1
|
Davín AA, Woodcroft BJ, Soo RM, Morel B, Murali R, Schrempf D, Clark JW, Álvarez-Carretero S, Boussau B, Moody ERR, Szánthó LL, Richy E, Pisani D, Hemp J, Fischer WW, Donoghue PCJ, Spang A, Hugenholtz P, Williams TA, Szöllősi GJ. A geological timescale for bacterial evolution and oxygen adaptation. Science 2025; 388:eadp1853. [PMID: 40179162 DOI: 10.1126/science.adp1853] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/12/2024] [Accepted: 12/19/2024] [Indexed: 04/05/2025]
Abstract
Microbial life has dominated Earth's history but left a sparse fossil record, greatly hindering our understanding of evolution in deep time. However, bacterial metabolism has left signatures in the geochemical record, most conspicuously the Great Oxidation Event (GOE). We combine machine learning and phylogenetic reconciliation to infer ancestral bacterial transitions to aerobic lifestyles, linking them to the GOE to calibrate the bacterial time tree. Extant bacterial phyla trace their diversity to the Archaean and Proterozoic, and bacterial families prior to the Phanerozoic. We infer that most bacterial phyla were ancestrally anaerobic and adopted aerobic lifestyles after the GOE. However, in the cyanobacterial ancestor, aerobic metabolism likely predated the GOE, which may have facilitated the evolution of oxygenic photosynthesis.
Collapse
Affiliation(s)
- Adrián A Davín
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Department of Biological Sciences, Graduate School of Science, University of Tokyo, Tokyo, Japan
| | - Ben J Woodcroft
- Centre for Microbiome Research, School of Biomedical Sciences, Queensland University of Technology (QUT), Translational Research Institute, Woolloongabba, Australia
| | - Rochelle M Soo
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Benoit Morel
- Computational Molecular Evolution Group, Heidelberg Institute for Theoretical Studies, Heidelberg, Germany
- Institute for Theoretical Informatics, Karlsruhe Institute of Technology, Karlsruhe, Germany
| | - Ranjani Murali
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Dominik Schrempf
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
| | - James W Clark
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- Milner Centre for Evolution, Department of Life Sciences, University of Bath, Bath, UK
| | | | - Bastien Boussau
- Laboratoire de Biométrie et Biologie Evolutive, Univ Lyon, Univ Lyon 1, CNRS, VetAgro Sup, Villeurbanne, France
| | - Edmund R R Moody
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Lénárd L Szánthó
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| | - Etienne Richy
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Davide Pisani
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - James Hemp
- Metrodora Institute, West Valley City, UT, USA
| | - Woodward W Fischer
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| | - Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| | - Anja Spang
- Department of Marine Microbiology and Biogeochemistry, NIOZ, Royal Netherlands Institute for Sea Research, Den Burg, Netherlands
- Department of Evolutionary & Population Biology, Institute for Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, Netherlands
| | - Philip Hugenholtz
- The University of Queensland, School of Chemistry and Molecular Biosciences, Australian Centre for Ecogenomics, Brisbane, Queensland, Australia
| | - Tom A Williams
- School of Biological Sciences, University of Bristol, Bristol, UK
| | - Gergely J Szöllősi
- Department of Biological Physics, Eötvös Loránd University, Budapest, Hungary
- MTA-ELTE "Lendület" Evolutionary Genomics Research Group, Budapest, Hungary
- Institute of Evolution, Centre for Ecological Research, Budapest, Hungary
- Model-Based Evolutionary Genomics Unit, Okinawa Institute of Science and Technology Graduate University, Okinawa, Japan
| |
Collapse
|
2
|
Hammarlund EU, Bukkuri A, Norling MD, Islam M, Posth NR, Baratchart E, Carroll C, Amend SR, Gatenby RA, Pienta KJ, Brown JS, Peters SE, Hancke K. Benthic diel oxygen variability and stress as potential drivers for animal diversification in the Neoproterozoic-Palaeozoic. Nat Commun 2025; 16:2223. [PMID: 40118825 PMCID: PMC11928486 DOI: 10.1038/s41467-025-57345-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2024] [Accepted: 02/19/2025] [Indexed: 03/24/2025] Open
Abstract
The delay between the origin of animals in the Neoproterozoic and their Cambrian diversification remains perplexing. Animal diversification mirrors an expansion in marine shelf area under a greenhouse climate, though the extent to which these environmental conditions directly influenced physiology and early organismal ecology remains unclear. Here, we use a biogeochemical model to quantify oxygen dynamics at the sunlit sediment-water interface over day-night (diel) cycles at warm and cold conditions. We find that warm temperatures dictated physiologically stressful diel benthic oxic-anoxic shifts over a nutrient-rich shelf. Under these conditions, a population-and-phenotype model further show that the benefits of efficient cellular oxygen sensing that can offer adaptations to stress outweigh its cost. Since diurnal benthic redox variability would have expanded as continents were flooded in the end-Neoproterozoic and early Palaeozoic, we propose that a combination of physiological stress and ample resources in the benthic environment may have impacted the adaptive radiation of animals tolerant to oxygen fluctuations.
Collapse
Affiliation(s)
- Emma U Hammarlund
- Tissue Development and Evolution (TiDE) Group, Department of Experimental Medical Science, Lund University, Lund, Sweden.
| | - Anuraag Bukkuri
- Tissue Development and Evolution (TiDE) Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
- Department of Computational and Systems Biology, University of Pittsburgh, Pittsburgh, PA, USA
- Center for Evolutionary Biology and Medicine, University of Pittsburgh, Pittsburgh, PA, USA
| | | | - Mazharul Islam
- Tissue Development and Evolution (TiDE) Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Nicole R Posth
- Department of Geosciences and Natural Resource Management (IGN), Geology Section, University of Copenhagen, Copenhagen, Denmark
| | - Etienne Baratchart
- Tissue Development and Evolution (TiDE) Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Christopher Carroll
- Tissue Development and Evolution (TiDE) Group, Department of Experimental Medical Science, Lund University, Lund, Sweden
| | - Sarah R Amend
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Robert A Gatenby
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Kenneth J Pienta
- The Cancer Ecology Center, Brady Urological Institute, Johns Hopkins School of Medicine, Baltimore, MD, USA
| | - Joel S Brown
- Department of Integrated Mathematical Oncology, Moffitt Cancer Center, Tampa, FL, USA
| | - Shanan E Peters
- Department of Geoscience, University of Wisconsin-Madison, Madison, WI, USA
| | - Kasper Hancke
- Norwegian Institute for Water Research (NIVA), Oslo, Norway
| |
Collapse
|
3
|
Mills DB, Macalady JL, Frank A, Wright JT. A reassessment of the "hard-steps" model for the evolution of intelligent life. SCIENCE ADVANCES 2025; 11:eads5698. [PMID: 39951518 PMCID: PMC11827626 DOI: 10.1126/sciadv.ads5698] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/19/2024] [Accepted: 01/15/2025] [Indexed: 02/16/2025]
Abstract
According to the "hard-steps" model, the origin of humanity required "successful passage through a number of intermediate steps" (so-called "hard steps") that were intrinsically improbable in the time available for biological evolution on Earth. This model similarly predicts that technological life analogous to human life on Earth is "exceedingly rare" in the Universe. Here, we critically reevaluate core assumptions of the hard-steps model through the lens of historical geobiology. Specifically, we propose an alternative model where there are no hard steps, and evolutionary singularities required for human origins can be explained via mechanisms outside of intrinsic improbability. Furthermore, if Earth's surface environment was initially inhospitable not only to human life, but also to certain key intermediate steps required for human existence, then the timing of human origins was controlled by the sequential opening of new global environmental windows of habitability over Earth history.
Collapse
Affiliation(s)
- Daniel B. Mills
- Department of Earth and Environmental Sciences, Paleontology and Geobiology, Ludwig-Maximilians-Universität München, 80333 Munich, Germany
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
| | - Jennifer L. Macalady
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
- Department of Geosciences, Penn State, University Park, PA 16802, USA
- Astrobiology Research Center, Penn State, University Park, PA 16802, USA
| | - Adam Frank
- Department of Physics and Astronomy, University of Rochester, Rochester, NY 14620, USA
| | - Jason T. Wright
- The Penn State Extraterrestrial Intelligence Center, Penn State, University Park, PA 16802, USA
- Center for Exoplanets and Habitable Worlds, Penn State, University Park, PA 16802, USA
- Department of Astronomy and Astrophysics, Penn State, University Park, PA 16802, USA
| |
Collapse
|
4
|
Wei GY, Li G. Atmospheric oxygenation as a potential trigger for climate cooling. Sci Bull (Beijing) 2024; 69:3717-3722. [PMID: 38902175 DOI: 10.1016/j.scib.2024.05.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 04/26/2024] [Accepted: 04/28/2024] [Indexed: 06/22/2024]
Abstract
Secular changes in atmospheric CO2 and consequent global climate variations, are commonly attributed to global outgassing and the efficiency of silicate weathering, which may have been linked to mountain formation, land/arc distribution, and plant colonization through geological time. Although oxidative weathering has been shown to exert a significant role in the propagation of weathering fronts through the oxidation of Fe-bearing minerals, the influence of atmospheric O2 concentration (pO2) on silicate weathering, CO2 consumption, and global climate has not been thoroughly evaluated. This study presents a numerical model aimed at estimating the effects of pO2 on the climate, considering the influence of pO2 on the regolith thickness and thus weathering duration of granitic domains. Our model simulations reveal that an increase in weathering efficiency, through deeper penetration of the oxidative weathering front in the granitic regolith, would independently introduce a steady-state climate cooling of up to ∼8 °C, in step with one-order of magnitude rise in pO2. This temperature change may have repeatedly initiated the runaway ice-albedo feedback, leading to global glacial events (e.g., Neoproterozoic Snowball Earth). Increasing granitic weathering efficiency caused by a substantial pO2 increase may also have contributed to the development of icehouse climate during the Phanerozoic.
Collapse
Affiliation(s)
- Guang-Yi Wei
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Gaojun Li
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|
5
|
Retallack GJ, Bindeman IN. Stable isotopic evidence for increased terrestrial productivity through geological time. Sci Rep 2024; 14:27438. [PMID: 39523432 PMCID: PMC11551170 DOI: 10.1038/s41598-024-78838-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/09/2024] [Accepted: 11/04/2024] [Indexed: 11/16/2024] Open
Abstract
Marine life on Earth is known back to the Archean Eon, when life on land is assumed to have been less pervasive than now. Precambrian life on land can now be tested with stable isotopes because living soil CO2 is isotopically distinct for both carbon and oxygen from both marine and volcanic CO2. Our novel compilation of previously published oxygen and carbon isotopic compositions of pedogenic and paleokarst carbonate can be compared with the coeval marine record. Long-term enrichment (to heavier isotopic composition) of oxygen, but no significant trend in carbon through time, long apparent from marine carbonate, is now demonstrated also for pedogenic and paleokarst carbonate. Oxygen isotopic enrichment is not due to changing global temperature or hypsometry, but to increased evapotranspiration and photosynthesis on larger continents. Differences in isotopic composition between land and sea have increased in an episodic fashion, peaking at times of major evolutionary innovations for life on land, and also at times of ice ages. The δ13C and δ18O divergences between land and sea correspond to terrestrial productivity spikes including evolution of Neoproterozoic (635 Ma) lichens, middle Ordovician (470 Ma) non-vascular land plants, middle Devonian (385 Ma) forests, early Cretaceous (125 Ma) angiosperms, and middle Miocene (20 Ma) sod grasslands.
Collapse
Affiliation(s)
- Gregory J Retallack
- Department of Earth Sciences, University of Oregon, Eugene, OR, 97403-1272, USA.
| | - Ilya N Bindeman
- Department of Earth Sciences, University of Oregon, Eugene, OR, 97403-1272, USA
| |
Collapse
|
6
|
Donoghue PCJ, Alcott LJ. Geobiology: When did animals develop their oxygen habit? Curr Biol 2024; 34:R873-R875. [PMID: 39317162 DOI: 10.1016/j.cub.2024.08.024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/26/2024]
Abstract
The rise of ocean oxygen levels is thought to have boosted the evolution of animals. Modelling of the sedimentary geochemical record provides evidence for a late Ediacaran rise in oxygen, though likely after the origin of animals.
Collapse
Affiliation(s)
- Philip C J Donoghue
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK.
| | - Lewis J Alcott
- Bristol Palaeobiology Group, School of Earth Sciences, University of Bristol, Bristol, UK
| |
Collapse
|
7
|
Fakhraee M, Planavsky N. Insights from a dynamical system approach into the history of atmospheric oxygenation. Nat Commun 2024; 15:6794. [PMID: 39122716 PMCID: PMC11315986 DOI: 10.1038/s41467-024-51042-0] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/18/2023] [Accepted: 07/26/2024] [Indexed: 08/12/2024] Open
Abstract
Atmospheric oxygen levels are traditionally viewed to have been relatively stable throughout Earth's history with several-step increases. Emerging evidence, however, suggests extremely dynamic atmospheric oxygen levels through large swaths of Earth's history. Here, we provide a new perspective on atmospheric oxygen evolution using a dynamical analysis to explore the relative importance of previously proposed feedbacks on the global oxygen and carbon cycles. Our results from a stochastic analysis of oxygen mass balance in this framework suggest there are multiple steady states for atmospheric oxygen, but only three stable states. One stable state under anoxic conditions (<10-5 present atmospheric level (PAL)), one at low (~10-3to 10-2 PAL), and one near modern value atmospheric oxygen levels. Our findings also suggest two unstable states (tipping points) for atmospheric oxygen: one around 10-5 and another one around 10-1 PAL.
Collapse
Affiliation(s)
- Mojtaba Fakhraee
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA.
| | - Noah Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT, USA
| |
Collapse
|
8
|
Bowyer FT, Wood RA, Yilales M. Sea level controls on Ediacaran-Cambrian animal radiations. SCIENCE ADVANCES 2024; 10:eado6462. [PMID: 39083611 PMCID: PMC11290527 DOI: 10.1126/sciadv.ado6462] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/13/2024] [Accepted: 06/25/2024] [Indexed: 08/02/2024]
Abstract
The drivers of Ediacaran-Cambrian metazoan radiations remain unclear, as does the fidelity of the record. We use a global age framework [580-510 million years (Ma) ago] to estimate changes in marine sedimentary rock volume and area, reconstructed biodiversity (mean genus richness), and sampling intensity, integrated with carbonate carbon isotopes (δ13Ccarb) and global redox data [carbonate Uranium isotopes (δ238Ucarb)]. Sampling intensity correlates with overall mean reconstructed biodiversity >535 Ma ago, while second-order (~10-80 Ma) global transgressive-regressive cycles controlled the distribution of different marine sedimentary rocks. The temporal distribution of the Avalon assemblage is partly controlled by the temporally and spatially limited record of deep-marine siliciclastic rocks. Each successive rise of metazoan morphogroups that define the Avalon, White Sea, and Cambrian assemblages appears to coincide with global shallow marine oxygenation events at δ13Ccarb maxima, which precede major sea level transgressions. While the record of biodiversity is biased, early metazoan radiations and oxygenation events are linked to major sea level cycles.
Collapse
|
9
|
Boag TH, Busch JF, Gooley JT, Strauss JV, Sperling EA. Deep-water first occurrences of Ediacara biota prior to the Shuram carbon isotope excursion in the Wernecke Mountains, Yukon, Canada. GEOBIOLOGY 2024; 22:e12597. [PMID: 38700422 DOI: 10.1111/gbi.12597] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Revised: 02/29/2024] [Accepted: 03/27/2024] [Indexed: 05/05/2024]
Abstract
Ediacara-type macrofossils appear as early as ~575 Ma in deep-water facies of the Drook Formation of the Avalon Peninsula, Newfoundland, and the Nadaleen Formation of Yukon and Northwest Territories, Canada. Our ability to assess whether a deep-water origination of the Ediacara biota is a genuine reflection of evolutionary succession, an artifact of an incomplete stratigraphic record, or a bathymetrically controlled biotope is limited by a lack of geochronological constraints and detailed shelf-to-slope transects of Ediacaran continental margins. The Ediacaran Rackla Group of the Wernecke Mountains, NW Canada, represents an ideal shelf-to-slope depositional system to understand the spatiotemporal and environmental context of Ediacara-type organisms' stratigraphic occurrence. New sedimentological and paleontological data presented herein from the Wernecke Mountains establish a stratigraphic framework relating shelfal strata in the Goz/Corn Creek area to lower slope deposits in the Nadaleen River area. We report new discoveries of numerous Aspidella hold-fast discs, indicative of frondose Ediacara organisms, from deep-water slope deposits of the Nadaleen Formation stratigraphically below the Shuram carbon isotope excursion (CIE) in the Nadaleen River area. Such fossils are notably absent in coeval shallow-water strata in the Goz/Corn Creek region despite appropriate facies for potential preservation. The presence of pre-Shuram CIE Ediacara-type fossils occurring only in deep-water facies within a basin that has equivalent well-preserved shallow-water facies provides the first stratigraphic paleobiological support for a deep-water origination of the Ediacara biota. In contrast, new occurrences of Ediacara-type fossils (including juvenile fronds, Beltanelliformis, Aspidella, annulated tubes, and multiple ichnotaxa) are found above the Shuram CIE in both deep- and shallow-water deposits of the Blueflower Formation. Given existing age constraints on the Shuram CIE, it appears that Ediacaran organisms may have originated in the deeper ocean and lived there for up to ~15 million years before migrating into shelfal environments in the terminal Ediacaran. This indicates unique ecophysiological constraints likely shaped the initial habitat preference and later environmental expansion of the Ediacara biota.
Collapse
Affiliation(s)
- Thomas H Boag
- Department of Earth and Planetary Science, Stanford University, Stanford, California, USA
- Department of Earth and Planetary Sciences, Yale University, New Haven, Connecticut, USA
- Department of Geosciences, Princeton University, Princeton, New Jersey, USA
| | - James F Busch
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Jared T Gooley
- Alaska Science Center, U.S. Geological Survey, Anchorage, Alaska, USA
| | - Justin V Strauss
- Department of Earth Sciences, Dartmouth College, Hanover, New Hampshire, USA
| | - Erik A Sperling
- Department of Earth and Planetary Science, Stanford University, Stanford, California, USA
| |
Collapse
|
10
|
Stern RJ, Gerya TV. The importance of continents, oceans and plate tectonics for the evolution of complex life: implications for finding extraterrestrial civilizations. Sci Rep 2024; 14:8552. [PMID: 38609425 PMCID: PMC11015018 DOI: 10.1038/s41598-024-54700-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/03/2023] [Accepted: 02/14/2024] [Indexed: 04/14/2024] Open
Abstract
Within the uncertainties of involved astronomical and biological parameters, the Drake Equation typically predicts that there should be many exoplanets in our galaxy hosting active, communicative civilizations (ACCs). These optimistic calculations are however not supported by evidence, which is often referred to as the Fermi Paradox. Here, we elaborate on this long-standing enigma by showing the importance of planetary tectonic style for biological evolution. We summarize growing evidence that a prolonged transition from Mesoproterozoic active single lid tectonics (1.6 to 1.0 Ga) to modern plate tectonics occurred in the Neoproterozoic Era (1.0 to 0.541 Ga), which dramatically accelerated emergence and evolution of complex species. We further suggest that both continents and oceans are required for ACCs because early evolution of simple life must happen in water but late evolution of advanced life capable of creating technology must happen on land. We resolve the Fermi Paradox (1) by adding two additional terms to the Drake Equation: foc (the fraction of habitable exoplanets with significant continents and oceans) and fpt (the fraction of habitable exoplanets with significant continents and oceans that have had plate tectonics operating for at least 0.5 Ga); and (2) by demonstrating that the product of foc and fpt is very small (< 0.00003-0.002). We propose that the lack of evidence for ACCs reflects the scarcity of long-lived plate tectonics and/or continents and oceans on exoplanets with primitive life.
Collapse
Affiliation(s)
- Robert J Stern
- Department of Sustainable Earth Systems Science, University of Texas at Dallas, Richardson, TX, 75083-0688, USA
| | - Taras V Gerya
- Department of Earth Sciences, ETH-Zurich, Sonneggstrasse 5, 8092, Zurich, Switzerland.
| |
Collapse
|
11
|
Wei GY, Zhao M, Sperling EA, Gaines RR, Kalderon-Asael B, Shen J, Li C, Zhang F, Li G, Zhou C, Cai C, Chen D, Xiao KQ, Jiang L, Ling HF, Planavsky NJ, Tarhan LG. Lithium isotopic constraints on the evolution of continental clay mineral factory and marine oxygenation in the earliest Paleozoic Era. SCIENCE ADVANCES 2024; 10:eadk2152. [PMID: 38552018 PMCID: PMC10980266 DOI: 10.1126/sciadv.adk2152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 08/08/2023] [Accepted: 02/26/2024] [Indexed: 04/01/2024]
Abstract
The evolution of oxygen cycles on Earth's surface has been regulated by the balance between molecular oxygen production and consumption. The Neoproterozoic-Paleozoic transition likely marks the second rise in atmospheric and oceanic oxygen levels, widely attributed to enhanced burial of organic carbon. However, it remains disputed how marine organic carbon production and burial respond to global environmental changes and whether these feedbacks trigger global oxygenation during this interval. Here, we report a large lithium isotopic and elemental dataset from marine mudstones spanning the upper Neoproterozoic to middle Cambrian [~660 million years ago (Ma) to 500 Ma]. These data indicate a dramatic increase in continental clay formation after ~525 Ma, likely linked to secular changes in global climate and compositions of the continental crust. Using a global biogeochemical model, we suggest that intensified continental weathering and clay delivery to the oceans could have notably increased the burial efficiency of organic carbon and facilitated greater oxygen accumulation in the earliest Paleozoic oceans.
Collapse
Affiliation(s)
- Guang-Yi Wei
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Mingyu Zhao
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Erik A. Sperling
- Department of Earth and Planetary Sciences, Stanford University, Stanford, CA 94305, USA
| | | | - Boriana Kalderon-Asael
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Jun Shen
- State Key Laboratory of Geological Processes and Mineral Resources, China University of Geosciences, Wuhan 430074, China
| | - Chao Li
- State Key Laboratory of Oil and Gas Reservoir Geology and Exploitation and Institute of Sedimentary Geology, Chengdu University of Technology, Chengdu 610059, China
- Key Laboratory of Deep-time Geography and Environment Reconstruction and Applications of Ministry of Natural Resources, Chengdu University of Technology, Chengdu 610059, China
- International Center for Sedimentary Geochemistry and Biogeochemistry Research, Chengdu University of Technology, Chengdu 610059, China
| | - Feifei Zhang
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Gaojun Li
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Chuanming Zhou
- State Key Laboratory of Palaeobiology and Stratigraphy, Nanjing Institute of Geology and Palaeontology, and Center for Excellence in Life and Palaeoenvironment, Chinese Academy of Sciences, Nanjing 210008, China
| | - Chunfang Cai
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Daizhao Chen
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Ke-Qing Xiao
- State Key Lab of Urban and Regional Ecology, Research Center for Eco-Environmental Sciences, Chinese Academy of Sciences, Shuangqing Rd. 18, 10085, Beijing, China
- University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Lei Jiang
- Key Laboratory of Cenozoic Geology and Environment, Institute of Geology and Geophysics, Chinese Academy of Sciences, Beijing, China
| | - Hong-Fei Ling
- School of Earth Sciences and Engineering, and Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China
| | - Noah J. Planavsky
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| | - Lidya G. Tarhan
- Department of Earth and Planetary Sciences, Yale University, New Haven, CT 06520-8109, USA
| |
Collapse
|
12
|
Ontiveros DE, Beaugrand G, Lefebvre B, Marcilly CM, Servais T, Pohl A. Impact of global climate cooling on Ordovician marine biodiversity. Nat Commun 2023; 14:6098. [PMID: 37816739 PMCID: PMC10564867 DOI: 10.1038/s41467-023-41685-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2022] [Accepted: 09/14/2023] [Indexed: 10/12/2023] Open
Abstract
Global cooling has been proposed as a driver of the Great Ordovician Biodiversification Event, the largest radiation of Phanerozoic marine animal Life. Yet, mechanistic understanding of the underlying pathways is lacking and other possible causes are debated. Here we couple a global climate model with a macroecological model to reconstruct global biodiversity patterns during the Ordovician. In our simulations, an inverted latitudinal biodiversity gradient characterizes the late Cambrian and Early Ordovician when climate was much warmer than today. During the Mid-Late Ordovician, climate cooling simultaneously permits the development of a modern latitudinal biodiversity gradient and an increase in global biodiversity. This increase is a consequence of the ecophysiological limitations to marine Life and is robust to uncertainties in both proxy-derived temperature reconstructions and organism physiology. First-order model-data agreement suggests that the most conspicuous rise in biodiversity over Earth's history - the Great Ordovician Biodiversification Event - was primarily driven by global cooling.
Collapse
Affiliation(s)
| | - Gregory Beaugrand
- Univ. Littoral Côte d'Opale, CNRS, Univ. Lille, UMR 8187 LOG, F-62930, Wimereux, France
| | - Bertrand Lefebvre
- Univ Lyon, Univ Lyon 1, ENSL, CNRS, LGL-TPE, F-69622, Villeurbanne, France
| | | | - Thomas Servais
- Univ. Lille, CNRS, UMR 8198-Evo-Eco-Paleo, F-59000, Lille, France
| | - Alexandre Pohl
- Biogéosciences, UMR 6282 CNRS, Université de Bourgogne, 6 Boulevard Gabriel, 21000, Dijon, France.
| |
Collapse
|
13
|
Kumala L, Thomsen M, Canfield DE. Respiration kinetics and allometric scaling in the demosponge Halichondria panicea. BMC Ecol Evol 2023; 23:53. [PMID: 37726687 PMCID: PMC10507823 DOI: 10.1186/s12862-023-02163-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/20/2023] [Accepted: 09/04/2023] [Indexed: 09/21/2023] Open
Abstract
BACKGROUND The aquiferous system in sponges represents one of the simplest circulatory systems used by animals for the internal uptake and distribution of oxygen and metabolic substrates. Its modular organization enables sponges to metabolically scale with size differently than animals with an internal circulatory system. In this case, metabolic rate is typically limited by surface to volume constraints to maintain an efficient supply of oxygen and food. Here, we consider the linkeage between oxygen concentration, the respiration rates of sponges and sponge size. RESULTS We explored respiration kinetics for individuals of the demosponge Halichondria panicea with varying numbers of aquiferous modules (nmodules = 1-102). From this work we establish relationships between the sponge size, module number, maximum respiration rate (Rmax) and the half-saturation constant, Km, which is the oxygen concentration producing half of the maximum respiration rate, Rmax. We found that the nmodules in H. panicea scales consistently with sponge volume (Vsp) and that Rmax increased with sponge size with a proportionality > 1. Conversly, we found a lack of correlation between Km and sponge body size suggesting that oxygen concentration does not control the size of sponges. CONCLUSIONS The present study reveals that the addition of aquiferous modules (with a mean volume of 1.59 ± 0.22 mL) enables H. panicea in particular, and likely demosponges in general, to grow far beyond constraints limiting the size of their component modules and independent of ambient oxygen levels.
Collapse
Affiliation(s)
- Lars Kumala
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark.
- Marine Biological Research Centre, University of Southern Denmark, Kerteminde, 5300, Denmark.
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark.
| | - Malte Thomsen
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Marine Biological Research Centre, University of Southern Denmark, Kerteminde, 5300, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
| | - Donald E Canfield
- Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Nordcee, Department of Biology, University of Southern Denmark, Odense M, 5230, Denmark
- Danish Institute for Advanced Study (DIAS), University of Southern Denmark, Odense M, 5230, Denmark
| |
Collapse
|