1
|
Bagus PS, Nelin CJ, Sassi M, Baranowski D, Sharp MA, Autrey T, Dohnálek Z, Novotny Z. The XPS of pyridine: A combined theoretical and experimental analysis. J Chem Phys 2025; 162:084111. [PMID: 40008943 DOI: 10.1063/5.0249190] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/15/2024] [Accepted: 02/04/2025] [Indexed: 02/27/2025] Open
Abstract
A detailed analysis of the N(1s) and C(1s) X-Ray Photoelectron Spectroscopy (XPS) is made, where the measured XPS is compared with theoretical Sudden Approximation (SA) intensities and theoretical XPS Binding Energies (BEs). There is remarkably good agreement between the theoretical predictions and the measured XPS; in particular, the different full width at half maximum values for the C(1s) and N(1s) BEs are explained in terms of unresolved C(1s) BEs for the different C atoms in pyridine. This work demonstrates that the combination of theory and XPS measurements can extract analysis of the XPS relevant to the molecular electronic structure. The theory used is based on fully relativistic self-consistent field solutions of the Dirac-Coulomb Hamiltonian, and the SA is used to determine relative XPS intensities.
Collapse
Affiliation(s)
- Paul S Bagus
- Department of Chemistry, University of North Texas, Denton, Texas 76203-5017, USA
| | | | - Michel Sassi
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Daniel Baranowski
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Marcus A Sharp
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Tom Autrey
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| | - Zdenek Dohnálek
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
- Voiland School of Chemical Engineering and Bioengineering, Washington State University, Pullman, Washington 99163, USA
| | - Zbynek Novotny
- Physical and Computational Sciences Directorate, Pacific Northwest National Laboratory, Richland, Washington 99352, USA
| |
Collapse
|
2
|
Xue G, Jiao Y, Li X, Lin T, Yang C, Chen S, Chen Z, Qi H, Bartling S, Jiao H, Junge H, Beller M. CO-Tolerant Heterogeneous Ruthenium Catalysts for Efficient Formic Acid Dehydrogenation. Angew Chem Int Ed Engl 2025; 64:e202416530. [PMID: 39625007 DOI: 10.1002/anie.202416530] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/28/2024] [Accepted: 12/01/2024] [Indexed: 12/10/2024]
Abstract
The development of improved and less costly catalysts for dehydrogenation of formic acid (HCOOH) is of general interest for renewable energy technologies involving hydrogen storage and release. Theoretical calculations reveal that ruthenium (Ru) nanoparticles supported on nitrogen-doped carbon should be appropriate catalysts for such transformations. It is predicted that nitrogen doping significantly decreases the formation of CO, but at the same time increases CO tolerance of the catalysts. To prove these hypotheses heterogeneous ruthenium catalysts supported on porous nitrogen-doped carbon (Rux/CN) with hierarchical structure were synthesized using carbon nitride (C3N4) as template and phenanthroline (Phen) as ligand. Experimental tests in HCOOH dehydrogenation revealed that the optimal catalyst Ru7/CN exhibited good thermal stability at 140 °C and a high turnover frequency (TOF >1300 h-1), which is more than one order of magnitude higher than that of the commercial Ru5/C catalyst.
Collapse
Affiliation(s)
- Guangxin Xue
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Yueyue Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- SINOPEC Research Institute of Petroleum Processing Co., Ltd., Beijing, P. R. China
| | - Xiang Li
- School of Energy and Power Engineering, Beihang University, Beijing, P. R. China
| | - Tian Lin
- National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Caoyu Yang
- National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Sihan Chen
- National Center for Nanoscience and Technology, Beijing, P. R. China
| | - Zupeng Chen
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
- College of Chemical Engineering, Nanjing Forestry University, Nanjing, 210037, China
| | - Haifeng Qi
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Stephan Bartling
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Haijun Jiao
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Henrik Junge
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| | - Matthias Beller
- Leibniz-Institut für Katalyse e. V., Albert-Einstein-Str. 29a, Rostock, D-18059, Germany
| |
Collapse
|
3
|
Liu X, Huang L, Ma Y, She G, Zhou P, Zhu L, Zhang Z. Enable biomass-derived alcohols mediated alkylation and transfer hydrogenation. Nat Commun 2024; 15:7012. [PMID: 39147765 PMCID: PMC11327299 DOI: 10.1038/s41467-024-51307-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Accepted: 07/31/2024] [Indexed: 08/17/2024] Open
Abstract
A single-atom catalyst with generally regarded inert Zn-N4 motifs derived from ZIF-8 is unexpectedly efficient for the activation of alcohols, enabling alcohol-mediated alkylation and transfer hydrogenation. C-alkylation of nitriles, ketones, alcohols, N-heterocycles, amides, keto acids, and esters, and N-alkylation of amines and amides all go smoothly with the developed method. Taking the α-alkylation of nitriles with alcohols as an example, the α-alkylation starts from the (1) nitrogen-doped carbon support catalyzed dehydrogenation of alcohols into aldehydes, which further condensed with nitriles to give vinyl nitriles, followed by (2) transfer hydrogenation of C=C bonds in vinyl nitriles on Zn-N4 sites. The experimental results and DFT calculations reveal that the Lewis acidic Zn-N4 sites promote step (2) by activating the alcohols. This is the first example of highly efficient single-atom catalysts for various organic transformations with biomass-derived alcohols as the alkylating reagents and hydrogen donors.
Collapse
Affiliation(s)
- Xixi Liu
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Liang Huang
- The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan, China
| | - Yuandie Ma
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Guoqiang She
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Peng Zhou
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China
| | - Liangfang Zhu
- Key Laboratory of Green Chemistry and Technology, Ministry of Education, College of Chemistry, Sichuan University, Chengdu, Sichuan, China
| | - Zehui Zhang
- Key Laboratory of Catalysis and Materials Sciences of the Ministry of Education, South-Central Minzu University, Wuhan, China.
| |
Collapse
|
4
|
André RF, Gervais C, Zschiesche H, Jianu T, López-Salas N, Antonietti M, Odziomek M. Revisiting the phosphonium salt chemistry for P-doped carbon synthesis: toward high phosphorus contents and beyond the phosphate environment. MATERIALS HORIZONS 2024; 11:3437-3449. [PMID: 38712961 DOI: 10.1039/d4mh00293h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/08/2024]
Abstract
The introduction of phosphorus and nitrogen atoms in carbo-catalysts is a common way to tune the electronic density, and thereby the reactivity, of the material, as well as to introduce surface reactive sites. Numerous environments are reported for the N atoms, but the P-doping chemistry is less explored and focuses on surface POx groups. A one-step synthesis of P/N-doped carbonaceous materials is presented here, using affordable and industrially available urea and tetrakis(hydroxymethyl)phosphonium chloride (THPC) as the N and P sources, respectively. In contrast to most of the synthetic pathways toward P-doped carbonaceous materials, the THPC precursor only displays P-C bonds along the carbon backbone. This resulted in unusual phosphorus environments for the materials obtained from direct thermal treatment of THPC-urea, presumably of type C-P-N according to 31P NMR and XPS. Alternatively, the in situ polymerization and calcination of the precursors were run in calcium chloride hydrate, used as a combined reaction medium and porogen agent. Following this salt-templating strategy led to particularly high phosphorus contents (up to 18 wt%), associated with porosities up to 600 m2 g-1. The so-formed P/N-doped porous materials were employed as metal-free catalysts for the mild oxidative dehydrogenation of N-heterocycles to N-heteroarenes at room temperature and in air.
Collapse
Affiliation(s)
- Rémi F André
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476 Potsdam, Germany.
| | - Christel Gervais
- Sorbonne Université, CNRS, Laboratoire de Chimie de la Matière Condensée de Paris (LCMCP), 4 place Jussieu, 75005 Paris, France
| | - Hannes Zschiesche
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476 Potsdam, Germany.
| | - Teodor Jianu
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476 Potsdam, Germany.
| | - Nieves López-Salas
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476 Potsdam, Germany.
- Chair of Sustainable Materials Chemistry, Paderborn University, Warburger Strasse 100, 33098, Paderborn, Germany
| | - Markus Antonietti
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476 Potsdam, Germany.
| | - Mateusz Odziomek
- Colloid Chemistry Department, Max Planck Institute of Colloids and Interfaces (MPIKG), 14476 Potsdam, Germany.
| |
Collapse
|
5
|
Ma L, Feng W, Zhao S, Wang C, Xi Y, Lin X. On the mechanism of acceptorless dehydrogenation of N-heterocycles catalyzed by tBuOK: a computational study. RSC Adv 2023; 13:20748-20755. [PMID: 37441048 PMCID: PMC10334261 DOI: 10.1039/d3ra04305c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/27/2023] [Accepted: 07/04/2023] [Indexed: 07/15/2023] Open
Abstract
The catalytic acceptorless dehydrogenation (ADH) of saturated N-heterocycles has recently gained considerable attention as a promising strategy for hydrogen release from liquid organic hydrogen carriers (LOHCs). Recently, a simple tBuOK base-promoted ADH of N-heterocycles was developed by Yu et al. (Adv. Synth. Catal. 2019, 361, 3958). However, it is still open as to how the tBuOK plays a catalytic role in the ADH process. Herein, our density functional study reveals that the tBuOK catalyzes the ADH of 1,2,3,4-tetrahydroquinoline (THQ) through a quasi-metal-ligand bifunctional catalytic channel or a base-catalyzed pathway with close energy barriers. The hydride transfer in the first dehydrogenation process is determined to be the rate determining step, and the second dehydrogenation can proceed directly from 34DHQ regulated by the tBuOK. In addition, the computational results show that the cooperation of a suitable alkali metal ion with the tBuO- group is so critical that the tBuOLi and the isolated tBuO- are both inferior to tBuOK as a dehydrogenation catalyst.
Collapse
Affiliation(s)
- Lishuang Ma
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Wenxu Feng
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Shidong Zhao
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Chuangye Wang
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Yanyan Xi
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 P. R. China
| | - Xufeng Lin
- College of Chemistry and Chemical Engineering, China University of Petroleum (East China) Qingdao 266580 P. R. China
- State Key Laboratory of Heavy Oil Processing, China University of Petroleum (East China) Qingdao 266580 P. R. China
| |
Collapse
|
6
|
Tang F, Zhang G, Wang L, Huang J, Liu YN. Unsymmetrically N, S-coordinated single-atom cobalt with electron redistribution for catalytic hydrogenation of quinolines. J Catal 2022. [DOI: 10.1016/j.jcat.2022.08.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/26/2022]
|
7
|
Ibrahim MYS, Bennett JA, Abolhasani M. Continuous Room-Temperature Hydrogen Release from Liquid Organic Carriers in a Photocatalytic Packed-Bed Flow Reactor. CHEMSUSCHEM 2022; 15:e202200733. [PMID: 35446510 PMCID: PMC9400973 DOI: 10.1002/cssc.202200733] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/11/2022] [Revised: 04/20/2022] [Indexed: 06/14/2023]
Abstract
Despite the potential of hydrogen (H2 ) storage in liquid organic carriers to achieve carbon neutrality, the energy required for H2 release and the cost of catalyst recycling have hindered its large-scale adoption. In response, a photo flow reactor packed with rhodium (Rh)/titania (TiO2 ) photocatalyst was reported for the continuous and selective acceptorless dehydrogenation of 1,2,3,4-tetrahydroquinoline to H2 gas and quinoline under visible light irradiation at room temperature. The tradeoff between the reactor pressure drop and its photocatalytic surface area was resolved by selective in-situ photodeposition of Rh in the photo flow reactor post-packing on the outer surface of the TiO2 microparticles available to photon flux, thereby reducing the optimal Rh loading by 10 times compared to a batch reactor, while facilitating catalyst reuse and regeneration. An example of using quinoline as a hydrogen acceptor to lower the energy of the hydrogen production step was demonstrated via the water-gas shift reaction.
Collapse
Affiliation(s)
- Malek Y. S. Ibrahim
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC 27695USA
| | - Jeffrey A. Bennett
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC 27695USA
| | - Milad Abolhasani
- Department of Chemical and Biomolecular EngineeringNorth Carolina State University911 Partners WayRaleighNC 27695USA
| |
Collapse
|
8
|
Lu X, Qin J, Xian C, Nie J, Li X, He J, Liu B. Cobalt nanoparticles supported on microporous nitrogen-doped carbon for efficient catalytic transfer hydrogenation reaction between nitroarenes and N-heterocycles. Catal Sci Technol 2022. [DOI: 10.1039/d2cy00914e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/21/2022]
Abstract
Catalytic transfer hydrogenation reaction between nitroarenes and saturated N-heterocycles to simultaneously synthesize value-added anilines and unsaturated N-heterocycles is attractive due to its low-cost, atomic economic, and environmental-friendly properties. Herein, we...
Collapse
|