1
|
Sun Q, Wang Y, Ren H, Hou S, Niu K, Wang L, Liu S, Ye J, Cui C, Qi X. Engineered Hollow Nanocomplex Combining Photothermal and Antioxidant Strategies for Targeted Tregs Depletion and Potent Immune Activation in Tumor Immunotherapy. Adv Healthc Mater 2025:e2405124. [PMID: 40109122 DOI: 10.1002/adhm.202405124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 03/06/2025] [Indexed: 03/22/2025]
Abstract
In the tumor immunosuppressive microenvironment (TIME), regulatory T cells (Tregs) critically suppress anticancer immunity, characterized by high expression of glucocorticoid-induced TNF receptor (GITR) expression and sensitivity to reactive oxygen species (ROS). This study develops a near-infrared (NIR)-responsive hollow nanocomplex (HPDA-OPC/DTA-1) using hollow polydopamine nanoparticles (HPDA), endowed with thermogenic and antioxidative properties, specifically targeting Tregs to activate antitumor immunity. The GITR agonist DTA-1, combined with the antioxidant oligomeric proanthocyanidins (OPC) to deplete Tregs. However, Tregs depletion alone may not sufficiently trigger robust immune responses. The HPDA nanocarrier enhances thermogenic and antioxidative capacities, supporting photothermal immunotherapy. The HPDA-OPC/DTA-1 demonstrates NIR responsiveness for both photothermal therapy (PTT) and OPC release, while facilitating Tregs depletion via DTA-1 and reducing ROS levels, thereby reviving antitumor immunity. Notably, intratumoral CD4+CD25+FOXP3+ Tregs exhibited a 4.08-fold reduction alongside a 49.11-fold increase in CD8+ T cells/Tregs relative to controls. Enhanced dendritic cells (DCs) maturation and immunogenic cell death (ICD) induction further demonstrate that HPDA-OPC/DTA-1 alleviates immunosuppression and activates antitumor immunity. Ultimately, the observed tumor inhibitory effect (tumor volume: 6.75-fold versus the control) and an over 80% survival rate highlight the therapeutic potential of combining Tregs targeting, antioxidant strategy, and photothermal immunotherapy for effective cancer treatment.
Collapse
Affiliation(s)
- Qi Sun
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Yuyan Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Hetian Ren
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Shiyuan Hou
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Kaiyi Niu
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Liu Wang
- School of Basic Medicine, Capital Medical University, Beijing, 100069, China
| | - Siyu Liu
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Jingyi Ye
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Chunying Cui
- School of Pharmaceutical Sciences, Laboratory for Clinical Medicine, Capital Medical University, Beijing Area Major Laboratory of Peptide and Small Molecular Drugs, Engineering Research Center of Endogenous Prophylactic of Ministry of Education of China, Beijing Laboratory of Biomedical Materials, Beijing, 100069, China
| | - Xianrong Qi
- Beijing Key Laboratory of Molecular Pharmaceutics and New Drug Delivery System, School of Pharmaceutical Sciences, Peking University, Beijing, 100191, China
| |
Collapse
|
2
|
Sathe A, Ayala C, Bai X, Grimes SM, Lee B, Kin C, Shelton A, Poultsides G, Ji HP. GITR and TIGIT immunotherapy provokes divergent multicellular responses in the tumor microenvironment of gastrointestinal cancers. Genome Med 2023; 15:100. [PMID: 38008725 PMCID: PMC10680277 DOI: 10.1186/s13073-023-01259-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2023] [Accepted: 11/14/2023] [Indexed: 11/28/2023] Open
Abstract
BACKGROUND Understanding the mechanistic effects of novel immunotherapy agents is critical to improving their successful clinical translation. These effects need to be studied in preclinical models that maintain the heterogenous tumor microenvironment (TME) and dysfunctional cell states found in a patient's tumor. We investigated immunotherapy perturbations targeting co-stimulatory molecule GITR and co-inhibitory immune checkpoint TIGIT in a patient-derived ex vivo system that maintains the TME in its near-native state. Leveraging single-cell genomics, we identified cell type-specific transcriptional reprogramming in response to immunotherapy perturbations. METHODS We generated ex vivo tumor slice cultures from fresh surgical resections of gastric and colon cancer and treated them with GITR agonist or TIGIT antagonist antibodies. We applied paired single-cell RNA and TCR sequencing to the original surgical resections, control, and treated ex vivo tumor slice cultures. We additionally confirmed target expression using multiplex immunofluorescence and validated our findings with RNA in situ hybridization. RESULTS We confirmed that tumor slice cultures maintained the cell types, transcriptional cell states and proportions of the original surgical resection. The GITR agonist was limited to increasing effector gene expression only in cytotoxic CD8 T cells. Dysfunctional exhausted CD8 T cells did not respond to GITR agonist. In contrast, the TIGIT antagonist increased TCR signaling and activated both cytotoxic and dysfunctional CD8 T cells. This included cells corresponding to TCR clonotypes with features indicative of potential tumor antigen reactivity. The TIGIT antagonist also activated T follicular helper-like cells and dendritic cells, and reduced markers of immunosuppression in regulatory T cells. CONCLUSIONS We identified novel cellular mechanisms of action of GITR and TIGIT immunotherapy in the patients' TME. Unlike the GITR agonist that generated a limited transcriptional response, TIGIT antagonist orchestrated a multicellular response involving CD8 T cells, T follicular helper-like cells, dendritic cells, and regulatory T cells. Our experimental strategy combining single-cell genomics with preclinical models can successfully identify mechanisms of action of novel immunotherapy agents. Understanding the cellular and transcriptional mechanisms of response or resistance will aid in prioritization of targets and their clinical translation.
Collapse
Affiliation(s)
- Anuja Sathe
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Carlos Ayala
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Xiangqi Bai
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Susan M Grimes
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA
| | - Byrne Lee
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Cindy Kin
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Andrew Shelton
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - George Poultsides
- Division of Surgical Oncology, Department of Surgery, Stanford University, Stanford, CA, USA
| | - Hanlee P Ji
- Division of Oncology, Department of Medicine, Stanford University School of Medicine, CCSR 2245, 269 Campus Drive, Stanford, CA, 94305, USA.
| |
Collapse
|
3
|
Kelley C, Vander Molen J, Choi J, Bhai S, Martin K, Cochran C, Puthanveetil P. Impact of Glucocorticoids on Cardiovascular System-The Yin Yang Effect. J Pers Med 2022; 12:jpm12111829. [PMID: 36579545 PMCID: PMC9694205 DOI: 10.3390/jpm12111829] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/02/2022] [Revised: 10/28/2022] [Accepted: 10/29/2022] [Indexed: 11/06/2022] Open
Abstract
Glucocorticoids are not only endogenous hormones but are also administered exogenously as an anti-inflammatory and immunosuppressant for their long-term beneficial and lifesaving effects. Because of their potent anti-inflammatory property and ability to curb the cytokines, they are administered as lifesaving steroids. This property is not only made use of in the cardiovascular system but also in other major organ systems and networks. There is a fine line between their use as a protective anti-inflammatory and a steroid that could cause overuse-induced complications in major organ systems including the cardiovascular system. Studies conducted in the cardiovascular system demonstrate that glucocorticoids are required for growth and development and also for offering protection against inflammatory signals. Excess or long-term glucocorticoid administration could alter cardiac metabolism and health. The endogenous dysregulated state due to excess endogenous glucocorticoid release from the adrenals as seen with Cushing's syndrome or excess exogenous glucocorticoid administration leading to Cushing's-like condition show a similar impact on the cardiovascular system. This review highlights the importance of maintaining a glucocorticoid balance whether it is endogenous and exogenous in regulating cardiovascular health.
Collapse
Affiliation(s)
- Chase Kelley
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Jonathan Vander Molen
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Jennifer Choi
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Sahar Bhai
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Katelyn Martin
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Cole Cochran
- Chicago College of Osteopathic Medicine, Midwestern University, Chicago, IL 60515, USA
| | - Prasanth Puthanveetil
- Rm-322-I, Science Hall, Department of Pharmacology, College of Graduate Studies, Midwestern University, Chicago, IL 60515, USA
- Correspondence: ; Tel.: +1-630-960-3935
| |
Collapse
|
4
|
Davar D, Zappasodi R, Wang H, Naik GS, Sato T, Bauer T, Bajor D, Rixe O, Newman W, Qi J, Holland A, Wong P, Sifferlen L, Piper D, Sirard CA, Merghoub T, Wolchok JD, Luke JJ. Phase IB Study of GITR Agonist Antibody TRX518 Singly and in Combination with Gemcitabine, Pembrolizumab, or Nivolumab in Patients with Advanced Solid Tumors. Clin Cancer Res 2022; 28:3990-4002. [PMID: 35499569 PMCID: PMC9475244 DOI: 10.1158/1078-0432.ccr-22-0339] [Citation(s) in RCA: 29] [Impact Index Per Article: 9.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2022] [Revised: 04/04/2022] [Accepted: 04/28/2022] [Indexed: 11/16/2022]
Abstract
PURPOSE TRX518 is a mAb engaging the glucocorticoid-induced TNF receptor-related protein (GITR). This open-label, phase I study (TRX518-003) evaluated the safety and efficacy of repeated dose TRX518 monotherapy and in combination with gemcitabine, pembrolizumab, or nivolumab in advanced solid tumors. PATIENTS AND METHODS TRX518 monotherapy was dose escalated (Part A) and expanded (Part B) up to 4 mg/kg loading, 1 mg/kg every 3 weeks. Parts C-E included dose-escalation (2 and 4 mg/kg loading followed by 1 mg/kg) and dose-expansion (4 mg/kg loading) phases with gemcitabine (Part C), pembrolizumab (Part D), or nivolumab (Part E). Primary endpoints included incidence of dose-limiting toxicities (DLT), serious adverse events (SAE), and pharmacokinetics. Secondary endpoints were efficacy and pharmacodynamics. RESULTS A total of 109 patients received TRX518: 43 (Parts A+B), 30 (Part C), 26 (Part D), and 10 (Part E), respectively. A total of 67% of patients in Parts D+E had received prior anti-PD(L)1 or anti-CTLA-4. No DLTs, treatment-related SAEs, and/or grade 4 or 5 AEs were observed with TRX518 monotherapy. In Parts C-E, no DLTs were observed, although TRX518-related SAEs were reported in 3.3% (Part C) and 10.0% (Part E), respectively. Objective response rate was 3.2%, 3.8%, 4%, and 12.5% in Parts A+B, C, D, and E, respectively. TRX518 affected peripheral and intratumoral regulatory T cells (Treg) with different kinetics depending on the combination regimen. Responses with TRX518 monotherapy+anti-PD1 combination were associated with intratumoral Treg reductions and CD8 increases and activation after treatment. CONCLUSIONS TRX518 showed an acceptable safety profile with pharmacodynamic activity. Repeated dose TRX518 monotherapy and in combination resulted in limited clinical responses associated with immune activation. See related commentary by Hernandez-Guerrero and Moreno, p. 3905.
Collapse
Affiliation(s)
- Diwakar Davar
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| | - Roberta Zappasodi
- Division of Hematology and Medical Oncology, Department of Medicine, Weill Cornell Medical College, New York, New York
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Immunology and Microbial Pathogenesis Program, Weill Cornell Graduate School of Medical Sciences, New York, New York
| | - Hong Wang
- Department of Biostatistics, Graduate School of Public Health, University of Pittsburgh, Pittsburgh, Pennsylvania
| | | | - Takami Sato
- Department of Medical Oncology, Thomas Jefferson University, Philadelphia, Pennsylvania
| | - Todd Bauer
- Phase I Drug Development Unit, Sarah Cannon Research Institute, Tennessee Oncology, Nashville, Tennessee
| | - David Bajor
- Department of Medicine and Case Comprehensive Cancer Center, Case Western Reserve University, Cleveland, Ohio
| | - Olivier Rixe
- University of New Mexico Comprehensive Cancer Center, Albuquerque, New Mexico
| | | | - Jingjing Qi
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Aliya Holland
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | - Phillip Wong
- Immune Monitoring Facility, Ludwig Center for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
| | | | | | | | - Taha Merghoub
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Jedd D. Wolchok
- Parker Institute for Cancer Immunotherapy, Memorial Sloan Kettering Cancer Center, New York, New York
- Human Oncology and Pathogenesis Program, Memorial Sloan Kettering Cancer Center, New York, New York
- Ludwig Collaborative and Swim Across America Laboratory, Memorial Sloan Kettering Cancer Center, New York, New York
- Department of Medicine, Memorial Sloan Kettering Cancer Center, New York, New York
- Weill Cornell Medicine, New York, New York
| | - Jason J. Luke
- Department of Medicine and UPMC Hillman Cancer Center, University of Pittsburgh, Pittsburgh, Pennsylvania
| |
Collapse
|
5
|
Hernandez-Guerrero T, Moreno V. GITR antibodies in cancer: not ready for prime time. Clin Cancer Res 2022; 28:3905-3907. [PMID: 35834593 DOI: 10.1158/1078-0432.ccr-22-1489] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/02/2022] [Revised: 06/14/2022] [Accepted: 07/01/2022] [Indexed: 11/16/2022]
Abstract
GITR agonistic antibodies are expected to increase the antitumor response mainly by reducing the effect of Foxp3+ T regulatory cells. TRX-518 is a novel GITR agonist that has shown good pharmacodynamic activity by depleting T regs in preclinical models, with limited clinical activity demonstrated in patients with advanced solid tumors.
Collapse
Affiliation(s)
| | - Victor Moreno
- START Madrid-FJD, Hospital Universitario Fundacion Jimenez Diaz, Madrid, Spain
| |
Collapse
|
6
|
Ma K, Que W, Hu X, Guo WZ, Zhong L, Ueda D, Gu EL, Li XK. Combinations of anti-GITR antibody and CD28 superagonist ameliorated dextran sodium sulfate-induced mouse colitis. Clin Exp Immunol 2022; 208:340-350. [PMID: 35511600 PMCID: PMC9226153 DOI: 10.1093/cei/uxac039] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2022] [Revised: 04/14/2022] [Accepted: 05/02/2022] [Indexed: 11/12/2022] Open
Abstract
Ulcerative colitis (UC) is one of the two main forms of inflammatory bowel disease (IBD) and is an idiopathic, chronic inflammatory disease of the colonic mucosa with an unclear etiology. Interleukin (IL)-10 has been reported to play a crucial role in the maintenance of immune homeostasis in the intestinal environment. Type 1 regulatory T (Tr1) cells are a subset of CD4+Foxp3- T cells able to secrete high amounts of IL-10 with potent immunosuppressive properties. In this study, we found that the combination of anti-GITR antibody (G3c) and CD28 superagonist (D665) treatment stimulated the generation of a large amount of Tr1 cells. Furthermore, G3c/D665 treatment not only significantly relieved severe mucosal damage but also reduced the incidence of colonic shortening, weight loss, and hematochezia. Dextran sodium sulfate (DSS) upregulated the mRNA levels of IL-6, IL-1β, IL-17, IL-12, tumor necrosis factor-alpha, C-C chemokine receptor type 5, and Bax in splenic lymphocytes (SPLs) and colon tissues, while G3c/D665 treatment conversely inhibited the increase in mRNA levels of these genes. In addition, G3c/D665 treatment altered the proportion of CD4+ and CD8+ T cells and increased CD4+CD25+Foxp3+ regulatory T cells in SPLs, mesenteric lymph nodes (MLNs), and lamina propria lymphocytes (LPLs). Thus, the combination of G3c and D665 treatment showed efficacy against DSS-induced UC in mice by inducing a large amount of Tr1 cell generation via the musculoaponeurotic fibrosarcoma pathways in vivo and relieving inflammatory responses both systematically and locally.
Collapse
Affiliation(s)
- Kuai Ma
- Department of Gastroenterology and Hepatology, Jing'an District Central Hospital, Jing'an Branch of Huashan Hospital, Fudan University, Shanghai, China.,Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Weitao Que
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Xin Hu
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan
| | - Wen-Zhi Guo
- Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| | - Liang Zhong
- Department of Gastroenterology, Huashan Hospital, Fudan University, Shanghai, China
| | - Daisuke Ueda
- Division of Hepato-Pancreato-Biliary Surgery and Transplantation, Department of Surgery, Kyoto University Graduate School of Medicine, Kyoto, Japan
| | - Er-Li Gu
- Department of Gastroenterology and Hepatology, Jing'an District Central Hospital, Jing'an Branch of Huashan Hospital, Fudan University, Shanghai, China
| | - Xiao-Kang Li
- Division of Transplantation Immunology, National Research Institute for Child Health and Development, Tokyo, Japan.,Department of Hepatobiliary and Pancreatic Surgery, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, China
| |
Collapse
|