1
|
Fusani B, Ramos A, Cardoso SD, Gonçalves D. Vasotocin and oxytocin modulation of the endocrine and behavioral response to an aggressive challenge in male Siamese fighting fish. Horm Behav 2025; 171:105728. [PMID: 40209508 DOI: 10.1016/j.yhbeh.2025.105728] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 09/24/2024] [Revised: 02/10/2025] [Accepted: 03/26/2025] [Indexed: 04/12/2025]
Abstract
Aggressive behavior is an adaptive trait present across all taxa. However, the neuroendocrine mechanisms regulating it, particularly in fish, are not well understood. Oxytocin (OXT) and arginine vasotocin (VT) are known modulators of aggression, but their actions remain controversial. This study tested the possible modulation of endocrine and behavioral responses to an aggression challenge by these nonapeptides in Siamese fighting fish, Betta splendens, a species known for its intrinsic aggressiveness. Male B. splendens were injected with different dosages of either Manning compound or L-368,899, VT and OXT receptor antagonists respectively, and were exposed to a mirror challenge for 30 min. While all fish displayed high levels of aggression toward their mirror image, no differences were observed between control-injected and treatment fish. However, blocking VT inhibited the post-fight increase in plasma levels of the androgen 11-ketotestosterone (KT). To further investigate this result, testis tissue from males was incubated with and without VT and Manning compound, and KT levels were measured after 180 min. Results showed a direct effect of VT on in vitro KT secretion, indicating the presence of VT receptors in the testes of this species. Overall, the study does not support a modulatory role of VT or OXT in aggressive behavior, although VT might be implicated in the regulation of peripheral androgen response to aggression in B. splendens.
Collapse
Affiliation(s)
- Bianca Fusani
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - Andreia Ramos
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - Sara D Cardoso
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau.
| | - David Gonçalves
- ISE - Institute of Science and Environment, University of Saint Joseph, Macau; William James Center for Research, Ispa - Instituto Universitário, Lisbon, Portugal.
| |
Collapse
|
2
|
Xu J, Li P, Xu M, Wang C, Kocher TD, Wang D. Mutation of mpv17 results in loss of iridophores due to mitochondrial dysfunction in tilapia. J Hered 2025; 116:101-112. [PMID: 38946032 DOI: 10.1093/jhered/esae034] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/19/2024] [Accepted: 06/15/2024] [Indexed: 07/02/2024] Open
Abstract
Mpv17 (mitochondrial inner membrane protein MPV17) deficiency causes severe mitochondrial DNA depletion syndrome in mammals and loss of pigmentation of iridophores and a significant decrease of melanophores in zebrafish. The reasons for this are still unclear. In this study, we established an mpv17 homozygous mutant line in Nile tilapia. The developing mutants are transparent due to the loss of iridophores and aggregation of pigment granules in the melanophores and disappearance of the vertical pigment bars on the side of the fish. Transcriptome analysis using the skin of fish at 30 dpf (days post fertilization) revealed that the genes related to purine (especially pnp4a) and melanin synthesis were significantly downregulated. However, administration of guanine diets failed to rescue the phenotype of the mutants. In addition, no obvious apoptosis signals were observed in the iris of the mutants by TUNEL staining. Significant downregulation of genes related to iridophore differentiation was detected by qPCR. Insufficient ATP, as revealed by ATP assay, α-MSH treatment, and adcy5 mutational analysis, might account for the defects of melanophores in mpv17 mutants. Several tissues displayed less mtDNA and decreased ATP levels. Taken together, these results indicated that mutation of mpv17 led to mitochondrial dTMP deficiency, followed by impaired mtDNA content and mitochondrial function, which in turn, led to loss of iridophores and a transparent body color in tilapia.
Collapse
Affiliation(s)
- Jia Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Peng Li
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Mengmeng Xu
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Chenxu Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| | - Thomas D Kocher
- Department of Biology, University of Maryland College Park, Maryland, United States
| | - Deshou Wang
- Integrative Science Center of Germplasm Creation in Western China (CHONGQING) Science City, Key Laboratory of Freshwater Fish Reproduction and Development (Ministry of Education), Key Laboratory of Aquatic Science of Chongqing, School of Life Sciences, Southwest University, Chongqing 400715, China
| |
Collapse
|
3
|
Shimada Y, Aydın B, Kon-Nanjo K, Handayani KS, Gultom VDN, Simakov O, Fahrurrozi, Kon T. Potential of Garra rufa as a novel high-temperature resistant model fish: a review on current and future approaches. ZOOLOGICAL LETTERS 2025; 11:3. [PMID: 40016791 PMCID: PMC11869722 DOI: 10.1186/s40851-025-00249-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 02/05/2025] [Indexed: 03/01/2025]
Abstract
Garra rufa, commonly known as the "doctor fish", is a freshwater cyprinid native to warm regions of the Middle East. Since the late twentieth century, it has been widely utilized in spas for alternative therapeutics and fish pedicures (or manicures) for dermatological diseases such as psoriasis and eczema. Owing to its unique characteristics, there is growing interest in exploring various applications of G. rufa. This review provides a comprehensive summary of the phylogenetic position, ecology, biological characteristics, and breeding methods of G. rufa, and provides insights into its use as a therapeutic fish. Notably, the ability of G. rufa to thrive in high-temperature environments exceeding 37 °C distinguishes it from other cyprinids and suggests its potential as a model for human diseases, such as human infectious diseases, and in use in cancer xenograft models for high-throughput drug screening. The ongoing genome sequencing project for G. rufa aims to elucidate the mechanisms underlying its high-temperature tolerance and offers valuable genomic resources. These efforts have resulted in significant advances in fish aquaculture, species conservation, and biomedical research.
Collapse
Affiliation(s)
- Yasuhito Shimada
- Mie University Zebrafish Research Center, 2-174 Edobashi, Tsu, Mie, 5148572, Japan.
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 5148572, Japan.
- Department of Integrative Pharmacology, Mie University Graduate School of Medicine, 2-174 Edobashi, Tsu, Mie, 514-8507, Japan.
| | - Baki Aydın
- Department of Aquaculture, Faculty of Fisheries, Akdeniz University, Antalya, 07070, Türkiye
| | - Koto Kon-Nanjo
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| | - Kiki Syaputri Handayani
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Victor David Nico Gultom
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Oleg Simakov
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| | - Fahrurrozi
- Research Center for Marine and Land Bioindustry, Research Organization for Earth Sciences and Maritime, National Research and Innovation Agency, Teluk Kodek, Pemenang, West Nusa Tenggara, 83352, Indonesia
| | - Tetsuo Kon
- Department of Neurosciences and Developmental Biology, University of Vienna, 1030, Vienna, Austria
| |
Collapse
|
4
|
Yamazaki H, Mori S, Kishida O, Nagano AJ, Kokita T. QTL-Based Evidence of Population Genetic Divergence in Male Territorial Aggressiveness of the Japanese Freshwater Threespine Stickleback. Ecol Evol 2025; 15:e70795. [PMID: 39803187 PMCID: PMC11717901 DOI: 10.1002/ece3.70795] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2024] [Revised: 12/05/2024] [Accepted: 12/16/2024] [Indexed: 01/16/2025] Open
Abstract
Territorial aggression is widespread across the animal kingdom and is expressed in diverse ecological and social contexts. In addition, there are marked variations in the degree of male reproductive territoriality within and between species. These differences are often attributed to genetic components. However, the evolutionary genetic mechanisms in wild animals are poorly understood. This study explored the genetic basis of divergent male territorial aggressiveness between two Japanese freshwater populations, Gifu (GF) and Tomakomai (TM), in the threespine stickleback, which is a well-known model system for both behavioral ecology and evolutionary genetics. First, our field survey indicated that the distribution of reproductive territories differed greatly across breeding habitats between the focal populations, and the density of reproductive territories was much greater in the GF population. Second, a one-on-one arena aquarium experiment on male-male combat using wild-caught and common-garden-reared males revealed that GF males were genetically more aggressive than TM males. Finally, we performed quantitative trait loci (QTL) analysis using an F2 hybrid cross between the two populations to identify the causal genomic regions contributing to the divergence in male territorial aggressiveness. Our QTL analysis identified a single significant locus in an aggression-related behavioral component, that is, the number of bites of focal F2 males toward a GF stimulus intruder. Two notable behavior-related genes, HTR2A and MAO-A, are found near this locus. These genes have often been suggested to influence of aggressive behavior in animals; therefore, they are regarded as important candidate genes for further functional analyses. Thus, we are the first to provide a QTL-based genetic basis for population divergence in male territorial aggressiveness in the threespine stickleback.
Collapse
Affiliation(s)
| | - Seiichi Mori
- The Institute of Regional DevelopmentGifu Kyoritsu UniversityOgakiJapan
| | - Osamu Kishida
- Tomakomai Experimental Forest, Field Science Center for Northern BiosphereHokkaido UniversityTomakomaiJapan
| | - Atsushi J. Nagano
- Faculty of AgricultureRyukoku UniversityOtsuJapan
- Institute for Advanced BiosciencesKeio UniversityTsuruokaJapan
| | | |
Collapse
|
5
|
Yang H, Li YL, Xing TF, Liu JX. Characterization of the sex determining region and development of a molecular sex identification method in a Salangid fish. BMC Genomics 2024; 25:1120. [PMID: 39567903 PMCID: PMC11580623 DOI: 10.1186/s12864-024-11047-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 11/14/2024] [Indexed: 11/22/2024] Open
Abstract
BACKGROUND The short-snout icefish, Neosalanx brevirostris, a member of the Salangidae family, is an economically important fishery species in China. Understanding the mechanisms underlying sex determination in this species has crucial implications for conservation, ecology and evolution. Meanwhile, there is a shortage of rapid and cost-effective genetic methods for sex identification, which poses challenges in identifying the sex of immature individuals in sex determination mechanism studies and aquaculture breeding applications. RESULTS Based on whole genome resequencing data, sex-specific loci and regions were found to be concentrated in a region on chromosome 2. All sex-specific loci exhibited excess heterozygosity in females and complete homozygosity in males. This sex determining region contains seven genes, including cytochrome P450 aromatase CYP19B, which is involved in steroidogenesis and is associated with 24 sex-specific loci and two W-deletions. A haploid female-specific sequence was identified as paralogous to a diploid sequence with a significant length difference, making it suitable for rapid and cost-effective genetic sex identification by traditional PCR and agarose gel electrophoresis, which were further validated in 24 females and 24 males with known phenotypic sexes. CONCLUSIONS Our results confirm that N. brevirostris exhibits a female heterogametic sex determination system (ZZ/ZW), with chromosome 2 identified as the putative sex chromosome containing a relatively small sex determining region (~ 48 Kb). The gene CYP19B is proposed as a candidate sex determining gene. Moreover, the development of PCR based method enables genetic sex identification at any developmental stage, thereby facilitating further studies on sex determination mechanisms and advancing aquaculture breeding applications for this species.
Collapse
Affiliation(s)
- Hao Yang
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yu-Long Li
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| | - Teng-Fei Xing
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China
| | - Jin-Xian Liu
- CAS Key Laboratory of Marine Ecology and Environmental Sciences, Institute of Oceanology, Chinese Academy of Sciences, Qingdao, 266071, China.
- Laboratory for Marine Ecology and Environmental Science, Qingdao Marine Science and Technology Center, Qingdao, 266237, China.
| |
Collapse
|
6
|
Kim KR, Park SY, Jeong JH, Hwang Y, Kim H, Sung MS, Yu JN. Genetic Diversity and Population Structure of Rhodeus uyekii in the Republic of Korea Revealed by Microsatellite Markers from Whole Genome Assembly. Int J Mol Sci 2024; 25:6689. [PMID: 38928393 PMCID: PMC11203500 DOI: 10.3390/ijms25126689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2024] [Revised: 06/13/2024] [Accepted: 06/14/2024] [Indexed: 06/28/2024] Open
Abstract
This study is the first report to characterize the Rhodus uyekii genome and study the development of microsatellite markers and their markers applied to the genetic structure of the wild population. Genome assembly was based on PacBio HiFi and Illumina HiSeq paired-end sequencing, resulting in a draft genome assembly of R. uyekii. The draft genome was assembled into 2652 contigs. The integrity assessment of the assemblies indicates that the quality of the draft assemblies is high, with 3259 complete BUSCOs (97.2%) in the database of Verbrata. A total of 31,166 predicted protein-coding genes were annotated in the protein database. The phylogenetic tree showed that R. uyekii is a close but distinct relative of Onychostoma macrolepis. Among the 10 fish genomes, there were significant gene family expansions (8-2387) and contractions (16-2886). The average number of alleles amplified by the 21 polymorphic markers ranged from 6 to 23, and the average PIC value was 0.753, which will be useful for evolutionary and genetic analysis. Using population genetic analysis, we analyzed genetic diversity and the genetic structures of 120 individuals from 6 populations. The average number of alleles per population ranged from 7.6 to 9.9, observed heterozygosity ranged from 0.496 to 0.642, and expected heterozygosity ranged from 0.587 to 0.783. Discriminant analysis of principal components According to the analysis method, the population was divided into three populations (BS vs. DC vs. GG, GC, MS, DC). In conclusion, our study provides a useful resource for comparative genomics, phylogeny, and future population studies of R. uyekii.
Collapse
Affiliation(s)
- Kang-Rae Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.Y.P.); (J.H.J.); (Y.H.); (H.K.)
| | - So Young Park
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.Y.P.); (J.H.J.); (Y.H.); (H.K.)
| | - Ju Hui Jeong
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.Y.P.); (J.H.J.); (Y.H.); (H.K.)
| | - Yujin Hwang
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.Y.P.); (J.H.J.); (Y.H.); (H.K.)
| | - Heesoo Kim
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.Y.P.); (J.H.J.); (Y.H.); (H.K.)
| | - Mu-Sung Sung
- Muldeuli Research, Icheon 12607, Republic of Korea;
| | - Jeong-Nam Yu
- Animal & Plant Research Department, Nakdonggang National Institute of Biological Resources, Sangju 37242, Republic of Korea; (K.-R.K.); (S.Y.P.); (J.H.J.); (Y.H.); (H.K.)
| |
Collapse
|
7
|
Fodor E, Okendo J, Szabó N, Szabó K, Czimer D, Tarján-Rácz A, Szeverényi I, Low BW, Liew JH, Koren S, Rhie A, Orbán L, Miklósi Á, Varga M, Burgess SM. The reference genome of Macropodus opercularis (the paradise fish). Sci Data 2024; 11:540. [PMID: 38796485 PMCID: PMC11127978 DOI: 10.1038/s41597-024-03277-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 04/18/2024] [Indexed: 05/28/2024] Open
Abstract
Amongst fishes, zebrafish (Danio rerio) has gained popularity as a model system over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species has a highly complex behavioral repertoire and has been the subject of many ethological investigations but lacks genomic resources. Here we report the reference genome assembly of M. opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of 483,077,705 base pairs (~483 Mb) on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ~90% of them to orthogroups.
Collapse
Affiliation(s)
- Erika Fodor
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Javan Okendo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Nóra Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kata Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Czimer
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Anita Tarján-Rácz
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Szeverényi
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, Hungary
| | - Bi Wei Low
- Science Unit, Lingnan University, Hong Kong, China
| | | | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Arang Rhie
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - László Orbán
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, Hungary
| | - Ádám Miklósi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary.
| | - Shawn M Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA.
| |
Collapse
|
8
|
Szabó N, Fodor E, Varga Z, Tarján-Rácz A, Szabó K, Miklósi Á, Varga M. The paradise fish, an advanced animal model for behavioral genetics and evolutionary developmental biology. JOURNAL OF EXPERIMENTAL ZOOLOGY. PART B, MOLECULAR AND DEVELOPMENTAL EVOLUTION 2024; 342:189-199. [PMID: 37818738 DOI: 10.1002/jez.b.23223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Revised: 09/06/2023] [Accepted: 09/14/2023] [Indexed: 10/13/2023]
Abstract
Paradise fish (Macropodus opercularis) is an air-breathing freshwater fish species with a signature labyrinth organ capable of extracting oxygen from the air that helps these fish to survive in hypoxic environments. The appearance of this evolutionary innovation in anabantoids resulted in a rewired circulatory system, but also in the emergence of species-specific behaviors, such as territorial display, courtship and parental care in the case of the paradise fish. Early zoologists were intrigued by the structure and function of the labyrinth apparatus and a series of detailed descriptive histological studies at the beginning of the 20th century revealed the ontogenesis and function of this specialized system. A few decades later, these fish became the subject of numerous ethological studies, and detailed ethograms of their behavior were constructed. These latter studies also demonstrated a strong genetic component underlying their behavior, but due to lack of adequate molecular tools, the fine genetic dissection of the behavior was not possible at the time. The technological breakthroughs that transformed developmental biology and behavioral genetics in the past decades, however, give us now a unique opportunity to revisit these old questions. Building on the classic descriptive studies, the new methodologies will allow us to follow the development of the labyrinth apparatus at a cellular resolution, reveal the genes involved in this process and also the genetic architecture behind the complex behaviors that we can observe in this species.
Collapse
Affiliation(s)
- Nóra Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Erika Fodor
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Zoltán Varga
- Laboratory of Translational Behavioural Neuroscience, Department of Behavioural Neurobiology, Institute of Experimental Medicine, Eötvös Loránd Research Network, Budapest, Hungary
| | - Anita Tarján-Rácz
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kata Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ádám Miklósi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| |
Collapse
|
9
|
Kitano J, Ansai S, Takehana Y, Yamamoto Y. Diversity and Convergence of Sex-Determination Mechanisms in Teleost Fish. Annu Rev Anim Biosci 2024; 12:233-259. [PMID: 37863090 DOI: 10.1146/annurev-animal-021122-113935] [Citation(s) in RCA: 21] [Impact Index Per Article: 21.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/22/2023]
Abstract
Sexual reproduction is prevalent across diverse taxa. However, sex-determination mechanisms are so diverse that even closely related species often differ in sex-determination systems. Teleost fish is a taxonomic group with frequent turnovers of sex-determining mechanisms and thus provides us with great opportunities to investigate the molecular and evolutionary mechanisms underlying the turnover of sex-determining systems. Here, we compile recent studies on the diversity of sex-determination mechanisms in fish. We demonstrate that genes in the TGF-β signaling pathway are frequently used for master sex-determining (MSD) genes. MSD genes arise via two main mechanisms, duplication-and-transposition and allelic mutations, with a few exceptions. We also demonstrate that temperature influences sex determination in many fish species, even those with sex chromosomes, with higher temperatures inducing differentiation into males in most cases. Finally, we review theoretical models for the turnover of sex-determining mechanisms and discuss what questions remain elusive.
Collapse
Affiliation(s)
- Jun Kitano
- Ecological Genetics Laboratory, National Institute of Genetics, Mishima, Shizuoka, Japan;
| | - Satoshi Ansai
- Graduate School of Life Sciences, Tohoku University, Sendai, Miyagi, Japan
- Graduate School of Agriculture, Kyoto University, Kyoto, Japan;
| | - Yusuke Takehana
- Faculty of Bio-Science, Nagahama Institute of Bio-Science and Technology, Nagahama, Shiga, Japan;
| | - Yoji Yamamoto
- Department of Marine Biosciences, Tokyo University of Marine Science and Technology, Tokyo, Japan;
| |
Collapse
|
10
|
Fodor E, Okendo J, Szabó N, Szabó K, Czimer D, Tarján-Rácz A, Szeverényi I, Low BW, Liew JH, Koren S, Rhie A, Orbán L, Miklósi Á, Varga M, Burgess SM. The reference genome of the paradise fish ( Macropodus opercularis). BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.08.10.552018. [PMID: 37609174 PMCID: PMC10441432 DOI: 10.1101/2023.08.10.552018] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/24/2023]
Abstract
Over the decades, a small number of model species, each representative of a larger taxa, have dominated the field of biological research. Amongst fishes, zebrafish (Danio rerio) has gained popularity over most other species and while their value as a model is well documented, their usefulness is limited in certain fields of research such as behavior. By embracing other, less conventional experimental organisms, opportunities arise to gain broader insights into evolution and development, as well as studying behavioral aspects not available in current popular model systems. The anabantoid paradise fish (Macropodus opercularis), an "air-breather" species from Southeast Asia, has a highly complex behavioral repertoire and has been the subject of many ethological investigations, but lacks genomic resources. Here we report the reference genome assembly of Macropodus opercularis using long-read sequences at 150-fold coverage. The final assembly consisted of ≈483 Mb on 152 contigs. Within the assembled genome we identified and annotated 20,157 protein coding genes and assigned ≈90% of them to orthogroups. Completeness analysis showed that 98.5% of the Actinopterygii core gene set (ODB10) was present as a complete ortholog in our reference genome with a further 1.2 % being present in a fragmented form. Additionally, we cloned multiple genes important during early development and using newly developed in situ hybridization protocols, we showed that they have conserved expression patterns.
Collapse
Affiliation(s)
- Erika Fodor
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Javan Okendo
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Nóra Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Kata Szabó
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Dávid Czimer
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Anita Tarján-Rácz
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Ildikó Szeverényi
- Department of Ethology, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Bi Wei Low
- Science Unit, Lingnan University, Hong Kong, China
| | | | - Sergey Koren
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - Arang Rhie
- Computational and Statistical Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| | - László Orbán
- Frontline Fish Genomics Research Group, Department of Applied Fish Biology, Institute of Aquaculture and Environmental Safety, Hungarian University of Agriculture and Life Sciences, Georgikon Campus, Keszthely, Hungary
| | - Ádám Miklósi
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Máté Varga
- Department of Genetics, ELTE Eötvös Loránd University, Budapest, Hungary
| | - Shawn M. Burgess
- Translational and Functional Genomics Branch, National Human Genome Research Institute, Bethesda, MD, USA
| |
Collapse
|
11
|
Palmiotti A, Lichak MR, Shih PY, Kwon YM, Bendesky A. Genetic manipulation of betta fish. Front Genome Ed 2023; 5:1167093. [PMID: 37545763 PMCID: PMC10401044 DOI: 10.3389/fgeed.2023.1167093] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/15/2023] [Accepted: 07/07/2023] [Indexed: 08/08/2023] Open
Abstract
Betta splendens, also known as Siamese fighting fish or "betta," is a freshwater fish species renowned for its astonishing morphological diversity and extreme aggressive behavior. Despite recent advances in our understanding of the genetics and neurobiology of betta, the lack of tools to manipulate their genome has hindered progress at functional and mechanistic levels. In this study, we outline the use of three genetic manipulation technologies, which we have optimized for use in betta: CRISPR/Cas9-mediated knockout, CRISPR/Cas9-mediated knockin, and Tol2-mediated transgenesis. We knocked out three genes: alkal2l, bco1l, and mitfa, and analyzed their effects on viability and pigmentation. Furthermore, we knocked in a fluorescent protein into the mitfa locus, a proof-of-principle experiment of this powerful technology in betta. Finally, we used Tol2-mediated transgenesis to create fish with ubiquitous expression of GFP, and then developed a bicistronic plasmid with heart-specific expression of a red fluorescent protein to serve as a visible marker of successful transgenesis. Our work highlights the potential for the genetic manipulation of betta, providing valuable resources for the effective use of genetic tools in this animal model.
Collapse
Affiliation(s)
- Alec Palmiotti
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Madison R. Lichak
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Pei-Yin Shih
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Young Mi Kwon
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, New York, NY, United States
- Department of Ecology, Evolution and Environmental Biology, Columbia University, New York, NY, United States
| |
Collapse
|
12
|
Zhang Y, Mei Y, Cao A, Li S, He C, Song L, Gao J, Zhu Y, Cao X. Transcriptome analyses of betta fish (Betta splendens) provide novel insights into fin regeneration and color-related genes. Gene 2023:147508. [PMID: 37230203 DOI: 10.1016/j.gene.2023.147508] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/28/2023] [Revised: 04/17/2023] [Accepted: 05/22/2023] [Indexed: 05/27/2023]
Abstract
The betta fish (Betta splendens), an important ornamental fish, haswell-developed and colorful fins.After fin amputation, betta fish can easily regenerate finssimilar to the originalsin terms of structureand color. The powerful fin regeneration ability and a variety of colors in the betta fish are fascinating. However, the underlying molecular mechanisms are still not fully understood. In this study, tail fin amputation and regeneration experiments were performed on two kinds of betta fish: red and white color betta fish. Then, transcriptome analyseswere conducted to screen out fin regeneration and color-relatedgenes in betta fish. Through enrichment analyses of differentially expressed genes (DEGs), we founda series of enrichment pathways and genes related to finregeneration, including cell cycle (i.e. plcg2), TGF-beta signaling pathway (i.e. bmp6), PI3K-Akt signaling pathway (i.e. loxl2aand loxl2b), Wnt signaling pathway(i.e. lef1), gap junctions (i.e. cx43), angiogenesis (i.e. foxp1), and interferon regulatory factor (i.e. irf8). Meanwhile, some fin color-related pathways and genes were identified in betta fish, especially melanogenesis (i.e. tyr, tyrp1a, tyrp1b, and mc1r) and carotenoid color genes (i.e. pax3, pax7, sox10, and ednrba). In conclusion, this studycan not only enrich the research onfish tissue regeneration, but also has a potential significance for the aquaculture and breeding of the betta fish.
Collapse
Affiliation(s)
- Yunbang Zhang
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yihui Mei
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Aiying Cao
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Sen Li
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Chuan He
- Beijing Aquaculture Technology Extention Station, Beijing 100176, China
| | - Liyuan Song
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China
| | - Jian Gao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China
| | - Yurong Zhu
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| | - Xiaojuan Cao
- College of Fisheries, Engineering Research Center of Green development for Conventional Aquatic Biological Industry in the Yangtze River Economic Belt, Ministry of Education, Huazhong Agricultural University, Wuhan 430070, China; Hubei Provincial Engineering Laboratory for Pond Aquaculture, Hubei, People's Republic of China.
| |
Collapse
|
13
|
Silic MR, Zhang G. Bioelectricity in Developmental Patterning and Size Control: Evidence and Genetically Encoded Tools in the Zebrafish Model. Cells 2023; 12:cells12081148. [PMID: 37190057 DOI: 10.3390/cells12081148] [Citation(s) in RCA: 4] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/04/2023] [Revised: 04/03/2023] [Accepted: 04/10/2023] [Indexed: 05/17/2023] Open
Abstract
Developmental patterning is essential for regulating cellular events such as axial patterning, segmentation, tissue formation, and organ size determination during embryogenesis. Understanding the patterning mechanisms remains a central challenge and fundamental interest in developmental biology. Ion-channel-regulated bioelectric signals have emerged as a player of the patterning mechanism, which may interact with morphogens. Evidence from multiple model organisms reveals the roles of bioelectricity in embryonic development, regeneration, and cancers. The Zebrafish model is the second most used vertebrate model, next to the mouse model. The zebrafish model has great potential for elucidating the functions of bioelectricity due to many advantages such as external development, transparent early embryogenesis, and tractable genetics. Here, we review genetic evidence from zebrafish mutants with fin-size and pigment changes related to ion channels and bioelectricity. In addition, we review the cell membrane voltage reporting and chemogenetic tools that have already been used or have great potential to be implemented in zebrafish models. Finally, new perspectives and opportunities for bioelectricity research with zebrafish are discussed.
Collapse
Affiliation(s)
- Martin R Silic
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
| | - GuangJun Zhang
- Department of Comparative Pathobiology, Purdue University, West Lafayette, IN 47907, USA
- Center for Cancer Research, Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Inflammation, Immunology and Infectious Diseases (PI4D), Purdue University, West Lafayette, IN 47907, USA
- Purdue Institute for Integrative Neuroscience, Purdue University, 625 Harrison Street, West Lafayette, IN 47907, USA
| |
Collapse
|
14
|
Palmiotti A, Lichak MR, Shih PY, Bendesky A. Genetic manipulation of betta fish. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.02.16.528733. [PMID: 36824853 PMCID: PMC9948955 DOI: 10.1101/2023.02.16.528733] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/18/2023]
Abstract
Betta splendens , also known as Siamese fighting fish or 'betta', are renowned for their astonishing morphological diversity and extreme aggressive behavior. Despite recent advances in our understanding of the genetics and neurobiology of betta, the lack of tools to manipulate their genome has hindered progress at functional and mechanistic levels. In this study, we outline the use of three genetic manipulation technologies, which we have optimized for use in betta: CRISPR/Cas9-mediated knockout, CRISPR/Cas9-mediated knockin, and Tol2-mediated transgenesis. We knocked out three genes: alkal2l, bco1l , and mitfa , and analyzed their effects on viability and pigmentation. Furthermore, we successfully knocked in a fluorescent protein into the mitfa locus, a proof-of-principle experiment of this powerful technology in betta. Finally, we used Tol2-mediated transgenesis to create fish with ubiquitous expression of GFP, and then developed a bicistronic plasmid with heart-specific expression of a red fluorescent protein to serve as a visible marker of successful transgenesis. Our work highlights the potential for the genetic manipulation of betta, providing valuable resources for the effective use of genetic tools in this animal model.
Collapse
Affiliation(s)
- Alec Palmiotti
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
| | - Madison R Lichak
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
- Present address: Department of Ecology and Evolutionary Biology, Princeton University, NJ, USA
| | - Pei-Yin Shih
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
| | - Andres Bendesky
- Zuckerman Mind Brain Behavior Institute, Columbia University, NY, USA
- Department of Ecology, Evolution and Environmental Biology, Columbia University, NY, USA
| |
Collapse
|
15
|
Brown AR, Comai K, Mannino D, McCullough H, Donekal Y, Meyers HC, Graves CW, Seidel HS. A community-science approach identifies genetic variants associated with three color morphs in ball pythons (Python regius). PLoS One 2022; 17:e0276376. [PMID: 36260636 PMCID: PMC9581371 DOI: 10.1371/journal.pone.0276376] [Citation(s) in RCA: 8] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2021] [Accepted: 10/05/2022] [Indexed: 11/13/2022] Open
Abstract
Color morphs in ball pythons (Python regius) provide a unique and largely untapped resource for understanding the genetics of coloration in reptiles. Here we use a community-science approach to investigate the genetics of three color morphs affecting production of the pigment melanin. These morphs-Albino, Lavender Albino, and Ultramel-show a loss of melanin in the skin and eyes, ranging from severe (Albino) to moderate (Lavender Albino) to mild (Ultramel). To identify genetic variants causing each morph, we recruited shed skins of pet ball pythons via social media, extracted DNA from the skins, and searched for putative loss-of-function variants in homologs of genes controlling melanin production in other vertebrates. We report that the Albino morph is associated with missense and non-coding variants in the gene TYR. The Lavender Albino morph is associated with a deletion in the gene OCA2. The Ultramel morph is associated with a missense variant and a putative deletion in the gene TYRP1. Our study is one of the first to identify genetic variants associated with color morphs in ball pythons and shows that pet samples recruited from the community can provide a resource for genetic studies in this species.
Collapse
Affiliation(s)
- Autumn R. Brown
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Kaylee Comai
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Dominic Mannino
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Haily McCullough
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Yamini Donekal
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Hunter C. Meyers
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| | - Chiron W. Graves
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - Hannah S. Seidel
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
- * E-mail: (CWG); (HSS)
| | - The BIO306W Consortium
- Department of Biology, Eastern Michigan University, Ypsilanti, MI, United States of America
| |
Collapse
|