaconate) (pDGI) and soft double networks of poly(acrylamide)/poly(acrylic acid) (PAAm/PAAc) containing fluorescent carbon dots (CDs). As the carboxylic acid groups can coordinate with metal ions such as Al3+, the layer spacing of the lamellar structure is reduced while CDs aggregate, leading to the blue shift of the structural color and the red shift of the fluorescent color. Additionally, the metal chelating agent, ethylenediaminetetraacetic acid (EDTA), is able to strip away Al3+ ions and restore the two colors, realizing an erasable dual-mode information display. This study opens up a path for the development of new materials and technologies for rewritable dual-mode information protection.
Collapse
Affiliation(s)
- Hui Shang
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Yu Sun
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Xiaoxia Le
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Ying Shen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
| | - Tao Chen
- Key Laboratory of Advanced Marine Materials, Ningbo Institute of Materials Technology and Engineering, Chinese Academy of Sciences, Ningbo 315201, China.
- School of Chemical Sciences, University of Chinese Academy of Sciences, 19A Yuquan Road, Beijing 100049, China
- College of Material Chemistry and Chemical Engineering Key Laboratory of Organosilicon Chemistry and Material Technology Ministry of Education Hangzhou Normal University Hangzhou, 311121, China
| |
Collapse
|
3
|
Kato R, Mikami T, Kato T. 2D Photonic Colloidal Liquid Crystals Composed of Self-Assembled Rod-Shaped Particles. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404396. [PMID: 38877780 DOI: 10.1002/adma.202404396] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/26/2024] [Revised: 06/02/2024] [Indexed: 06/16/2024]
Abstract
Photonic crystals, characterized by their periodic structures, have been extensively studied for their ability to manipulate light. Typically, the development of 2D photonic crystals requires either sophisticated equipment or precise orientation of spherical nanoparticles. However, liquid-crystalline (LC) materials offer a promising alternative, facilitating the formation of periodic structures without the need for complex manipulation. Despite this advantage, the development of 2D photonic periodic structures using LC materials is limited to a few colloidal nanodisk liquid crystals. Herein, 2D photonic colloidal liquid crystals composed of biomineral-based nanorods and water is reported. The soft photonic materials with 2D structure by self-assembled LC colloidal nanorods are unique and a new class of photonic materials different from conventional solid 2D photonic materials. These colloids exhibit bright structural colors with high reflectance (>50%) and significant angular dependency. The structural colors are adjusted by controlling the concentration and size of the LC colloidal nanorods. Furthermore, mechanochromic hydrogel thin films with 2D photonic structure are developed. The hydrogels exhibit reversible mechanochromic properties with angular dependency, which can be used for an advanced stimuli responsible sensor.
Collapse
Affiliation(s)
- Riki Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takahiro Mikami
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, 4-17-1 Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
4
|
Mouri E, Fukumoto T, Kato R, Miyamoto N, Nakato T. Time evolution of the inner structure of antimony phosphate nanosheet suspension developing structural colouration. SOFT MATTER 2024; 20:6353-6360. [PMID: 39075969 DOI: 10.1039/d4sm00647j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/31/2024]
Abstract
Structural colouration observed in antimony phosphate nanosheet suspensions has been known for two decades, but the stability of their inner structures has not been a topic in colloidal nanosheet systems. In this study, we investigate the time evolution of structures in suspension using UV-visible spectrometry and small-angle X-ray scattering. Here, we report that antimony phosphate nanosheet systems re-organise their inner structures, especially at lower concentrations (isotropic or biphasic region), and that the basal spacing decreases with time after sample preparation, although the evolution speed depends on the sample concentration. The stability of the inner structure of the suspension is essential for their application as structural colour materials in sensors and colourants.
Collapse
Affiliation(s)
- Emiko Mouri
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| | - Takashi Fukumoto
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
| | - Riki Kato
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Nobuyoshi Miyamoto
- Graduate School of Engineering, Fukuoka Institute of Technology, 3-30-1 Wajiro-higashi, Higashi-ku, Fukuoka 811-0295, Japan
| | - Teruyuki Nakato
- Department of Applied Chemistry, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan.
- Strategic Research Unit for Innovative Multiscale Materials, Kyushu Institute of Technology, 1-1 Sensui-cho, Tobata, Kitakyushu, Fukuoka 804-8550, Japan
| |
Collapse
|
5
|
Ogawa D, Nishimura T, Nishina Y, Sano K. A magnetically responsive photonic crystal of graphene oxide nanosheets. NANOSCALE 2024; 16:7908-7915. [PMID: 38441113 DOI: 10.1039/d3nr06114k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Magnetically responsive photonic crystals of colloidal nanosheets hold great promise for various applications. Here, we systematically investigated the magnetically responsive behavior of a photonic crystal consisting of graphene oxide (GO) nanosheets and water. After applying a 12 T magnetic field perpendicular and parallel to the observation direction, the photonic crystal exhibited a more vivid structural color and no structural color, respectively, based on the magnetic orientation of GO nanosheets. The reflection wavelength can be modulated by varying the GO concentration, and the peak intensity can be basically enhanced by increasing both the time and strength of the magnetic application. To improve color quality, we developed a novel approach of alternately applying a magnetic field to two orthogonal directions, instead of using a rotating magnetic field. Finally, we achieved color switching by changing the direction of applied magnetic fields.
Collapse
Affiliation(s)
- Daisuke Ogawa
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| | - Tomoki Nishimura
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| | - Yuta Nishina
- Research Core for Interdisciplinary Sciences, Okayama University, 3-1-1 Tsushimanaka, Kita-ku, Okayama 700-8530, Japan
| | - Koki Sano
- Department of Chemistry and Materials, Faculty of Textile Science and Technology, Shinshu University, 3-15-1 Tokida, Ueda, Nagano 386-8567, Japan.
| |
Collapse
|
6
|
Xu YT, Ackroyd AJ, Momeni A, Oudah M, MacLachlan MJ. Magnetic field-responsive graphene oxide photonic liquids. NANOSCALE HORIZONS 2024; 9:317-323. [PMID: 38196394 DOI: 10.1039/d3nh00412k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/11/2024]
Abstract
Modifying the environment around particles (e.g., introducing a secondary phase or external field) can affect the way they interact and assemble, thereby giving control over the physical properties of a dynamic system. Here, graphene oxide (GO) photonic liquids that respond to a magnetic field are demonstrated for the first time. Magnetic nanoparticles are used to provide a continuous magnetizable liquid environment around the GO liquid crystalline domains. In response to a magnetic field, the alignment of magnetic nanoparticles, coupled with the diamagnetic property of GO nanosheets, drives the reorientation and alignment of the nanosheets, enabling switchable photonic properties using a permanent magnet. This phenomenon is anticipated to be extendable to other relevant photonic systems of shape-anisotropic nanoparticles and may open up opportunities for developing GO-based optical materials and devices.
Collapse
Affiliation(s)
- Yi-Tao Xu
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Amanda J Ackroyd
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Arash Momeni
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
| | - Mohamed Oudah
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z1, Canada
| | - Mark J MacLachlan
- Department of Chemistry, University of British Columbia, 2036 Main Mall, Vancouver, British Columbia V6T 1Z1, Canada.
- Stewart Blusson Quantum Matter Institute, University of British Columbia, 2355 East Mall, Vancouver, British Columbia V6T 1Z1, Canada
- WPI Nano Life Science Institute, Kanazawa University, Kanazawa 920-1192, Japan
- Bioproducts Institute, University of British Columbia, 2360 East Mall, Vancouver, British Columbia V6T 1Z3, Canada
| |
Collapse
|
7
|
Khoruzhenko O, Dudko V, Rosenfeldt S, Breu J. Fabricating defogging metasurfaces via a water-based colloidal route. MATERIALS HORIZONS 2023; 10:3749-3760. [PMID: 37404036 DOI: 10.1039/d3mh00625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Metamaterials possess exotic properties that do not occur in nature and have attracted significant attention in research and engineering. Two decades ago, the field of metamaterials emerged from linear electromagnetism, and today it encompasses a wide range of aspects related to solid matter, including electromagnetic and optical, mechanical and acoustic, as well as unusual thermal or mass transport phenomena. Combining different material properties can lead to emergent synergistic functions applicable in everyday life. Nevertheless, making such metamaterials in a robust, facile, and scalable manner is still challenging. This paper presents an effective protocol allowing for metasurfaces offering a synergy between optical and thermal properties. It utilizes liquid crystalline suspensions of nanosheets comprising two transparent silicate monolayers in a double stack, where gold nanoparticles are sandwiched between the two silicate monolayers. The colloidally stable suspension of nanosheets was applied in nanometre-thick coatings onto various substrates. The transparent coatings serve as absorbers in the infrared spectrum allowing for the efficient conversion of sunlight into heat. The peculiar metasurface couples plasmon-enhanced adsorption with anisotropic heat conduction in the plane of the coating, both at the nanoscale. Processing of the coating is based on scalable and affordable wet colloidal processing instead of having to apply physical deposition in high vacuum or lithographic techniques. Upon solar irradiation, the colloidal metasurface is quickly (60% of the time taken for the non-coated glass) heated to the level where complete defogging is assured without sacrificing transparency in the visible range. The protocol is generally applicable allowing for intercalation of any nanoparticles covering a range of physical properties that are then inherited to colloidal nanosheets. Because of their large aspect ratio, the nanosheets will inevitably orient parallel to any surface. This will allow for a toolbox capable of mimicking metamaterial properties while assuring facile processing via dip coating or spray coating.
Collapse
Affiliation(s)
- Olena Khoruzhenko
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| | - Volodymyr Dudko
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| | - Sabine Rosenfeldt
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| | - Josef Breu
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| |
Collapse
|
8
|
Wang Y, Kan X, Liu Y, Ju J, Yao X. Nacre-inspired layered composite gels with broad tunable mechanical strength and structural color for stress visualization. NANOSCALE 2023; 15:9060-9068. [PMID: 37158095 DOI: 10.1039/d3nr01362f] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/10/2023]
Abstract
The brick-and-mortar architecture of nacre shells brings radiant structural colors, high toughness, and strength, inspiring numerous designs for structural and optical materials. However, constructing structural color is not always easy, especially among soft materials where aligning components against random and dynamically active environments is generally difficult. Here, we propose a composite organohydrogel capable of visualizing multiple levels of stress, featuring broad tunable mechanical properties, dynamic mechanochromism, deep low working temperatures, and anti-drying attributes. In the composite gels, the intercalation between α-zirconium phosphate (α-ZrP) nanoplates and poly-(diacetone acrylamide-co-acrylamide) is induced by shear-orientation-assisted self-assembly followed by solvent replacement. The highly tailorable (from ∼780 nm to ∼445 nm) range of colors was achieved by regulating the concentration of α-ZrP and glycerol inside the matrix. With the help from glycerol, the composite gels exhibited long-term stability (7 d) in the arid condition and remarkable low-temperature tolerance (-80 °C). The extraordinary mechanical property (compressive strength up to 119 MPa) of composite gels is achieved by the assembled α-ZrP plates with a small aspect ratio, high negative charge repulsion, and abundant hydrogen bonding sites. As a result, the mechanochromic sensor based on the composite gel enjoys a wide range of stress detection (0-1862 KPa). This study provides a new strategy for constructing high strength structural-colored gels, opening up opportunities for sensitive yet strong mechanochromic sensors in extreme environments.
Collapse
Affiliation(s)
- Yunpeng Wang
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Xinyu Kan
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Yaru Liu
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Jie Ju
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| | - Xi Yao
- Key Laboratory for Special Functional Materials of Ministry of Education, School of Materials and Engineering, Henan University, Kaifeng 475000, China.
| |
Collapse
|
9
|
Chen H, Miao S, Zhao Y, Luo Z, Shang L. Rotary Structural Color Spindles from Droplet Confined Magnetic Self-Assembly. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2023; 10:e2207270. [PMID: 36651011 PMCID: PMC10015863 DOI: 10.1002/advs.202207270] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 12/07/2022] [Revised: 12/26/2022] [Indexed: 06/17/2023]
Abstract
Structural colors materials are profoundly explored owing to their fantastic optical properties and widespread applications. Development of structural color materials bearing flexible morphologies and versatile functionalities is highly anticipated. Here, a droplet-confined, magnetic-induced self-assembly strategy for generating rotary structural color spindles (SCSPs) by fast solvent extraction is proposed. The as-prepared SCSPs exhibit an orderly close-packed lattice structure, thus appearing brilliant structural colors that serve as encoding tags for multiplexed bioassays. Besides, benefitting from the abundant specific surface area, biomarkers can be labeled on the SCSPs with high efficiency for specific detection of analytes in clinical samples. Moreover, the directional magnetic moment arrangement enables contactless magnetic manipulation of the SCSPs, and the resultant rotary motions of the SCSPs generates turbulence in the detection solution, thus significantly improving the detection efficiency and shortening the detection time. Based on these merits, a portable point-of-care-testing strip integrating the rotary SCSPs is further constructed and the capability and advantages of this platform for multiplexed detection of tumor-related exosomes in clinical samples are demonstrated. This study offers a new way for the control of bottom-up self-assembly and extends the configuration and application values of colloidal crystal structural colors materials.
Collapse
Affiliation(s)
- Hanxu Chen
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Shuangshuang Miao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Yuanjin Zhao
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Oujiang Laboratory (Zhejiang Lab for Regenerative Medicine, Vision and Brain Health)Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouZhejiang325001China
| | - Zhiqiang Luo
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
| | - Luoran Shang
- Department of Rheumatology and ImmunologyNanjing Drum Tower HospitalSchool of Biological Science and Medical EngineeringSoutheast UniversityNanjing210096China
- Shanghai Xuhui Central Hospital, Zhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology), Institutes of Biomedical SciencesFudan UniversityShanghai200032China
| |
Collapse
|
10
|
El Rifaii K, Wensink HH, Dozov I, Bizien T, Michot LJ, Gabriel JCP, Breu J, Davidson P. Do Aqueous Suspensions of Smectite Clays Form a Smectic Liquid-Crystalline Phase? LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2022; 38:14563-14573. [PMID: 36395196 DOI: 10.1021/acs.langmuir.2c01821] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/16/2023]
Abstract
Bottom-up strategies for the production of well-defined nanostructures often rely on the self-assembly of anisotropic colloidal particles (nanowires and nanosheets). These building blocks can be obtained by delamination in a solvent of low-dimensionality crystallites. To optimize particle availability, determination of the delamination mechanism and the different organization stages of anisotropic particles in dispersion is essential. We address this fundamental issue by exploiting a recently developed system of fluorohectorite smectite clay mineral that delaminates in water, leading to colloidal dispersions of single-layer, very large (≈20 μm) clay sheets at high dilution. We show that when the clay crystallites are dispersed in water, they swell to form periodic one-dimensional stacks of fluorohectorite sheets with very low volume fraction (<1%) and therefore huge (≈100 nm) periods. Using optical microscopy and synchrotron X-ray scattering, we establish that these colloidal stacks bear strong similarities, yet subtle differences, with a smectic liquid-crystalline phase. Despite the high dilution, the colloidal stacks of sheets, called colloidal accordions, are extremely robust mechanically and can persist for years. Moreover, when subjected to AC electric fields, they rotate as solid bodies, which demonstrates their outstanding internal cohesion. Furthermore, our theoretical model captures the dependence of the stacking period on the dispersion concentration and ionic strength and explains, invoking the Donnan effect, why the colloidal accordions are kinetically stable over years and impervious to shear and Brownian motion. Because our model is not system specific, we expect that similar colloidal accordions frequently appear as an intermediate state during the delamination process of two-dimensional crystals in polar solvents.
Collapse
Affiliation(s)
- Karin El Rifaii
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| | - Henricus H Wensink
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| | - Ivan Dozov
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| | - Thomas Bizien
- SWING Beamline, SOLEIL Synchrotron, 91192Gif-sur-Yvette, France
| | - Laurent J Michot
- Laboratory of Physical Chemistry of Electrolytes and Interfacial Nanosystems (PHENIX), Sorbonne Université, CNRS, 75005Paris, France
| | | | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstrasse 30, 95440Bayreuth, Germany
| | - Patrick Davidson
- Laboratoire de Physique des Solides, Université Paris-Saclay, CNRS, 91405Orsay, France
| |
Collapse
|