1
|
Liang C, Dudko V, Khoruzhenko O, Hong X, Lv ZP, Tunn I, Umer M, Timonen JVI, Linder MB, Breu J, Ikkala O, Zhang H. Stiff and self-healing hydrogels by polymer entanglements in co-planar nanoconfinement. NATURE MATERIALS 2025; 24:599-606. [PMID: 40055539 PMCID: PMC11961364 DOI: 10.1038/s41563-025-02146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Accepted: 01/16/2025] [Indexed: 04/03/2025]
Abstract
Many biological tissues are mechanically strong and stiff but can still heal from damage. By contrast, synthetic hydrogels have not shown comparable combinations of properties, as current stiffening approaches inevitably suppress the required chain/bond dynamics for self-healing. Here we show a stiff and self-healing hydrogel with a modulus of 50 MPa and tensile strength up to 4.2 MPa by polymer entanglements in co-planar nanoconfinement. This is realized by polymerizing a highly concentrated monomer solution within a scaffold of fully delaminated synthetic hectorite nanosheets, shear oriented into a macroscopic monodomain. The resultant physical gels show self-healing efficiency up to 100% despite the high modulus, and high adhesion shear strength on a broad range of substrates. This nanoconfinement approach allows the incorporation of novel functionalities by embedding colloidal materials such as MXenes and can be generalized to other polymers and solvents to fabricate stiff and self-healing gels for soft robotics, additive manufacturing and biomedical applications.
Collapse
Affiliation(s)
- Chen Liang
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Volodymyr Dudko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Olena Khoruzhenko
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, Germany
| | - Xiaodan Hong
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Zhong-Peng Lv
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Isabell Tunn
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Muhammad Umer
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Jaakko V I Timonen
- Department of Applied Physics, Aalto University, Espoo, Finland
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
| | - Markus B Linder
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Bayreuth, Germany.
| | - Olli Ikkala
- Department of Applied Physics, Aalto University, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
| | - Hang Zhang
- Department of Applied Physics, Aalto University, Espoo, Finland.
- Center of Excellence in Life-Inspired Hybrid Materials (LIBER), Aalto University, Espoo, Finland.
- Department of Bioproducts and Biosystems, School of Chemical Engineering, Aalto University, Espoo, Finland.
| |
Collapse
|
2
|
Wakino R, Suzuki M, Miyamoto Y, Yatomi M, Matsuno T, Shimojima A. Interlayer Modification of Crystalline Layered Silicates with Oligodimethylsiloxane. Chemistry 2025:e202500262. [PMID: 40116306 DOI: 10.1002/chem.202500262] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 03/13/2025] [Accepted: 03/20/2025] [Indexed: 03/23/2025]
Abstract
Crystalline layered silicates are valuable precursors for the synthesis of functional siloxane-based nanomaterials. In this study, vinyl-terminated oligodimethylsiloxane was grafted onto the interlayer surfaces of a crystalline layered silicate, octosilicate. The oligosiloxane modification facilitated the delamination of the layers in hydrophobic organic solvents. Hydrosilylation reactions between the oligosiloxane-modified nanosheets and SiH-terminated polydimethylsiloxane resulted in a clear, stretchable elastomer, demonstrating that the nanosheets acted as cross-linkers. Furthermore, the introduction of silanolate groups into the elastomer imparted self-healing properties. These findings expand the potential of crystalline layered silicates as nanobuilding blocks for new materials.
Collapse
Affiliation(s)
- Riho Wakino
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Mai Suzuki
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Yoshiaki Miyamoto
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
| | - Masashi Yatomi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo, Japan
| | - Takamichi Matsuno
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, Tokyo, Japan
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, Tokyo, Japan
- Waseda Research Institute for Science and Engineering, Waseda University, Tokyo, Japan
| |
Collapse
|
3
|
Ban T, Inukai K, Takai-Yamashita C, Manseki K. Enhanced electrocatalytic activity in hydrogen evolution reaction using 2D/2D nanohybrids of ruthenate nanoflakes and graphitic carbon nitride. Phys Chem Chem Phys 2024; 26:25709-25718. [PMID: 39352492 DOI: 10.1039/d4cp02668c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Photoelectrochemical and electrochemical water splitting was examined using ruthenate nanoflake (RuNF) and graphitic carbon nitride (g-C3N4) hybrids. A two-dimensional and visible-light-responsive photocatalyst g-C3N4 was hybridized with the RuNFs that we recently synthesized via a bottom-up process in aqueous solution, yielding 2D/2D nanocomposites. The influence of the 2D/2D nanocomposites on oxygen and hydrogen evolution during photoelectrochemical and electrochemical water splitting was investigated. First, electrolysis of a Na2SO4 aqueous solution was conducted with intermittent photo-irradiation. Both the g-C3N4 electrode and the RuNF/g-C3N4 hybrid electrode provided anodic and cathodic photocurrents at high and low potentials, respectively; however, the copresence of RuNFs decreased the photocurrents, probably because the RuNFs retarded the light absorption by g-C3N4. Moreover, the use of RuNF/g-C3N4 hybrids as electrodes facilitated both the oxygen and hydrogen evolution reactions without photo-irradiation. However, for the oxygen evolution reaction, the effect of the RuNFs was similar to that of RuO2 nanoparticles, indicating that the influence of the type and morphology of ruthenium species on the oxygen evolution reaction was small. Conversely, irrespective of the pH of the aqueous solutions in an electrolytic bath, the 2D/2D nanostructure of RuNFs and g-C3N4 decreased the overpotential of the hydrogen evolution reaction. However, the use of RuO2 particles instead of RuNFs did not cause such a phenomenon. Thus, it was revealed that the RuNFs synthesized via a bottom-up process were useful as a co-catalyst for the hydrogen evolution reaction.
Collapse
Affiliation(s)
- Takayuki Ban
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Kazuki Inukai
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Chika Takai-Yamashita
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| | - Kazuhiro Manseki
- Department of Chemistry and Biomolecular Science, Faculty of Engineering, Gifu University, Yanagido 1-1, Gifu 501-1193, Japan.
| |
Collapse
|
4
|
Wang C, Sakai N, Ebina Y, Kikuchi T, Grzybek J, Roth WJ, Gil B, Ma R, Sasaki T. Construction of Hierarchical Films via Layer-by-Layer Assembly of Exfoliated Unilamellar Zeolite Nanosheets. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2308293. [PMID: 38282181 DOI: 10.1002/smll.202308293] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/20/2023] [Revised: 12/19/2023] [Indexed: 01/30/2024]
Abstract
Zeolites have been widely applied as versatile catalysts, sorbents, and ion exchangers with unique porous structures showing molecular sieving capability. In these years, it is reported that some layered zeolites can be delaminated into molecularly thin 2-dimensional (2D) nanosheets characterized by inherent porous structures and highly exposed active sites. In the present study, two types of zeolite nanosheets with distinct porous structures with MWW topology (denoted mww) and ferrierite-related structure (denoted bifer) are deposited on a substrate through the solution process via electrostatic self-assembly. Alternate deposition of zeolite nanosheets with polycation under optimized conditions allows the layer-by-layer growth of their multilayer films with a stacking distance of 2-3 nm. Furthermore, various hierarchical structures defined at the unit-cell dimensions can be constructed simply by conducting the deposition of mww and bifer nanosheets in a designed sequence. Adsorption of a dye, Rhodamine B, in these films, is examined to show that adsorption is dependent on constituent zeolite nanosheets and their assembled nanostructures. This work has provided fundamental advancements in the fabrication of artificial zeolite-related hierarchical structures, which may be extended to other zeolite nanosheets, broadening their functionalities, applications, and benefits.
Collapse
Affiliation(s)
- Chenhui Wang
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Nobuyuki Sakai
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Yasuo Ebina
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takayuki Kikuchi
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Justyna Grzybek
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Wieslaw J Roth
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| | - Takayoshi Sasaki
- Research Center for Materials Nanoarchitectonics (MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
5
|
Imwiset KJ, Dudko V, Markus P, Papastavrou G, Breu J, Ogawa M. Forceless spontaneous delamination of high-aspect ratio fluorohectorite into monolayer nanosheets in chloroform. Chem Commun (Camb) 2024; 60:6383-6386. [PMID: 38814048 DOI: 10.1039/d4cc00475b] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/31/2024]
Abstract
One-dimensional dissolution of a layered compound in a nonpolar organic solvent is reported for the first time. A high-aspect ratio fluorohectorite modified with a cationic surfactant (dioctadecyldimethylammonium) showed spontaneous delamination into monolayer nanosheets in chloroform.
Collapse
Affiliation(s)
- Kamonnart Jaa Imwiset
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand.
| | - Volodymyr Dudko
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Paul Markus
- Physical Chemistry II and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Georg Papastavrou
- Physical Chemistry II and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440, Bayreuth, Germany
| | - Josef Breu
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, 95440, Bayreuth, Germany.
| | - Makoto Ogawa
- School of Energy Science and Engineering, Vidyasirimedhi Institute of Science and Technology, Wangchan Valley, Rayong 21210, Thailand.
| |
Collapse
|
6
|
Mikami T, Kato R, Hosokawa Y, Miyamoto N, Kato T. Nanostructure Control in Zinc Oxide Films and Microfibers through Bioinspired Synthesis of Liquid-Crystalline Zinc Hydroxide Carbonate; Formation of Free-Standing Materials in Centimeter-Level Lengths. SMALL METHODS 2024; 8:e2300353. [PMID: 37665220 DOI: 10.1002/smtd.202300353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/17/2023] [Revised: 07/30/2023] [Indexed: 09/05/2023]
Abstract
Free-standing zinc oxide in the forms of films and fibrous materials are expected to be used as functional devices such as piezoelectric devices and catalyst filters without being limited by the growth substrate. Herein, a synthetic morphology-control method for 2D and 1D free-standing ZnO materials with ordered and nanoporous structures by conversion of liquid-crystalline (LC) zinc hydroxide carbonate (ZHC) nanoplates is reported. As a new colloidal liquid crystal, the LC ZHC nanoplate precursors are obtained by a biomineralization-inspired method. The approach is to control the morphology and crystallographic orientation of ZHC crystals by using acidic macromolecules. Their nano-scale and oriented structures are examined. The LC oriented ZHC nanoplates have led to the synthesis of free-standing films and microfibers of ZHC in centimeter-level lengths, with the successful thermal conversion into free-standing films and microfibers of ZnO. The resultant ZnO films and ZnO microfibers have nanoporous structures and preferential crystallographic orientations that preserve the alignment of ZHC nanoplates before conversion.
Collapse
Affiliation(s)
- Takahiro Mikami
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Riki Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Yoshihiro Hosokawa
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
| | - Nobuyoshi Miyamoto
- Department of Life, Environment and Applied Chemistry, The Faculty of Engineering, Fukuoka Institute of Technology, Wajiro-higashi, Higashi-ku, Fukuoka, 811-0295, Japan
| | - Takashi Kato
- Department of Chemistry and Biotechnology, School of Engineering, The University of Tokyo, Hongo, Bunkyo-ku, Tokyo, 113-8656, Japan
- Research Initiative for Supra-Materials, Shinshu University, Wakasato, Nagano, 380-8553, Japan
| |
Collapse
|
7
|
Katiyar AK, Hoang AT, Xu D, Hong J, Kim BJ, Ji S, Ahn JH. 2D Materials in Flexible Electronics: Recent Advances and Future Prospectives. Chem Rev 2024; 124:318-419. [PMID: 38055207 DOI: 10.1021/acs.chemrev.3c00302] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/07/2023]
Abstract
Flexible electronics have recently gained considerable attention due to their potential to provide new and innovative solutions to a wide range of challenges in various electronic fields. These electronics require specific material properties and performance because they need to be integrated into a variety of surfaces or folded and rolled for newly formatted electronics. Two-dimensional (2D) materials have emerged as promising candidates for flexible electronics due to their unique mechanical, electrical, and optical properties, as well as their compatibility with other materials, enabling the creation of various flexible electronic devices. This article provides a comprehensive review of the progress made in developing flexible electronic devices using 2D materials. In addition, it highlights the key aspects of materials, scalable material production, and device fabrication processes for flexible applications, along with important examples of demonstrations that achieved breakthroughs in various flexible and wearable electronic applications. Finally, we discuss the opportunities, current challenges, potential solutions, and future investigative directions about this field.
Collapse
Affiliation(s)
- Ajit Kumar Katiyar
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Anh Tuan Hoang
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Duo Xu
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Juyeong Hong
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Beom Jin Kim
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Seunghyeon Ji
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| | - Jong-Hyun Ahn
- School of Electrical and Electronic Engineering, Yonsei University, Seoul 03722, Republic of Korea
| |
Collapse
|
8
|
Roth WJ, Opanasenko M, Mazur M, Gil B, Čejka J, Sasaki T. Current State and Perspectives of Exfoliated Zeolites. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307341. [PMID: 37800413 DOI: 10.1002/adma.202307341] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/15/2023] [Indexed: 10/07/2023]
Abstract
Zeolites are highly efficient industrial catalysts and sorbents with microporous framework structures. Approximately 10% of the frameworks, but eventually all in the long run, have produced both 3D crystals and 2D layers. The latter can be intercalated and expanded like all 2D materials but proved difficult to exfoliate directly into suspensions of monolayers in solution as precursors for unique synthetic opportunities. Successful exfoliations have been reported recently and are overviewed in this perspective article. The discussion highlights 3 primary challenges in this field, namely finding suitable 2D zeolite preparations that exfoliate directly in high yield, proving uniform layer thickness in solution and identifying applications to exploit the unique synthetic capabilities and properties of exfoliated zeolite monolayers. Four zeolites have been confirmed to exfoliate directly into monolayers: 3 with known structures-MWW, MFI, and RWR and one unknown, bifer with a unit cell close to ferrierite. The exfoliation into monolayers is confirmed by the combination of 5-6 characterization techniques including AFM, in situ and in-plane XRD, and microscopies. The promising areas of development are oriented films and membranes, intimately mixed zeolite phases, and hierarchical nanoscale composites with other active species like nanoparticles and clusters that are unfeasible by solid state processes.
Collapse
Affiliation(s)
- Wieslaw J Roth
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Maksym Opanasenko
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12843, Czech Republic
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12843, Czech Republic
| | - Barbara Gil
- Faculty of Chemistry, Jagiellonian University, Gronostajowa 2, Kraków, 30-387, Poland
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, Prague 2, 12843, Czech Republic
| | - Takayoshi Sasaki
- Research Center for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki, 305-0044, Japan
| |
Collapse
|
9
|
Yatomi M, Hikino T, Yamazoe S, Kuroda K, Shimojima A. Immobilization of isolated dimethyltin species on crystalline silicates through surface modification of layered octosilicate. Dalton Trans 2023. [PMID: 38018470 DOI: 10.1039/d3dt03231k] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2023]
Abstract
Single metal atoms supported on silica are attractive catalysts, and precise control of the local environment around the metal species is essential. Crystalline silica is useful as an efficient support for the incorporation of well-defined metal sites. Dimethyltin species were regularly grafted onto the layer surfaces of layered octosilicate, a type of two-dimensional (2D) crystalline silica. Dimethyltin dichlorides react with the surface silanol (SiOH) groups of the silicate layers. The formation of Si-O-Sn bonds was confirmed by 29Si magic-angle spinning (MAS) NMR. X-ray absorption fine structure (XAFS) analysis showed the four-coordinated Sn species. These results suggested the presence of well-defined dipodal dimethyltin species on the layer surfaces. The degree of modification of the silanol groups with the dimethyltin groups increased with increasing amounts of dimethyltin dichloride; however, the maximum degree of modification was approximately 50%. This value was interpreted as an alternate modification of the octosilicate reaction sites with dimethyltin groups. These results demonstrate the potential for developing highly active single metal catalysts with a high density of regularly arranged active sites on high surface area supports.
Collapse
Affiliation(s)
- Masashi Yatomi
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
| | - Takuya Hikino
- Department of Advanced Science and Engineering, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan
| | - Seiji Yamazoe
- Department of Chemistry, Graduate School of Science, Tokyo Metropolitan University, 1-1 Minami-osawa, Hachioji, Tokyo 192-0397, Japan
| | - Kazuyuki Kuroda
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| | - Atsushi Shimojima
- Department of Applied Chemistry, Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku-ku, Tokyo 169-8555, Japan.
- Kagami Memorial Research Institute for Materials Science and Technology, Waseda University, 2-8-26 Nishiwaseda, Shinjuku-ku, Tokyo 169-0051, Japan
| |
Collapse
|
10
|
Stevenson M, Weiß S, Cha G, Schamel M, Jahn L, Friedrich D, Danzer MA, Cheong JY, Breu J. Osmotically Delaminated Silicate Nanosheet-Coated NCM for Ultra-Stable Li + Storage and Chemical Stability Toward Long-Term Air Exposure. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2302617. [PMID: 37264519 DOI: 10.1002/smll.202302617] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 05/11/2023] [Indexed: 06/03/2023]
Abstract
To ensure the safety and performance of lithium-ion batteries (LIBs), a rational design and optimization of suitable cathode materials are crucial. Lithium nickel cobalt manganese oxides (NCM) represent one of the most popular cathode materials for commercial LIBs. However, they are limited by several critical issues, such as transition metal dissolution, formation of an unstable cathode-electrolyte interphase (CEI) layer, chemical instability upon air exposure, and mechanical instability. In this work, coating fabricated by self-assembly of osmotically delaminated sodium fluorohectorite (Hec) nanosheets onto NCM (Hec-NCM) in a simple and technically benign aqueous wet-coating process is reported first. Complete wrapping of NCM by high aspect ratio (>10 000) nanosheets is enabled through an electrostatic attraction between Hec nanosheets and NCM as well as by the superior mechanical flexibility of Hec nanosheets. The coating significantly suppresses mechanical degradation while forming a multi-functional CEI layer. Consequently, Hec-NCM delivers outstanding capacity retention for 300 cycles. Furthermore, due to the exceptional gas barrier properties of the few-layer Hec-coating, the electrochemical performance of Hec-NCM is maintained even after 6 months of exposure to the ambient atmosphere. These findings suggest a new direction of significantly improving the long-term stability and activity of cathode materials by creating an artificial CEI layer.
Collapse
Affiliation(s)
- Max Stevenson
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Sebastian Weiß
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Gihoon Cha
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Maximilian Schamel
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Chair of Electrical Energy Systems, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Leonard Jahn
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Chair of Electrical Energy Systems, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Daniel Friedrich
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Michael A Danzer
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Chair of Electrical Energy Systems, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Jun Young Cheong
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| | - Josef Breu
- Bavarian Center for Battery Technology (BayBatt), University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
- Department of Chemistry, University of Bayreuth, Universitätsstraße 30, 95447, Bayreuth, Germany
| |
Collapse
|
11
|
Khoruzhenko O, Dudko V, Rosenfeldt S, Breu J. Fabricating defogging metasurfaces via a water-based colloidal route. MATERIALS HORIZONS 2023; 10:3749-3760. [PMID: 37404036 DOI: 10.1039/d3mh00625e] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 07/06/2023]
Abstract
Metamaterials possess exotic properties that do not occur in nature and have attracted significant attention in research and engineering. Two decades ago, the field of metamaterials emerged from linear electromagnetism, and today it encompasses a wide range of aspects related to solid matter, including electromagnetic and optical, mechanical and acoustic, as well as unusual thermal or mass transport phenomena. Combining different material properties can lead to emergent synergistic functions applicable in everyday life. Nevertheless, making such metamaterials in a robust, facile, and scalable manner is still challenging. This paper presents an effective protocol allowing for metasurfaces offering a synergy between optical and thermal properties. It utilizes liquid crystalline suspensions of nanosheets comprising two transparent silicate monolayers in a double stack, where gold nanoparticles are sandwiched between the two silicate monolayers. The colloidally stable suspension of nanosheets was applied in nanometre-thick coatings onto various substrates. The transparent coatings serve as absorbers in the infrared spectrum allowing for the efficient conversion of sunlight into heat. The peculiar metasurface couples plasmon-enhanced adsorption with anisotropic heat conduction in the plane of the coating, both at the nanoscale. Processing of the coating is based on scalable and affordable wet colloidal processing instead of having to apply physical deposition in high vacuum or lithographic techniques. Upon solar irradiation, the colloidal metasurface is quickly (60% of the time taken for the non-coated glass) heated to the level where complete defogging is assured without sacrificing transparency in the visible range. The protocol is generally applicable allowing for intercalation of any nanoparticles covering a range of physical properties that are then inherited to colloidal nanosheets. Because of their large aspect ratio, the nanosheets will inevitably orient parallel to any surface. This will allow for a toolbox capable of mimicking metamaterial properties while assuring facile processing via dip coating or spray coating.
Collapse
Affiliation(s)
- Olena Khoruzhenko
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| | - Volodymyr Dudko
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| | - Sabine Rosenfeldt
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| | - Josef Breu
- Department of Chemistry and Bavarian Polymer Institute, University of Bayreuth, Universitätsstr. 30, 95440 Bayreuth, Germany.
| |
Collapse
|
12
|
Schuchardt D, Rosenfeldt S, Kalo H, Breu J. Fabrication of Bragg stack films of clay nanosheets and polycations via co-polymerization of intercalated monomers and functional interlayer cations. NANOSCALE 2023; 15:7044-7050. [PMID: 36974910 DOI: 10.1039/d3nr00438d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2023]
Abstract
The fabrication of one-dimensional (1D) crystalline, monodomain nanocomposite films (hybrid Bragg stacks) is still limited to a few combinations of polymers and clay. The main reason is the segregation of clay and polymers driven by the entropic loss faced by the polymer confined in a narrow slit between the nanosheets. By exchanging synthetic sodium-fluorohectorite with vinylbenzyltrimethylammonium chloride, we succeeded in delaminating clay via 1D dissolution in N-methylformamide to obtain a liquid crystalline suspension. By combining this with bisphenol A glycerolate diacrylate, 1D crystalline nanocomposites could be obtained via photopolymerization of doctor bladed wet coatings. Infrared spectroscopy confirmed the co-polymerization of monomers and the organic modifier between the hectorite platelets. This single-phase hybrid material shows very low oxygen and water vapor transmission rates. The incorporation of the modified clay into the polymer leads to an oxygen transmission rate of 0.21 cm3 m-2 day-1 atm-1 at 50% r.h. and 23 °C and a water vapor transmission rate of 0.05 g m-2 day-1 for a coating of 3.7 μm, making this material appropriate for challenging packaging applications.
Collapse
Affiliation(s)
- Dominik Schuchardt
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany.
| | - Sabine Rosenfeldt
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany.
| | - Hussein Kalo
- BYK-Chemie GmbH, Plant Moosburg, Stadtwaldstrasse 44, 85368 Moosburg, Germany.
| | - Josef Breu
- Bavarian Polymer Institute and Department of Chemistry, University of Bayreuth, Universitätsstr. 30, 95447 Bayreuth, Germany.
| |
Collapse
|
13
|
Roth WJ, Sasaki T, Wolski K, Gil B, Zapotoczny S, Čejka J, Kubů M, Mazur M, Ebina Y, Sakai N, Tang DM, Ma R. Exfoliating layered zeolite MFI into unilamellar nanosheets in solution as precursors for the synthesis of hierarchical nanocomposites and oriented films. Inorg Chem Front 2023. [DOI: 10.1039/d2qi02283d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
The separation of layered MFI into unilamellar nanosheets in solution confirms the general validity of soft-chemical exfoliation for zeolites and allows top-down production of films with potential applications in separation and catalysis.
Collapse
Affiliation(s)
- Wieslaw J. Roth
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Takayoshi Sasaki
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Karol Wolski
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Barbara Gil
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Szczepan Zapotoczny
- Jagiellonian University, Faculty of Chemistry, Gronostajowa 2, 30-387 Kraków, Poland
| | - Jiří Čejka
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Martin Kubů
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Michal Mazur
- Department of Physical and Macromolecular Chemistry, Faculty of Science, Charles University, Hlavova 8, 12840 Prague 2, Czech Republic
| | - Yasuo Ebina
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Nobuyuki Sakai
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Dai-Ming Tang
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Renzhi Ma
- International Centre for Materials Nanoarchitectonics (WPI-MANA), National Institute for Materials Science (NIMS), 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| |
Collapse
|