1
|
Xu Y, Lou D, Chen P, Li G, Usoskin D, Pan J, Li F, Huang S, Hess C, Tang R, Hu X, Yu J, Arceo M, de Krijger RR, Tischler AS, Schlisio S, Ernfors P, Hu Y, Wang J. Single-cell MultiOmics and spatial transcriptomics demonstrate neuroblastoma developmental plasticity. Dev Cell 2025:S1534-5807(25)00251-5. [PMID: 40347947 DOI: 10.1016/j.devcel.2025.04.013] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 10/27/2024] [Accepted: 04/17/2025] [Indexed: 05/14/2025]
Abstract
Neuroblastoma, the most prevalent extracranial pediatric solid tumor, arises from neural crest progeny cells. It exhibits substantial developmental plasticity and intratumoral heterogeneity, leading to survival rates below 50% in high-risk cases. The regulatory mechanisms underlying this plasticity remain largely elusive. In this integrative study, we used single-cell MultiOmics from a mouse spontaneous tumor model and spatial transcriptomics from human patient samples to dissect the transcriptional and epigenetic landscapes that govern developmental states in neuroblastoma. We identified developmental intermediate states in high-risk neuroblastomas critical for malignant transitions and uncovered extensive epigenetic priming with latent capacity for diverse state transitions. Furthermore, we mapped enhancer gene regulatory networks (eGRNs) and tumor microenvironments sustaining these aggressive states. State transitions and malignancy could be interfered with by targeting transcription factors controlling the eGRNs.
Collapse
Affiliation(s)
- Yunyun Xu
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Daohua Lou
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Ping Chen
- Department of Laboratory Medicine, Karolinska Institute, Huddinge 14157, Sweden; Stem Cells and Metabolism Research Program, Faculty of Medicine, University of Helsinki, Helsingfors 00014, Finland
| | - Gang Li
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Dimtry Usoskin
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Jian Pan
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Fang Li
- Department of Human Anatomy, Histology and Embryology, School of Biology and Basic Medical Sciences, Soochow University, Suzhou, Jiangsu 215000, China
| | - Shungen Huang
- Department of General Surgery, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Caroline Hess
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden
| | - Ruze Tang
- Department of General Surgery, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Xiaohan Hu
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Juanjuan Yu
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China
| | - Maria Arceo
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 17165, Sweden
| | - Ronald R de Krijger
- Princess Máxima Center for Pediatric Oncology, Utrecht 3511AB, the Netherlands; Department of Pathology, University Medical Center Utrecht, Utrecht 3511AB, the Netherlands
| | - Arthur S Tischler
- Department of Pathology and Laboratory Medicine, Tufts Medical Center, Boston, MA 02111, USA
| | - Susanne Schlisio
- Department of Oncology-Pathology, Karolinska Institute, Stockholm 17165, Sweden
| | - Patrik Ernfors
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden.
| | - Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm 17165, Sweden; Research Programs Unit, Faculty of Medicine, University of Helsinki, Helsingfors 00014, Finland.
| | - Jian Wang
- Pediatric Clinical Research Institute, Children's Hospital Affiliated to Soochow University, Suzhou, Jiangsu 215000, China.
| |
Collapse
|
2
|
Arendt-Tranholm A, Sankaranarayanan I, Payne C, Moreno MM, Mazhar K, Yap N, Chiu AP, Barry A, Patel PP, Inturi NN, Ferreira DT, Amin A, Karandikar M, Jarvik JG, Turner JA, Hofstetter CP, Curatolo M, Price TJ. Single-cell characterization of the human C2 dorsal root ganglion recovered from C1-2 arthrodesis surgery: implications for neck pain. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2025.03.24.645122. [PMID: 40196625 PMCID: PMC11974819 DOI: 10.1101/2025.03.24.645122] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 04/09/2025]
Abstract
Neurons in the dorsal root ganglion (DRG) receive and transmit sensory information from the tissues they innervate and from the external environment. Upper cervical (C1-C2) DRGs are functionally unique as they receive input from the neck, head, and occipital cranial dura, the latter two of which are also innervated by the trigeminal ganglion (TG). The C2 DRG also plays an important role in neck pain, a common and disabling disorder that is poorly understood. Advanced transcriptomic approaches have significantly improved our ability to characterize RNA expression patterns at single-cell resolution in the DRG and TG, but no previous studies have characterized the C2 DRG. Our aim was to use single-nucleus and spatial transcriptomic approaches to create a molecular map of C2 DRGs from patients undergoing arthrodesis surgery with ganglionectomy. Patients with acute (<3 months) or chronic (≥3 months) neck pain were enrolled and completed patient-reported outcomes and quantitative sensory testing prior to surgery. C2 DRGs were characterized with bulk, single nucleus, and spatial RNA sequencing technologies from 22 patients. Through a comparative analysis to published datasets of the lumbar DRG and TG, neuronal clusters identified in both TG and DRG were identified in the C2 DRG. Therefore, our study definitively characterizes the molecular composition of human C2 neurons and establishes their similarity with unique characteristics of subsets of TG neurons. We identified differentially expressed genes in endothelial, fibroblast and myelinating Schwann cells associated with chronic pain, including FGFBP2, C8orf34 and EFNA1 which have been identified in previous genome and transcriptome wide association studies (GWAS/TWAS). Our work establishes an atlas of the human C2 DRG and identifies altered gene expression patterns associated with chronic neck pain. This work establishes a foundation for the exploration of painful disorders in humans affecting the cervical spine.
Collapse
Affiliation(s)
- Asta Arendt-Tranholm
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Ishwarya Sankaranarayanan
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Cathryn Payne
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Marisol Mancilla Moreno
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Khadijah Mazhar
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Natalie Yap
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Abby P Chiu
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Allison Barry
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Pooja P Patel
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Nikhil N Inturi
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Diana Tavares Ferreira
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| | - Anubhav Amin
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Mahesh Karandikar
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
| | - Jeffrey G Jarvik
- Department of Neurological Surgery, University of Washington, Seattle WA, USA
- Department of Radiology, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | - Judith A Turner
- Department of Psychiatry & Behavioral Sciences, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | | | - Michele Curatolo
- Department of Anesthesiology and Pain Medicine, University of Washington, Seattle WA, USA
- The University of Washington Clinical Learning, Evidence and Research (CLEAR) Center for Musculoskeletal Disorders
| | - Theodore J Price
- Center for Advanced Pain Studies, Department of Neuroscience, University of Texas at Dallas, Richardson, TX, USA
| |
Collapse
|
3
|
Hamed AA, Hua K, Trinh QM, Simons BD, Marioni JC, Stein LD, Dirks PB. Gliomagenesis mimics an injury response orchestrated by neural crest-like cells. Nature 2025; 638:499-509. [PMID: 39743595 PMCID: PMC11821533 DOI: 10.1038/s41586-024-08356-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2023] [Accepted: 11/05/2024] [Indexed: 01/04/2025]
Abstract
Glioblastoma is an incurable brain malignancy. By the time of clinical diagnosis, these tumours exhibit a degree of genetic and cellular heterogeneity that provides few clues to the mechanisms that initiate and drive gliomagenesis1,2. Here, to explore the early steps in gliomagenesis, we utilized conditional gene deletion and lineage tracing in tumour mouse models, coupled with serial magnetic resonance imaging, to initiate and then closely track tumour formation. We isolated labelled and unlabelled cells at multiple stages-before the first visible abnormality, at the time of the first visible lesion, and then through the stages of tumour growth-and subjected cells of each stage to single-cell profiling. We identify a malignant cell state with a neural crest-like gene expression signature that is highly abundant in the early stages, but relatively diminished in the late stage of tumour growth. Genomic analysis based on the presence of copy number alterations suggests that these neural crest-like states exist as part of a heterogeneous clonal hierarchy that evolves with tumour growth. By exploring the injury response in wounded normal mouse brains, we identify cells with a similar signature that emerge following injury and then disappear over time, suggesting that activation of an injury response program occurs during tumorigenesis. Indeed, our experiments reveal a non-malignant injury-like microenvironment that is initiated in the brain following oncogene activation in cerebral precursor cells. Collectively, our findings provide insight into the early stages of glioblastoma, identifying a unique cell state and an injury response program tied to early tumour formation. These findings have implications for glioblastoma therapies and raise new possibilities for early diagnosis and prevention of disease.
Collapse
Affiliation(s)
- Akram A Hamed
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada
| | - Kui Hua
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK
| | - Quang M Trinh
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada
| | - Benjamin D Simons
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
- Department of Applied Mathematics and Theoretical Physics, Centre for Mathematical Sciences, Cambridge, UK.
- Wellcome Trust-Medical Research Council Stem Cell Institute, University of Cambridge, Cambridge, UK.
| | - John C Marioni
- Cancer Research UK Cambridge Institute, University of Cambridge, Cambridge, UK.
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Cambridge, UK.
- Wellcome Sanger Institute, Cambridge, UK.
| | - Lincoln D Stein
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Ontario Institute for Cancer Research, Toronto, Ontario, Canada.
| | - Peter B Dirks
- Department of Molecular Genetics, University of Toronto, Toronto, Ontario, Canada.
- Developmental and Stem Cell Biology Department, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Arthur and Sonia Labatt Brain Tumour Research Centre, The Hospital for Sick Children, Toronto, Ontario, Canada.
- Division of Neurosurgery, University of Toronto, Toronto, Ontario, Canada.
| |
Collapse
|
4
|
Yu H, Nagi SS, Usoskin D, Hu Y, Kupari J, Bouchatta O, Yan H, Cranfill SL, Gautam M, Su Y, Lu Y, Wymer J, Glanz M, Albrecht P, Song H, Ming GL, Prouty S, Seykora J, Wu H, Ma M, Marshall A, Rice FL, Li M, Olausson H, Ernfors P, Luo W. Leveraging deep single-soma RNA sequencing to explore the neural basis of human somatosensation. Nat Neurosci 2024; 27:2326-2340. [PMID: 39496796 PMCID: PMC11614738 DOI: 10.1038/s41593-024-01794-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2023] [Accepted: 09/23/2024] [Indexed: 11/06/2024]
Abstract
The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human (h)DRG neurons-critical information to decipher their functions-are lacking due to technical difficulties. In this study, we isolated somata from individual hDRG neurons and conducted deep RNA sequencing (RNA-seq) to detect, on average, over 9,000 unique genes per neuron, and we identified 16 neuronal types. These results were corroborated and validated by spatial transcriptomics and RNAscope in situ hybridization. Cross-species analyses revealed divergence among potential pain-sensing neurons and the likely existence of human-specific neuronal types. Molecular-profile-informed microneurography recordings revealed temperature-sensing properties across human sensory afferent types. In summary, by employing single-soma deep RNA-seq and spatial transcriptomics, we generated an hDRG neuron atlas, which provides insights into human somatosensory physiology and serves as a foundation for translational work.
Collapse
Affiliation(s)
- Huasheng Yu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saad S Nagi
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Dmitry Usoskin
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden
| | - Jussi Kupari
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden
| | - Otmane Bouchatta
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden
| | - Hanying Yan
- Department of Biostatistics in Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Suna Li Cranfill
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Mayank Gautam
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Yijing Su
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - You Lu
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - James Wymer
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Max Glanz
- Department of Biochemistry and Molecular Biology, College of Medicine, University of Florida, Gainesville, FL, USA
| | - Phillip Albrecht
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, USA
| | - Hongjun Song
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Guo-Li Ming
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Stephen Prouty
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - John Seykora
- Department of Dermatology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Hao Wu
- Department of Genetics, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Minghong Ma
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Andrew Marshall
- Pain Research Institute, Institute of Life Course and Medical Sciences, University of Liverpool, Liverpool, UK
| | - Frank L Rice
- Neuroscience & Pain Research Group, Integrated Tissue Dynamics, LLC, Rensselaer, NY, USA
| | - Mingyao Li
- Department of Biostatistics in Biostatistics and Epidemiology, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Håkan Olausson
- Department of Biomedical and Clinical Sciences, Linköping University, Linköping, Sweden.
| | - Patrik Ernfors
- Department of Medical Biochemistry and Biophysics, Division of Molecular Neurobiology, Karolinska Institute, Stockholm, Sweden.
| | - Wenqin Luo
- Department of Neuroscience, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
5
|
Larsson I, Held F, Popova G, Koc A, Kundu S, Jörnsten R, Nelander S. Reconstructing the regulatory programs underlying the phenotypic plasticity of neural cancers. Nat Commun 2024; 15:9699. [PMID: 39516198 PMCID: PMC11549355 DOI: 10.1038/s41467-024-53954-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/04/2023] [Accepted: 10/22/2024] [Indexed: 11/16/2024] Open
Abstract
Nervous system cancers exhibit diverse transcriptional cell states influenced by normal development, injury response, and growth. However, the understanding of these states' regulation and pharmacological relevance remains limited. Here we present "single-cell regulatory-driven clustering" (scregclust), a method that reconstructs cellular regulatory programs from extensive collections of single-cell RNA sequencing (scRNA-seq) data from both tumors and developing tissues. The algorithm efficiently divides target genes into modules, predicting key transcription factors and kinases with minimal computational time. Applying this method to adult and childhood brain cancers, we identify critical regulators and suggest interventions that could improve temozolomide treatment in glioblastoma. Additionally, our integrative analysis reveals a meta-module regulated by SPI1 and IRF8 linked to an immune-mediated mesenchymal-like state. Finally, scregclust's flexibility is demonstrated across 15 tumor types, uncovering both pan-cancer and specific regulators. The algorithm is provided as an easy-to-use R package that facilitates the exploration of regulatory programs underlying cell plasticity.
Collapse
Affiliation(s)
- Ida Larsson
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA, USA
- Broad Institute of MIT and Harvard, Cambridge, MA, USA
| | - Felix Held
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Gergana Popova
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Alper Koc
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Soumi Kundu
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden
| | - Rebecka Jörnsten
- Mathematical Sciences, Chalmers University of Technology, SE-412 96, Gothenburg, Sweden
| | - Sven Nelander
- Department of Immunology, Genetics and Pathology, Uppsala University, SE-751 85, Uppsala, Sweden.
| |
Collapse
|
6
|
Balboni A, D'Angelo C, Collura N, Brusco S, Di Berardino C, Targa A, Massoti B, Mastrangelo E, Milani M, Seneci P, Broccoli V, Muzio L, Galli R, Menegon A. Acid-sensing ion channel 3 is a new potential therapeutic target for the control of glioblastoma cancer stem cells growth. Sci Rep 2024; 14:20421. [PMID: 39227705 PMCID: PMC11372124 DOI: 10.1038/s41598-024-71623-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2024] [Accepted: 08/29/2024] [Indexed: 09/05/2024] Open
Abstract
Glioblastoma (GBM) is the most common malignant primary brain cancer that, despite recent advances in the understanding of its pathogenesis, remains incurable. GBM contains a subpopulation of cells with stem cell-like properties called cancer stem cells (CSCs). Several studies have demonstrated that CSCs are resistant to conventional chemotherapy and radiation thus representing important targets for novel anti-cancer therapies. Proton sensing receptors expressed by CSCs could represent important factors involved in the adaptation of tumours to the extracellular environment. Accordingly, the expression of acid-sensing ion channels (ASICs), proton-gated sodium channels mainly expressed in the neurons of peripheral (PNS) and central nervous system (CNS), has been demonstrated in several tumours and linked to an increase in cell migration and proliferation. In this paper we report that the ASIC3 isoform, usually absent in the CNS and present in the PNS, is enriched in human GBM CSCs while poorly expressed in the healthy human brain. We propose here a novel therapeutic strategy based on the pharmacological activation of ASIC3, which induces a significant GBM CSCs damage while being non-toxic for neurons. This approach might offer a promising and appealing new translational pathway for the treatment of glioblastoma.
Collapse
Affiliation(s)
- Andrea Balboni
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Camilla D'Angelo
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Nicoletta Collura
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Simone Brusco
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- Electrophysiology Unit, Axxam S.P.A., Via Meucci 3, Bresso, 20091, Milan, Italy
| | - Claudia Di Berardino
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Altea Targa
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Beatrice Massoti
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | | | | | | | - Vania Broccoli
- Division of Neuroscience, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
- CNR-Institute of Neuroscience, Milan, Italy
| | - Luca Muzio
- INsPE, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy
| | - Rossella Galli
- Neural Stem Cell Biology Unit, Division of Neuroscience, IRCCS San Raffaele Scientific Institute, Milan, Italy
| | - Andrea Menegon
- Experimental Imaging Centre, San Raffaele Scientific Institute IRCCS, 20132, Milan, Italy.
| |
Collapse
|
7
|
Chen T, Ma W, Wang X, Ye Q, Hou X, Wang Y, Jiang C, Meng X, Sun Y, Cai J. Insights of immune cell heterogeneity, tumor-initiated subtype transformation, drug resistance, treatment and detecting technologies in glioma microenvironment. J Adv Res 2024:S2090-1232(24)00315-1. [PMID: 39097088 DOI: 10.1016/j.jare.2024.07.033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/07/2024] [Revised: 06/30/2024] [Accepted: 07/29/2024] [Indexed: 08/05/2024] Open
Abstract
BACKGROUND With the gradual understanding of glioma development and the immune microenvironment, many immune cells have been discovered. Despite the growing comprehension of immune cell functions and the clinical application of immunotherapy, the precise roles and characteristics of immune cell subtypes, how glioma induces subtype transformation of immune cells and its impact on glioma progression have yet to be understood. AIM OF THE REVIEW In this review, we comprehensively center on the four major immune cells within the glioma microenvironment, particularly neutrophils, macrophages, lymphocytes, myeloid-derived suppressor cells (MDSCs), and other significant immune cells. We discuss (1) immune cell subtype markers, (2) glioma-induced immune cell subtype transformation, (3) the mechanisms of each subtype influencing chemotherapy resistance, (4) therapies targeting immune cells, and (5) immune cell-associated single-cell sequencing. Eventually, we identified the characteristics of immune cell subtypes in glioma, comprehensively summarized the exact mechanism of glioma-induced immune cell subtype transformation, and concluded the progress of single-cell sequencing in exploring immune cell subtypes in glioma. KEY SCIENTIFIC CONCEPTS OF REVIEW In conclusion, we have analyzed the mechanism of chemotherapy resistance detailly, and have discovered prospective immunotherapy targets, excavating the potential of novel immunotherapies approach that synergistically combines radiotherapy, chemotherapy, and surgery, thereby paving the way for improved immunotherapeutic strategies against glioma and enhanced patient outcomes.
Collapse
Affiliation(s)
- Tongzheng Chen
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Wenbin Ma
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xin Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Qile Ye
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xintong Hou
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yiwei Wang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Chuanlu Jiang
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China; The Six Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xiangqi Meng
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Ying Sun
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| | - Jinquan Cai
- Department of Neurosurgery, The Second Affiliated Hospital of Harbin Medical University, Harbin, China.
| |
Collapse
|
8
|
Fazzari E, Azizad DJ, Yu K, Ge W, Li MX, Nano PR, Kan RL, Tum HA, Tse C, Bayley NA, Haka V, Cadet D, Perryman T, Soto JA, Wick B, Raleigh DR, Crouch EE, Patel KS, Liau LM, Deneen B, Nathanson DA, Bhaduri A. Glioblastoma Neurovascular Progenitor Orchestrates Tumor Cell Type Diversity. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.07.24.604840. [PMID: 39091877 PMCID: PMC11291138 DOI: 10.1101/2024.07.24.604840] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 08/04/2024]
Abstract
Glioblastoma (GBM) is the deadliest form of primary brain tumor with limited treatment options. Recent studies have profiled GBM tumor heterogeneity, revealing numerous axes of variation that explain the molecular and spatial features of the tumor. Here, we seek to bridge descriptive characterization of GBM cell type heterogeneity with the functional role of individual populations within the tumor. Our lens leverages a gene program-centric meta-atlas of published transcriptomic studies to identify commonalities between diverse tumors and cell types in order to decipher the mechanisms that drive them. This approach led to the discovery of a tumor-derived stem cell population with mixed vascular and neural stem cell features, termed a neurovascular progenitor (NVP). Following in situ validation and molecular characterization of NVP cells in GBM patient samples, we characterized their function in vivo. Genetic depletion of NVP cells resulted in altered tumor cell composition, fewer cycling cells, and extended survival, underscoring their critical functional role. Clonal analysis of primary patient tumors in a human organoid tumor transplantation system demonstrated that the NVP has dual potency, generating both neuronal and vascular tumor cells. Although NVP cells comprise a small fraction of the tumor, these clonal analyses demonstrated that they strongly contribute to the total number of cycling cells in the tumor and generate a defined subset of the whole tumor. This study represents a paradigm by which cell type-specific interrogation of tumor populations can be used to study functional heterogeneity and therapeutically targetable vulnerabilities of GBM.
Collapse
Affiliation(s)
- Elisa Fazzari
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Daria J Azizad
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Kwanha Yu
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - Weihong Ge
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Matthew X Li
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Patricia R Nano
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Ryan L Kan
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Hong A Tum
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Christopher Tse
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Nicholas A Bayley
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Vjola Haka
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Dimitri Cadet
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Travis Perryman
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Jose A Soto
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Brittney Wick
- Genomics Institute, University of California Santa Cruz, Santa Cruz, CA, USA
| | - David R Raleigh
- Department of Radiation Oncology, University of California San Francisco, San Francisco, California, USA
- Department of Neurological Surgery, University of California San Francisco, San Francisco, California, USA
- Department of Pathology, University of California San Francisco, San Francisco, California, USA
| | - Elizabeth E Crouch
- Department of Pediatrics, University of California San Francisco, San Francisco, CA, USA
- The Eli and Edythe Broad Center of Regeneration Medicine and Stem Cell Research, University of California San Francisco, San Francisco, CA, USA
| | - Kunal S Patel
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Linda M Liau
- Department of Neurosurgery, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| | - Benjamin Deneen
- Center for Cell and Gene Therapy, Baylor College of Medicine, Houston, TX, USA
| | - David A Nathanson
- Department of Molecular and Medical Pharmacology, David Geffen School of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Aparna Bhaduri
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, California, Los Angeles, CA, USA
| |
Collapse
|
9
|
Ventriglia S, Kalcheim C. From neural tube to spinal cord: The dynamic journey of the dorsal neuroepithelium. Dev Biol 2024; 511:26-38. [PMID: 38580174 DOI: 10.1016/j.ydbio.2024.04.001] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 03/21/2024] [Accepted: 04/02/2024] [Indexed: 04/07/2024]
Abstract
In a developing embryo, formation of tissues and organs is remarkably precise in both time and space. Through cell-cell interactions, neighboring progenitors coordinate their activities, sequentially generating distinct types of cells. At present, we only have limited knowledge, rather than a systematic understanding, of the underlying logic and mechanisms responsible for cell fate transitions. The formation of the dorsal aspect of the spinal cord is an outstanding model to tackle these dynamics, as it first generates the peripheral nervous system and is later responsible for transmitting sensory information from the periphery to the brain and for coordinating local reflexes. This is reflected first by the ontogeny of neural crest cells, progenitors of the peripheral nervous system, followed by formation of the definitive roof plate of the central nervous system and specification of adjacent interneurons, then a transformation of roof plate into dorsal radial glia and ependyma lining the forming central canal. How do these peripheral and central neural branches segregate from common progenitors? How are dorsal radial glia established concomitant with transformation of the neural tube lumen into a central canal? How do the dorsal radial glia influence neighboring cells? This is only a partial list of questions whose clarification requires the implementation of experimental paradigms in which precise control of timing is crucial. Here, we outline some available answers and still open issues, while highlighting the contributions of avian models and their potential to address mechanisms of neural patterning and function.
Collapse
Affiliation(s)
- Susanna Ventriglia
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| | - Chaya Kalcheim
- Department of Medical Neurobiology, Institute of Medical Research Israel-Canada (IMRIC) and the Edmond and Lily Safra Center for Brain Sciences (ELSC), Hebrew University of Jerusalem-Hadassah Medical School, Jerusalem, 9112102, P.O.Box 12272, Israel.
| |
Collapse
|
10
|
Suita Y, Bright H, Pu Y, Toruner MD, Idehen J, Tapinos N, Singh R. Machine learning on multiple epigenetic features reveals H3K27Ac as a driver of gene expression prediction across patients with glioblastoma. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.06.25.600585. [PMID: 38979226 PMCID: PMC11230286 DOI: 10.1101/2024.06.25.600585] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 07/10/2024]
Abstract
Cancer cells show remarkable plasticity and can switch lineages in response to the tumor microenvironment. Cellular plasticity drives invasiveness and metastasis and helps cancer cells to evade therapy by developing resistance to radiation and cytotoxic chemotherapy. Increased understanding of cell fate determination through epigenetic reprogramming is critical to discover how cancer cells achieve transcriptomic and phenotypic plasticity. Glioblastoma is a perfect example of cancer evolution where cells retain an inherent level of plasticity through activation or maintenance of progenitor developmental programs. However, the principles governing epigenetic drivers of cellular plasticity in glioblastoma remain poorly understood. Here, using machine learning (ML) we employ cross-patient prediction of transcript expression using a combination of epigenetic features (ATAC-seq, CTCF ChIP-seq, RNAPII ChIP-seq, H3K27Ac ChIP-seq, and RNA-seq) of glioblastoma stem cells (GSCs). We investigate different ML and deep learning (DL) models for this task and build our final pipeline using XGBoost. The model trained on one patient generalizes to another one suggesting that the epigenetic signals governing gene transcription are consistent across patients even if GSCs can be very different. We demonstrate that H3K27Ac is the epigenetic feature providing the most significant contribution to cross-patient prediction of gene expression. In addition, using H3K27Ac signals from patients-derived GSCs, we can predict gene expression of human neural crest stem cells suggesting a shared developmental epigenetic trajectory between subpopulations of these malignant and benign stem cells. Our cross-patient ML/DL models determine weighted patterns of influence of epigenetic marks on gene expression across patients with glioblastoma and between GSCs and neural crest stem cells. We propose that broader application of this analysis could reshape our view of glioblastoma tumor evolution and inform the design of new epigenetic targeting therapies.
Collapse
Affiliation(s)
- Yusuke Suita
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI 02903, USA
| | - Hardy Bright
- Data Science Institute, Brown University, Providence, RI 02903, USA
| | - Yuan Pu
- Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| | - Merih Deniz Toruner
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| | - Jordan Idehen
- Department of Computer Science, Brown University, Providence, RI 02903, USA
| | - Nikos Tapinos
- Laboratory of Cancer Epigenetics and Plasticity, Department of Neurosurgery, Brown University, Providence, RI 02903, USA
- Brown RNA Center, Brown University, Providence, RI 02903, USA
| | - Ritambhara Singh
- Department of Computer Science, Brown University, Providence, RI 02903, USA
- Center for Computational Molecular Biology, Brown University, Providence, RI 02903, USA
| |
Collapse
|
11
|
Li L, Xia S, Zhao Z, Deng L, Wang H, Yang D, Hu Y, Ji J, Huang D, Xin T. EMP3 as a prognostic biomarker correlates with EMT in GBM. BMC Cancer 2024; 24:89. [PMID: 38229014 DOI: 10.1186/s12885-023-11796-0] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Accepted: 12/25/2023] [Indexed: 01/18/2024] Open
Abstract
BACKGROUND Glioblastoma (GBM) is the most aggressive malignant central nervous system tumor with a poor prognosis.The malignant transformation of glioma cells via epithelial-mesenchymal transition (EMT) has been observed as a main obstacle for glioblastoma treatment. Epithelial membrane protein 3 (EMP3) is significantly associated with the malignancy of GBM and the prognosis of patients. Therefore, exploring the possible mechanisms by which EMP3 promotes the growth of GBM has important implications for the treatment of GBM. METHODS We performed enrichment and correlation analysis in 5 single-cell RNA sequencing datasets. Differential expression of EMP3 in gliomas, Kaplan-Meier survival curves, diagnostic accuracy and prognostic prediction were analyzed by bioinformatics in the China Glioma Genome Atlas (CGGA) database and The Cancer Genome Atlas (TCGA) database. EMP3-silenced U87 and U251 cell lines were obtained by transient transfection with siRNA. The effect of EMP3 on glioblastoma proliferation was examined using the CCK-8 assay. Transwell migration assay and wound healing assay were used to assess the effect of EMP3 on glioblastoma migration. Finally, quantitative real-time polymerase chain reaction (qRT-PCR) and western blot were used to detect the mRNA and protein expression levels of EMT-related transcription factors and mesenchymal markers. RESULTS EMP3 is a EMT associated gene in multiple types of malignant cancer and in high-grade glioblastoma. EMP3 is enriched in high-grade gliomas and isocitrate dehydrogenase (IDH) wild-type gliomas.EMP3 can be used as a specific biomarker for diagnosing glioma patients. It is also an independent prognostic factor for glioma patients' overall survival (OS). In addition, silencing EMP3 reduces the proliferation and migration of glioblastoma cells. Mechanistically, EMP3 enhances the malignant potential of tumor cells by promoting EMT. CONCLUSION EMP3 promotes the proliferation and migration of GBM cells, and the mechanism may be related to EMP3 promoting the EMT process in GBM; EMP3 may be an independent prognostic factor in GBM.
Collapse
Affiliation(s)
- Li Li
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Siyu Xia
- Department of Oncology, The Beidahuang Group General Hospital, Harbin, 150006, China
| | - Zitong Zhao
- Department of Anesthesiology and Pain Rehabilitation, School of Medicine, Shanghai YangZhi Rehabilitation Hospital (Shanghai Sunshine Rehabilitation Center), Tongji University, Shanghai, 201619, China
| | - Lili Deng
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Hanbing Wang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dongbo Yang
- Department of Neurosurgery, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Jingjing Ji
- Department of Pathology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China
| | - Dayong Huang
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| | - Tao Xin
- Department of Oncology, the Second Affiliated Hospital of Harbin Medical University, Harbin, 150081, China.
| |
Collapse
|
12
|
Yu H, Usoskin D, Nagi SS, Hu Y, Kupari J, Bouchatta O, Cranfill SL, Gautam M, Su Y, Lu Y, Wymer J, Glanz M, Albrecht P, Song H, Ming GL, Prouty S, Seykora J, Wu H, Ma M, Rice FL, Olausson H, Ernfors P, Luo W. Single-Soma Deep RNA sequencing of Human DRG Neurons Reveals Novel Molecular and Cellular Mechanisms Underlying Somatosensation. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.03.17.533207. [PMID: 36993480 PMCID: PMC10055202 DOI: 10.1101/2023.03.17.533207] [Citation(s) in RCA: 13] [Impact Index Per Article: 6.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/19/2023]
Abstract
The versatility of somatosensation arises from heterogeneous dorsal root ganglion (DRG) neurons. However, soma transcriptomes of individual human DRG (hDRG) neurons-critical in-formation to decipher their functions-are lacking due to technical difficulties. Here, we developed a novel approach to isolate individual hDRG neuron somas for deep RNA sequencing (RNA-seq). On average, >9,000 unique genes per neuron were detected, and 16 neuronal types were identified. Cross-species analyses revealed remarkable divergence among pain-sensing neurons and the existence of human-specific nociceptor types. Our deep RNA-seq dataset was especially powerful for providing insight into the molecular mechanisms underlying human somatosensation and identifying high potential novel drug targets. Our dataset also guided the selection of molecular markers to visualize different types of human afferents and the discovery of novel functional properties using single-cell in vivo electrophysiological recordings. In summary, by employing a novel soma sequencing method, we generated an unprecedented hDRG neuron atlas, providing new insights into human somatosensation, establishing a critical foundation for translational work, and clarifying human species-species properties.
Collapse
|
13
|
Gao Y, Na M, Yao X, Li C, Li L, Yang G, Li Y, Hu Y. Integrative single-cell transcriptomic investigation unveils long non-coding RNAs associated with localized cellular inflammation in psoriasis. Front Immunol 2023; 14:1265517. [PMID: 37822943 PMCID: PMC10562854 DOI: 10.3389/fimmu.2023.1265517] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/23/2023] [Accepted: 09/11/2023] [Indexed: 10/13/2023] Open
Abstract
Psoriasis is a complex, chronic autoimmune disorder predominantly affecting the skin. Accumulating evidence underscores the critical role of localized cellular inflammation in the development and persistence of psoriatic skin lesions, involving cell types such as keratinocytes, mesenchymal cells, and Schwann cells. However, the underlying mechanisms remain largely unexplored. Long non-coding RNAs (lncRNAs), known to regulate gene expression across various cellular processes, have been particularly implicated in immune regulation. We utilized our neural-network learning pipeline to integrate 106,675 cells from healthy human skin and 79,887 cells from psoriatic human skin. This formed the most extensive cell transcriptomic atlas of human psoriatic skin to date. The robustness of our reclassified cell-types, representing full-layer zonation in human skin, was affirmed through neural-network learning-based cross-validation. We then developed a publicly available website to present this integrated dataset. We carried out analysis for differentially expressed lncRNAs, co-regulated gene patterns, and GO-bioprocess enrichment, enabling us to pinpoint lncRNAs that modulate localized cellular inflammation in psoriasis at the single-cell level. Subsequent experimental validation with skin cell lines and primary cells from psoriatic skin confirmed these lncRNAs' functional role in localized cellular inflammation. Our study provides a comprehensive cell transcriptomic atlas of full-layer human skin in both healthy and psoriatic conditions, unveiling a new regulatory mechanism that governs localized cellular inflammation in psoriasis and highlights the therapeutic potential of lncRNAs in this disease's management.
Collapse
Affiliation(s)
- Yuge Gao
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Mengxue Na
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Xinyu Yao
- Department of Dermatology, Peking University First Hospital, Beijing, China
| | - Chao Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Li Li
- Department of Oncology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Guangyu Yang
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yuzhen Li
- Department of Dermatology, The Second Affiliated Hospital of Harbin Medical University, Harbin, China
| | - Yizhou Hu
- Department of Medical Biochemistry and Biophysics, Karolinska Institute, Stockholm, Sweden
| |
Collapse
|
14
|
Slama Y, Ah-Pine F, Khettab M, Arcambal A, Begue M, Dutheil F, Gasque P. The Dual Role of Mesenchymal Stem Cells in Cancer Pathophysiology: Pro-Tumorigenic Effects versus Therapeutic Potential. Int J Mol Sci 2023; 24:13511. [PMID: 37686315 PMCID: PMC10488262 DOI: 10.3390/ijms241713511] [Citation(s) in RCA: 17] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2023] [Revised: 08/29/2023] [Accepted: 08/30/2023] [Indexed: 09/10/2023] Open
Abstract
Mesenchymal stem/stromal cells (MSCs) are multipotent cells involved in numerous physiological events, including organogenesis, the maintenance of tissue homeostasis, regeneration, or tissue repair. MSCs are increasingly recognized as playing a major, dual, and complex role in cancer pathophysiology through their ability to limit or promote tumor progression. Indeed, these cells are known to interact with the tumor microenvironment, modulate the behavior of tumor cells, influence their functions, and promote distant metastasis formation through the secretion of mediators, the regulation of cell-cell interactions, and the modulation of the immune response. This dynamic network can lead to the establishment of immunoprivileged tissue niches or the formation of new tumors through the proliferation/differentiation of MSCs into cancer-associated fibroblasts as well as cancer stem cells. However, MSCs exhibit also therapeutic effects including anti-tumor, anti-proliferative, anti-inflammatory, or anti-oxidative effects. The therapeutic interest in MSCs is currently growing, mainly due to their ability to selectively migrate and penetrate tumor sites, which would make them relevant as vectors for advanced therapies. Therefore, this review aims to provide an overview of the double-edged sword implications of MSCs in tumor processes. The therapeutic potential of MSCs will be reviewed in melanoma and lung cancers.
Collapse
Affiliation(s)
- Youssef Slama
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Franck Ah-Pine
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Mohamed Khettab
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD—Saint-Pierre, Avenue François Mitterrand, 97448 Saint-Pierre Cedex, La Réunion, France
| | - Angelique Arcambal
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Mickael Begue
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Fabien Dutheil
- Service de Radiothérapie, Clinique Sainte-Clotilde, Groupe Clinifutur, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France; (M.B.); (F.D.)
- Laboratoire Interdisciplinaire de Recherche en Santé (LIRS), RunResearch, Clinique Sainte-Clotilde, 127 Route de Bois de Nèfles, 97400 Saint-Denis, La Réunion, France;
| | - Philippe Gasque
- Unité de Recherche Études Pharmaco-Immunologiques (EPI), Université de La Réunion, CHU de La Réunion, Allée des Topazes, 97400 Saint-Denis, La Réunion, France; (F.A.-P.); (M.K.); (P.G.)
| |
Collapse
|
15
|
Barreby E, Strunz B, Nock S, Naudet L, Shen JX, Johansson H, Sönnerborg I, Ma J, Urgard E, Pallett LJ, Hu Y, Fardellas A, Azzimato V, Vankova A, Levi L, Morgantini C, Maini MK, Stål P, Rosshart SP, Coquet JM, Nowak G, Näslund E, Lauschke VM, Ellis E, Björkström NK, Chen P, Aouadi M. Human resident liver myeloid cells protect against metabolic stress in obesity. Nat Metab 2023; 5:1188-1203. [PMID: 37414931 PMCID: PMC10365994 DOI: 10.1038/s42255-023-00834-7] [Citation(s) in RCA: 9] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/09/2021] [Accepted: 06/05/2023] [Indexed: 07/08/2023]
Abstract
Although multiple populations of macrophages have been described in the human liver, their function and turnover in patients with obesity at high risk of developing non-alcoholic fatty liver disease (NAFLD) and cirrhosis are currently unknown. Herein, we identify a specific human population of resident liver myeloid cells that protects against the metabolic impairment associated with obesity. By studying the turnover of liver myeloid cells in individuals undergoing liver transplantation, we find that liver myeloid cell turnover differs between humans and mice. Using single-cell techniques and flow cytometry, we determine that the proportion of the protective resident liver myeloid cells, denoted liver myeloid cells 2 (LM2), decreases during obesity. Functional validation approaches using human 2D and 3D cultures reveal that the presence of LM2 ameliorates the oxidative stress associated with obese conditions. Our study indicates that resident myeloid cells could be a therapeutic target to decrease the oxidative stress associated with NAFLD.
Collapse
Affiliation(s)
- Emelie Barreby
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Benedikt Strunz
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Sebastian Nock
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Léa Naudet
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Joanne X Shen
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
| | - Helene Johansson
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet (CLINTEC), Huddinge, Sweden
| | - Isabella Sönnerborg
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet (CLINTEC), Huddinge, Sweden
| | - Junjie Ma
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Egon Urgard
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Laura J Pallett
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Yizhou Hu
- Division of Molecular Neurobiology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, Stockholm, Sweden
| | - Achilleas Fardellas
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Valerio Azzimato
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- BioPharmaceuticals R&D, Clinical Pharmacology and Safety Sciences, Translational Hepatic Safety, AstraZeneca, Gothenburg, Sweden
| | - Ana Vankova
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Laura Levi
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Cecilia Morgantini
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
- Cardio Metabolic Unit, Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Mala K Maini
- Division of Infection and Immunity, Institute of Immunity and Transplantation, University College London, London, United Kingdom
| | - Per Stål
- Division of Gastroenterology, Department of Medicine, Huddinge, Karolinska Institutet, Stockholm, Sweden
| | - Stephan P Rosshart
- Department of Microbiome Research, Friedrich-Alexander-University Erlangen-Nürnberg, Erlangen, Germany
- Department of Medicine II, Medical Center, Faculty of Medicine, University of Freiburg, Freiburg im Breisgau, Germany
| | - Jonathan M Coquet
- Department of Microbiology, Tumor and Cell Biology (MTC), Karolinska Institutet, Stockholm, Sweden
| | - Greg Nowak
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet (CLINTEC), Huddinge, Sweden
| | - Erik Näslund
- Division of Surgery, Department of Clinical Sciences, Danderyd Hospital, Karolinska Institutet, Stockholm, Sweden
| | - Volker M Lauschke
- Department of Physiology and Pharmacology, Karolinska Institutet, Solna, Sweden
- Dr Margarete Fischer-Bosch Institute of Clinical Pharmacology, Stuttgart, Germany
- University of Tuebingen, Tuebingen, Germany
| | - Ewa Ellis
- Division of Transplantation Surgery, Department of Clinical Science, Intervention and Technology, Karolinska Institutet (CLINTEC), Huddinge, Sweden
| | - Niklas K Björkström
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden
| | - Ping Chen
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
- Division of Clinical Chemistry, Department of Laboratory Medicine, Karolinska Institutet, Stockholm, Sweden.
| | - Myriam Aouadi
- Center for Infectious Medicine (CIM), Department of Medicine Huddinge, Karolinska Institutet, Karolinska University Hospital, Stockholm, Sweden.
| |
Collapse
|
16
|
Ah-Pine F, Khettab M, Bedoui Y, Slama Y, Daniel M, Doray B, Gasque P. On the origin and development of glioblastoma: multifaceted role of perivascular mesenchymal stromal cells. Acta Neuropathol Commun 2023; 11:104. [PMID: 37355636 PMCID: PMC10290416 DOI: 10.1186/s40478-023-01605-x] [Citation(s) in RCA: 12] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Accepted: 06/18/2023] [Indexed: 06/26/2023] Open
Abstract
Glioblastoma, IDH wild-type is the most common and aggressive form of glial tumors. The exact mechanisms of glioblastoma oncogenesis, including the identification of the glioma-initiating cell, are yet to be discovered. Recent studies have led to the hypothesis that glioblastoma arises from neural stem cells and glial precursor cells and that cell lineage constitutes a key determinant of the glioblastoma molecular subtype. These findings brought significant advancement to the comprehension of gliomagenesis. However, the cellular origin of glioblastoma with mesenchymal molecular features remains elusive. Mesenchymal stromal cells emerge as potential glioblastoma-initiating cells, especially with regard to the mesenchymal molecular subtype. These fibroblast-like cells, which derive from the neural crest and reside in the perivascular niche, may underlie gliomagenesis and exert pro-tumoral effects within the tumor microenvironment. This review synthesizes the potential roles of mesenchymal stromal cells in the context of glioblastoma and provides novel research avenues to better understand this lethal disease.
Collapse
Affiliation(s)
- F. Ah-Pine
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - M. Khettab
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Oncologie Médicale, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Bedoui
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service d’Anatomie et Cytologie Pathologiques, CHU de La Réunion sites SUD – Saint-Pierre, BP 350, 97448 Saint-Pierre Cedex, France
| | - Y. Slama
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| | - M. Daniel
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Médecine d’Urgences-SAMU-SMUR, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - B. Doray
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
- Service de Génétique, CHU de La Réunion - Site Félix Guyon, Allée Des Topazes CS 11 021, 97400 Saint-Denis, France
| | - P. Gasque
- Unité de Recherche en Pharmaco-Immunologie (UR-EPI), Université et CHU de La Réunion, 97400 Saint-Denis, France
| |
Collapse
|
17
|
Neogenin suppresses tumor progression and metastasis via inhibiting Merlin/YAP signaling. Cell Death Dis 2023; 9:47. [PMID: 36746934 PMCID: PMC9902585 DOI: 10.1038/s41420-023-01345-w] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/29/2022] [Revised: 01/24/2023] [Accepted: 01/26/2023] [Indexed: 02/08/2023]
Abstract
From in situ growth to invasive dissemination is the most lethal attribute of various tumor types. This transition is majorly mediated by the dynamic interplay between two cancer hallmarks, EMT and cell cycle. In this study, we applied nonlinear association analysis in 33 cancer types and found that most signaling receptors simultaneously associating with EMT and cell cycle are potential tumor suppressors. Here we find that a top co-associated receptor, Neogenin (NEO1), inhibits colorectal cancer (CRC) and Glioma in situ growth and metastasis by forming a complex with Merlin (NF2), and subsequent simultaneous promoting the phosphorylation of YAP. Furthermore, Neogenin protein level is associated with good prognosis and correlates with Merlin status in CRC and Glioma. Collectively, our results define Neogenin as a tumor suppressor in CRC and Glioma that acts by restricting oncogenic signaling by the Merlin-YAP pathway, and suggest Neogenin as a candidate therapeutic agent for CRC and Glioma.
Collapse
|
18
|
Jovanovich N, Habib A, Head J, Anthony A, Edwards L, Zinn PO. Opinion: Bridging gaps and doubts in glioblastoma cell-of-origin. Front Oncol 2022; 12:1002933. [PMID: 36338762 PMCID: PMC9634038 DOI: 10.3389/fonc.2022.1002933] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/30/2022] [Indexed: 11/24/2022] Open
Affiliation(s)
- Nicolina Jovanovich
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Ahmed Habib
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Jeffery Head
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Austin Anthony
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Lincoln Edwards
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| | - Pascal O. Zinn
- Hillman Cancer Center, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
- Department of Neurosurgery, University of Pittsburgh Medical Center, Pittsburgh, PA, United States
| |
Collapse
|