1
|
Li H, Fan J, Shen W, Zhang Y, Zhu X, Li P, Gu Z, Jing P. PRMT5 Inhibition Enhances Therapeutic Efficacy of Cisplatin via Mediating miR-29b-3p-Mcl-1 Expression in Lung Adenocarcinoma. Cell Biol Int 2025; 49:407-418. [PMID: 39891587 DOI: 10.1002/cbin.12278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2024] [Revised: 12/12/2024] [Accepted: 01/15/2025] [Indexed: 02/03/2025]
Abstract
Cisplatin is one of the front-line therapeutic agents used to treat cancers, while drug resistance is a great obstacle to anti-tumor efficiency. Protein arginine methyltransferase 5 (PRMT5) has been identified as a promoter of tumorigenesis, motility, and invasion. Inhibiting PRMT5 reduced hypoxia-induced carboplatin resistance in lung adenocarcinoma (LUAD). However, the specific relationship between PRMT5 and cisplatin (CDDP) warrants further investigation. Our research revealed that PRMT5 inhibitor C9 enhanced CDDP chemosensitivity by suppressing proliferation and promoting apoptosis in LUAD cells. Through examining pro-apoptotic proteins regulated by PRMT5, we identified that Mcl-1 played a significant role in PRMT5-mediated CDDP chemosensitivity. Furthermore, PRMT5 regulated Mcl-1 expression through mediating miR-29b-3p. In vivo, our research presented that C9 increased CDDP chemosensitivity in LUAD xenografts. All in all, our data raised an interesting possibility that epigenetic reprogramming was associated with chemosensitivity. PRMT5 inhibitor C9 improved CDDP effectiveness in LUAD cells by inhibiting Mcl-1 expression via miR-29b-3p, thereby modulating cellular proliferation and apoptosis.
Collapse
Affiliation(s)
- Haichao Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Jiangjiang Fan
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Weiwei Shen
- Department of Oncology, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Yong Zhang
- Department of Pulmonary Medicine, Xijing Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Ximing Zhu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Pei Li
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Zhongping Gu
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| | - Pengyu Jing
- Department of Thoracic Surgery, The Second Affiliated Hospital, Air Force Medical University, Xi'an, Shaanxi Province, China
| |
Collapse
|
2
|
Zheng S, Tong Y, Yang L, Chen J, Tan Y. The prognostic significance of genetics in acute myeloid leukemia under venetoclax-based treatment. Ann Hematol 2024; 103:5019-5033. [PMID: 39467855 DOI: 10.1007/s00277-024-06050-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/27/2024] [Accepted: 10/16/2024] [Indexed: 10/30/2024]
Abstract
Acute myeloid leukemia (AML) is the most prevalent hematologic malignancy in adults. In 2022, the European LeukemiaNet (ELN) has updated its prognostic system that incorporates cytogenetics and molecular genetics based on data from patients undergoing intensive chemotherapy (IC). Recently, a risk stratification framework has been established for hypomethylating agents (HMA)-based low-intensity treatment (LIT) to fill the gaps in stratification for this treatment modality, but this needs further refinement. Venetoclax (VEN), a BH3 mimetic, targets BCL-2 to modulate apoptosis and metabolism in AML cells. Its combination with HMA or low-dose cytarabine (LDAC) has been shown to enhance the response rates and prolong the survival outcomes of older or unfit patients with AML. In this review, we delved into the prognostic significance of FLT3-ITD and IDH mutations when used in combination with VEN and HMA, as well as in conjunction with their specific inhibitors. We also explored the role of VEN in NPM1-mutated AML and its efficacy in splicing factor mutations AML. Additionally, we examined the response rates and survival outcomes of CBF-AML when treated with a VEN-based regimen. Moving forward, it is imperative that risk stratification for LIT becomes more nuanced to better align with the requirements of personalized diagnosis and treatment strategies.
Collapse
Affiliation(s)
- Shan Zheng
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Department of Hematology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yuxin Tong
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Department of Hematology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Linlin Yang
- Department of Hematology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Jiayi Chen
- Postgraduate training base Alliance of Wenzhou Medical University (Zhejiang Cancer Hospital), Hangzhou, Zhejiang, 310022, China
- Department of Hematology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China
- Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, 310022, China
| | - Yamin Tan
- Department of Hematology, Zhejiang Cancer Hospital, Hangzhou, Zhejiang, 310022, China.
- Hangzhou Institute of Medicine (HlM), Chinese Academy of Sciences, Hangzhou, 310022, China.
| |
Collapse
|
3
|
Cordani M, Michetti F, Zarrabi A, Zarepour A, Rumio C, Strippoli R, Marcucci F. The role of glycolysis in tumorigenesis: From biological aspects to therapeutic opportunities. Neoplasia 2024; 58:101076. [PMID: 39476482 PMCID: PMC11555605 DOI: 10.1016/j.neo.2024.101076] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/02/2024] [Revised: 10/13/2024] [Accepted: 10/17/2024] [Indexed: 11/11/2024]
Abstract
Glycolytic metabolism generates energy and intermediates for biomass production. Tumor-associated glycolysis is upregulated compared to normal tissues in response to tumor cell-autonomous or non-autonomous stimuli. The consequences of this upregulation are twofold. First, the metabolic effects of glycolysis become predominant over those mediated by oxidative metabolism. Second, overexpressed components of the glycolytic pathway (i.e. enzymes or metabolites) acquire new functions unrelated to their metabolic effects and which are referred to as "moonlighting" functions. These functions include induction of mutations and other tumor-initiating events, effects on cancer stem cells, induction of increased expression and/or activity of oncoproteins, epigenetic and transcriptional modifications, bypassing of senescence and induction of proliferation, promotion of DNA damage repair and prevention of DNA damage, antiapoptotic effects, inhibition of drug influx or increase of drug efflux. Upregulated metabolic functions and acquisition of new, non-metabolic functions lead to biological effects that support tumorigenesis: promotion of tumor initiation, stimulation of tumor cell proliferation and primary tumor growth, induction of epithelial-mesenchymal transition, autophagy and metastasis, immunosuppressive effects, induction of drug resistance and effects on tumor accessory cells. These effects have negative consequences on the prognosis of tumor patients. On these grounds, it does not come to surprise that tumor-associated glycolysis has become a target of interest in antitumor drug discovery. So far, however, clinical results with glycolysis inhibitors have fallen short of expectations. In this review we propose approaches that may allow to bypass some of the difficulties that have been encountered so far with the therapeutic use of glycolysis inhibitors.
Collapse
Affiliation(s)
- Marco Cordani
- Department of Biochemistry and Molecular Biology, Faculty of Biology, Complutense University of Madrid, Madrid 28040, Spain; Instituto de Investigación Sanitaria San Carlos (IdISSC), Madrid 28040, Spain
| | - Federica Michetti
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy
| | - Ali Zarrabi
- Department of Biomedical Engineering, Faculty of Engineering and Natural Sciences, Istinye University, Istanbul 34396, Türkiye; Graduate School of Biotechnology and Bioengineering, Yuan Ze University, Taoyuan 320315, Taiwan
| | - Atefeh Zarepour
- Department of Research Analytics, Saveetha Dental College and Hospitals, Saveetha Institute of Medical and Technical Sciences, Saveetha University, Chennai 600 077, India
| | - Cristiano Rumio
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy
| | - Raffaele Strippoli
- Department of Molecular Medicine, Sapienza University of Rome, Viale Regina Elena 324, Rome 00161, Italy; Department of Epidemiology, Preclinical Research and Advanced Diagnostics, National Institute for Infectious Diseases L., Spallanzani, IRCCS, Via Portuense, 292, Rome 00149, Italy.
| | - Fabrizio Marcucci
- Department of Pharmacological and Biomolecular Sciences, University of Milan, Via Trentacoste 2, Milan 20134, Italy.
| |
Collapse
|
4
|
Boët E, Saland E, Skuli S, Griessinger E, Sarry JE. [ Mitohormesis: a key driver of the therapy resistance in cancer cells]. C R Biol 2024; 347:59-75. [PMID: 39171610 DOI: 10.5802/crbiol.154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2024] [Revised: 05/19/2024] [Accepted: 05/23/2024] [Indexed: 08/23/2024]
Abstract
A large body of literature highlights the importance of energy metabolism in the response of haematological malignancies to therapy. In this review, we are particularly interested in acute myeloid leukaemia, where mitochondrial metabolism plays a key role in response and resistance to treatment. We describe the new concept of mitohormesis in the response to therapy-induced stress and in the initiation of relapse in this disease.
Collapse
|
5
|
Xiang X, Dai Z, Luo B, Zhao N, Liu S, Sui J, Huang J, Zhou Y, Gu J, Zhang J, Yang T, Bao R, Luo Y. Rational Design of a Novel Class of Human ClpP Agonists through a Ring-Opening Strategy with Enhanced Antileukemia Activity. J Med Chem 2024; 67:6769-6792. [PMID: 38620134 DOI: 10.1021/acs.jmedchem.4c00338] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/17/2024]
Abstract
The activation of Homo sapiens Casein lysing protease P (HsClpP) by a chemical or genetic strategy has been proved to be a new potential therapy in acute myeloid leukemia (AML). However, limited efficacy has been achieved with classic agonist imipridone ONC201. Here, a novel class of HsClpP agonists is designed and synthesized using a ring-opening strategy based on the lead compound 1 reported in our previous study. Among these novel scaffold agonists, compound 7k exhibited remarkably enhanced proteolytic activity of HsClpP (EC50 = 0.79 ± 0.03 μM) and antitumor activity in vitro (IC50 = 0.038 ± 0.003 μM). Moreover, the intraperitoneal administration of compound 7k markedly suppressed tumor growth in Mv4-11 xenograft models, achieving a tumor growth inhibition rate of 88%. Concurrently, 7k displayed advantageous pharmacokinetic properties in vivo. This study underscores the promise of compound 7k as a significant HsClpP agonist and an antileukemia drug candidate, warranting further exploration for AML treatment.
Collapse
Affiliation(s)
- Xinrong Xiang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhengyi Dai
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Baozhu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Ninglin Zhao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Song Liu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jing Sui
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiasheng Huang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Yuanzheng Zhou
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jinlong Gu
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Jiangnan Zhang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Tao Yang
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
- Laboratory of Human Diseases and Immunotherapies, West China Hospital and Institute of Immunology and Inflammation, Frontiers Science Center for Disease-Related Molecular Network, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Rui Bao
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Youfu Luo
- State Key Laboratory of Biotherapy and Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| |
Collapse
|
6
|
Elgamal OA, Fobare S, Vibhute S, Mehmood A, Vroom DC, Johnson ML, Stearns B, Lerma JR, Truxall J, Stahl E, Carmichael B, Orwick SJ, Mims AS, Curran E, Santhanam R, Tridandapani S, Phelps MA, Xie Z, Coss CC, Baker SD, Patrick J, Ezzell JK, Rai J, Pan J, Rai SN, Stillwell C, Wunderlich M, Abdulrahim M, Goodwin TE, Hilinski G, Bennett CE, Hertlein E, Byrd JC. Pyrimidine depletion enhances targeted and immune therapy combinations in acute myeloid leukemia. JCI Insight 2024; 9:e173646. [PMID: 38646934 PMCID: PMC11141866 DOI: 10.1172/jci.insight.173646] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/12/2023] [Accepted: 03/05/2024] [Indexed: 04/25/2024] Open
Abstract
Acute myeloid leukemia (AML) is a fatal disease characterized by the accumulation of undifferentiated myeloblasts, and agents that promote differentiation have been effective in this disease but are not curative. Dihydroorotate dehydrogenase inhibitors (DHODHi) have the ability to promote AML differentiation and target aberrant malignant myelopoiesis. We introduce HOSU-53, a DHODHi with significant monotherapy activity, which is further enhanced when combined with other standard-of-care therapeutics. We further discovered that DHODHi modulated surface expression of CD38 and CD47, prompting the evaluation of HOSU-53 combined with anti-CD38 and anti-CD47 therapies, where we identified a compelling curative potential in an aggressive AML model with CD47 targeting. Finally, we explored using plasma dihydroorotate (DHO) levels to monitor HOSU-53 safety and found that the level of DHO accumulation could predict HOSU-53 intolerability, suggesting the clinical use of plasma DHO to determine safe DHODHi doses. Collectively, our data support the clinical translation of HOSU-53 in AML, particularly to augment immune therapies. Potent DHODHi to date have been limited by their therapeutic index; however, we introduce pharmacodynamic monitoring to predict tolerability while preserving antitumor activity. We additionally suggest that DHODHi is effective at lower doses with select immune therapies, widening the therapeutic index.
Collapse
Affiliation(s)
- Ola A. Elgamal
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Sydney Fobare
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Sandip Vibhute
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center
| | - Abeera Mehmood
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Dennis C. Vroom
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Mariah L. Johnson
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Blaise Stearns
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - James R. Lerma
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jean Truxall
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Emily Stahl
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Bridget Carmichael
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Shelley J. Orwick
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Alice S. Mims
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - Emily Curran
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
| | - Ramasamy Santhanam
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | | | | | - Zhiliang Xie
- College of Pharmacy and Comprehensive Cancer Center; and
| | - Christopher C. Coss
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | | | - Jeffrey Patrick
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Janel K. Ezzell
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Jayesh Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine
- Cancer Data Science Center, College of Medicine; and
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Jianmin Pan
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine
- Cancer Data Science Center, College of Medicine; and
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Shesh N. Rai
- Division of Biostatistics and Bioinformatics, Department of Environmental and Public Health Sciences, College of Medicine
- Cancer Data Science Center, College of Medicine; and
- Biostatistics and Informatics Shared Resource, University of Cincinnati Cancer Center, University of Cincinnati, Cincinnati, Ohio, USA
| | - Cody Stillwell
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | - Mark Wunderlich
- Division of Experimental Hematology and Cancer Biology, Cancer and Blood Diseases Institute, Cincinnati Children’s Hospital Medical Center, Cincinnati, Ohio, USA
| | | | | | - Gerard Hilinski
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Chad E. Bennett
- Medicinal Chemistry Shared Resource, Comprehensive Cancer Center
- Drug Development Institute, Comprehensive Cancer Center, The Ohio State University, Columbus, Ohio, USA
| | - Erin Hertlein
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Hematology, Department of Internal Medicine, College of Medicine
| | - John C. Byrd
- Division of Hematology and Oncology, Department of Internal Medicine, College of Medicine, University of Cincinnati, Cincinnati, Ohio, USA
- Division of Hematology, Department of Internal Medicine, College of Medicine
- College of Pharmacy and Comprehensive Cancer Center; and
| |
Collapse
|
7
|
Marr AR, Halpin M, Corbin DL, Asemelash Y, Sher S, Gordon BK, Whipp EC, Mitchell S, Harrington BK, Orwick S, Benrashid S, Goettl VM, Yildiz V, Mitchell AD, Cahn O, Mims AS, Larkin KTM, Long M, Blachly J, Woyach JA, Lapalombella R, Grieselhuber NR. The multi-CDK inhibitor dinaciclib reverses bromo- and extra-terminal domain (BET) inhibitor resistance in acute myeloid leukemia via inhibition of Wnt/β-catenin signaling. Exp Hematol Oncol 2024; 13:27. [PMID: 38438856 PMCID: PMC10913666 DOI: 10.1186/s40164-024-00483-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/14/2023] [Accepted: 01/23/2024] [Indexed: 03/06/2024] Open
Abstract
Acute myeloid leukemia (AML) is a highly aggressive hematologic cancer with poor survival across a broad range of molecular subtypes. Development of efficacious and well-tolerable therapies encompassing the range of mutations that can arise in AML remains an unmet need. The bromo- and extra-terminal domain (BET) family of proteins represents an attractive therapeutic target in AML due to their crucial roles in many cellular functions, regardless of any specific mutation. Many BET inhibitors (BETi) are currently in pre-clinical and early clinical development, but acquisition of resistance continues to remain an obstacle for the drug class. Novel methods to circumvent this development of resistance could be instrumental for the future use of BET inhibitors in AML, both as monotherapy and in combination. To date, many investigations into possible drug combinations of BETi with CDK inhibitors have focused on CDK9, which has a known physical and functional interaction with the BET protein BRD4. Therefore, we wished to investigate possible synergy and additive effects between inhibitors of these targets in AML. Here, we describe combination therapy with the multi-CDK inhibitor dinaciclib and the BETi PLX51107 in pre-clinical models of AML. Dinaciclib and PLX51107 demonstrate additive effects in AML cell lines, primary AML samples, and in vivo. Further, we demonstrate novel activity of dinaciclib through inhibition of the canonical/β-catenin dependent Wnt signaling pathway, a known resistance mechanism to BETi in AML. We show dinaciclib inhibits Wnt signaling at multiple levels, including downregulation of β-catenin, the Wnt co-receptor LRP6, as well as many Wnt pathway components and targets. Moreover, dinaciclib sensitivity remains unaffected in a setting of BET resistance, demonstrating similar inhibitory effects on Wnt signaling when compared to BET-sensitive cells. Ultimately, our results demonstrate rationale for combination CDKi and BETi in AML. In addition, our novel finding of Wnt signaling inhibition could have potential implications in other cancers where Wnt signaling is dysregulated and demonstrates one possible approach to circumvent development of BET resistance in AML.
Collapse
Affiliation(s)
- Alexander R Marr
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Madeline Halpin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Dominique L Corbin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Yerdanos Asemelash
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Steven Sher
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Britten K Gordon
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Ethan C Whipp
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | | | | | - Shelley Orwick
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Samon Benrashid
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Virginia M Goettl
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Vedat Yildiz
- Department of Biomedical Informatics, The Ohio State University, Columbus, OH, USA
| | - Andrew D Mitchell
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Olivia Cahn
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Alice S Mims
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Karilyn T M Larkin
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - Meixao Long
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
| | - James Blachly
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Jennifer A Woyach
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Rosa Lapalombella
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA
| | - Nicole R Grieselhuber
- Division of Hematology, Department of Internal Medicine, The Ohio State University, Columbus, OH, USA.
- Leukemia Research Program, The Ohio State University James Comprehensive Cancer Center, Columbus, OH, USA.
| |
Collapse
|
8
|
Sexauer AN, Alexe G, Gustafsson K, Zanetakos E, Milosevic J, Ayres M, Gandhi V, Pikman Y, Stegmaier K, Sykes DB. DHODH: a promising target in the treatment of T-cell acute lymphoblastic leukemia. Blood Adv 2023; 7:6685-6701. [PMID: 37648673 PMCID: PMC10641474 DOI: 10.1182/bloodadvances.2023010337] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 07/17/2023] [Accepted: 08/09/2023] [Indexed: 09/01/2023] Open
Abstract
Patients with relapsed or refractory T-cell acute lymphoblastic leukemia (T-ALL) have a poor prognosis with few therapeutic options. With the goal of identifying novel therapeutic targets, we used data from the Dependency Map project to identify dihydroorotate dehydrogenase (DHODH) as one of the top metabolic dependencies in T-ALL. DHODH catalyzes the fourth step of de novo pyrimidine nucleotide synthesis. Small molecule inhibition of DHODH rapidly leads to the depletion of intracellular pyrimidine pools and forces cells to rely on extracellular salvage. In the absence of sufficient salvage, this intracellular nucleotide starvation results in the inhibition of DNA and RNA synthesis, cell cycle arrest, and, ultimately, death. T lymphoblasts appear to be specifically and exquisitely sensitive to nucleotide starvation after DHODH inhibition. We have confirmed this sensitivity in vitro and in vivo in 3 murine models of T-ALL. We identified that certain subsets of T-ALL seem to have an increased reliance on oxidative phosphorylation when treated with DHODH inhibitors. Through a series of metabolic assays, we show that leukemia cells, in the setting of nucleotide starvation, undergo changes in their mitochondrial membrane potential and may be more highly dependent on alternative fuel sources. The effect on normal T-cell development in young mice was also examined to show that DHODH inhibition does not permanently damage the developing thymus. These changes suggest a new metabolic vulnerability that may distinguish these cells from normal T cells and other normal hematopoietic cells and offer an exploitable therapeutic opportunity. The availability of clinical-grade DHODH inhibitors currently in human clinical trials suggests a potential for rapidly advancing this work into the clinic.
Collapse
Affiliation(s)
- Amy N. Sexauer
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Gabriela Alexe
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
- Harvard Medical School, Boston, MA
| | - Karin Gustafsson
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Department of Stem Cell and Regenerative Biology, Harvard University, Cambridge, MA
| | - Elizabeth Zanetakos
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Jelena Milosevic
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
| | - Mary Ayres
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX
| | - Varsha Gandhi
- Department of Experimental Therapeutics, MD Anderson Cancer Center, Houston, TX
| | - Yana Pikman
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
| | - Kimberly Stegmaier
- Department of Pediatric Oncology, Dana-Farber Cancer Institute, Boston, MA
- Division of Hematology/Oncology, Boston Children’s Hospital, Boston, MA
- Broad Institute of MIT and Harvard, Cambridge, MA
| | - David B. Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA
- Harvard Stem Cell Institute, Cambridge, MA
- Massachusetts General Hospital Cancer Center, Boston, MA
| |
Collapse
|
9
|
Li X, Duan Z, Chen X, Pan D, Luo Q, Gu L, Xu G, Li Y, Zhang H, Gong Q, Chen R, Gu Z, Luo K. Impairing Tumor Metabolic Plasticity via a Stable Metal-Phenolic-Based Polymeric Nanomedicine to Suppress Colorectal Cancer. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300548. [PMID: 36917817 DOI: 10.1002/adma.202300548] [Citation(s) in RCA: 26] [Impact Index Per Article: 13.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/17/2023] [Revised: 03/08/2023] [Indexed: 06/09/2023]
Abstract
Targeting metabolic vulnerability of tumor cells is a promising anticancer strategy. However, the therapeutic efficacy of existing metabolism-regulating agents is often compromised due to tolerance resulting from tumor metabolic plasticity, as well as their poor bioavailability and tumor-targetability. Inspired by the inhibitive effect of N-ethylmaleimide on the mitochondrial function, a dendronized-polymer-functionalized metal-phenolic nanomedicine (pOEG-b-D-SH@NP) encapsulating maleimide-modified doxorubicin (Mal-DOX) is developed to enable improvement in the overall delivery efficiency and inhibition of the tumor metabolism via multiple pathways. It is observed that Mal-DOX and its derived nanomedicine induces energy depletion of CT26 colorectal cancer cells more efficiently than doxorubicin, and shifts the balance of programmed cell death from apoptosis toward necroptosis. Notably, pOEG-b-D-SH@NP simultaneously inhibits cellular oxidative phosphorylation and glycolysis, thus potently suppressing cancer growth and peritoneal intestinal metastasis in mouse models. Overall, the study provides a promising dendronized-polymer-derived nanoplatform for the treatment of cancers through impairing metabolic plasticity.
Collapse
Affiliation(s)
- Xiaoling Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Zhenyu Duan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Xiaoting Chen
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Dayi Pan
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Qiang Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Lei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Gang Xu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| | - Yinggang Li
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Hu Zhang
- Amgen Bioprocessing Centre, Keck Graduate Institute, Claremont, CA, 91711, USA
| | - Qiyong Gong
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
- Department of Radiology, West China Xiamen Hospital of Sichuan University, Xiamen, Fujian, 361000, China
| | - Rongjun Chen
- Department of Chemical Engineering, Imperial College London, South Kensington Campus, London, SW7 2AZ, UK
| | - Zhongwei Gu
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
| | - Kui Luo
- Huaxi MR Research Center (HMRRC), Animal Experimental Center, Department of Radiology, National Clinical Research Center for Geriatrics, Frontiers Science Center for Disease-Related Molecular Network, State Key Laboratory of Biotherapy, West China Hospital, Sichuan University, Chengdu, 610041, China
- Functional and molecular imaging Key Laboratory of Sichuan Province, Key Laboratory of Transplant Engineering and Immunology, NHC, and Research Unit of Psychoradiology, Chinese Academy of Medical Sciences, Chengdu, 610041, China
| |
Collapse
|
10
|
Mullen NJ, Thakur R, Shukla SK, Chaika NV, Kollala SS, Wang D, He C, Fujii Y, Sharma S, Mulder SE, Sykes DB, Singh PK. ENT1 blockade by CNX-774 overcomes resistance to DHODH inhibition in pancreatic cancer. Cancer Lett 2023; 552:215981. [PMID: 36341997 PMCID: PMC10305837 DOI: 10.1016/j.canlet.2022.215981] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2022] [Revised: 10/19/2022] [Accepted: 10/20/2022] [Indexed: 11/23/2022]
Abstract
Inhibitors of dihydroorotate dehydrogenase (DHODH), a key enzyme for de novo synthesis of pyrimidine nucleotides, have failed in clinical trials for various cancers despite robust efficacy in preclinical animal models. To probe for druggable mediators of DHODH inhibitor resistance, we performed a combination screen with a small molecule library against pancreatic cancer cell lines that are highly resistant to the DHODH inhibitor brequinar (BQ). The screen revealed that CNX-774, a preclinical Bruton tyrosine kinase (BTK) inhibitor, sensitizes resistant cell lines to BQ. Mechanistic studies showed that this effect is independent of BTK and instead results from inhibition of equilibrative nucleoside transporter 1 (ENT1) by CNX-774. We show that ENT1 mediates BQ resistance by taking up extracellular uridine, which is salvaged to generate pyrimidine nucleotides in a DHODH-independent manner. In BQ-resistant cell lines, BQ monotherapy slowed proliferation and caused modest pyrimidine nucleotide depletion, whereas combination treatment with BQ and CNX-774 led to profound cell viability loss and pyrimidine starvation. We also identify N-acetylneuraminic acid accumulation as a potential marker of the therapeutic efficacy of DHODH inhibitors. In an aggressive, immunocompetent pancreatic cancer mouse model, combined targeting of DHODH and ENT1 dramatically suppressed tumor growth and prolonged mouse survival. Overall, our study defines CNX-774 as a previously uncharacterized ENT1 inhibitor and provides strong proof of concept support for dual targeting of DHODH and ENT1 in pancreatic cancer.
Collapse
Affiliation(s)
- Nicholas J Mullen
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Ravi Thakur
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Surendra K Shukla
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Nina V Chaika
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Sai Sundeep Kollala
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Dezhen Wang
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - Chunbo He
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Yuki Fujii
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Shikhar Sharma
- Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA
| | - Scott E Mulder
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA
| | - David B Sykes
- Center for Regenerative Medicine, Massachusetts General Hospital, Boston, MA, USA; Harvard Stem Cell Institute, Cambridge, MA, 02114, USA
| | - Pankaj K Singh
- Eppley Institute for Research in Cancer and Allied Diseases, University of Nebraska Medical Center, Omaha, NE, 68198, USA; Department of Oncology Science, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73014, USA; OU Health Stephenson Cancer Center, University of Oklahoma Health Sciences Center, Oklahoma City, OK, 73104, USA.
| |
Collapse
|
11
|
The Effect of Oxidative Phosphorylation on Cancer Drug Resistance. Cancers (Basel) 2022; 15:cancers15010062. [PMID: 36612059 PMCID: PMC9817696 DOI: 10.3390/cancers15010062] [Citation(s) in RCA: 34] [Impact Index Per Article: 11.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/16/2022] [Revised: 12/10/2022] [Accepted: 12/16/2022] [Indexed: 12/24/2022] Open
Abstract
Recent studies have shown that oxidative phosphorylation (OXPHOS) is a target for the effective attenuation of cancer drug resistance. OXPHOS inhibitors can improve treatment responses to anticancer therapy in certain cancers, such as melanomas, lymphomas, colon cancers, leukemias and pancreatic ductal adenocarcinoma (PDAC). However, the effect of OXPHOS on cancer drug resistance is complex and associated with cell types in the tumor microenvironment (TME). Cancer cells universally promote OXPHOS activity through the activation of various signaling pathways, and this activity is required for resistance to cancer therapy. Resistant cancer cells are prevalent among cancer stem cells (CSCs), for which the main metabolic phenotype is increased OXPHOS. CSCs depend on OXPHOS to survive targeting by anticancer drugs and can be selectively eradicated by OXPHOS inhibitors. In contrast to that in cancer cells, mitochondrial OXPHOS is significantly downregulated in tumor-infiltrating T cells, impairing antitumor immunity. In this review, we summarize novel research showing the effect of OXPHOS on cancer drug resistance, thereby explaining how this metabolic process plays a dual role in cancer progression. We highlight the underlying mechanisms of metabolic reprogramming in cancer cells, as it is vital for discovering new drug targets.
Collapse
|