1
|
Kang X, Yu M, Xu Y, Cao Z, Balme S, Ma T. Nanochannel functionalization using POFs: Progress and prospects. Adv Colloid Interface Sci 2025; 342:103533. [PMID: 40318384 DOI: 10.1016/j.cis.2025.103533] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2025] [Revised: 04/23/2025] [Accepted: 04/25/2025] [Indexed: 05/07/2025]
Abstract
Biomimetic nanochannels, inspired by natural ion channels found in living organisms, are synthetic systems designed to replicate the highly selective and efficient ion/molecule transport processes essential for various biological functions. These artificial channels mimic the structural and functional properties of their biological counterparts, offering precise control over ion and molecular transport. Porous organic framework materials (POFs), including metal-organic frameworks (MOFs) and covalent organic frameworks (COFs), have emerged as promising materials for functionalizing nanochannels due to their unique structures and exceptional properties. This functionalization strategy not only enhances the performance of synthetic nanochannels but also broadens their application potential across various fields. This review comprehensively examines the recent progress in the preparation and application of POFs stereoscopic-functionalized solid nanochannels. Special emphasis is placed on their practical applications, including proton conduction, ion-selective membranes, photo-responsive materials, sensing and detection, chiral separation, and catalysis. Finally, the future development prospects and challenges in this research area are discussed, highlighting opportunities for advancing the design and application of biomimetic nanochannels.
Collapse
Affiliation(s)
- Xuan Kang
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Mingyi Yu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Yuan Xu
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Zhong Cao
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China
| | - Sebastien Balme
- Institut Européen des Membranes, UMR5635 UM ENSM CNRS, Place Eugène Bataillon, 34095 Montpellier, Cedex 5, France
| | - Tianji Ma
- Hunan Provincial Key Laboratory of Materials Protection for Electric Power and Transportation & Hunan Provincial Key Laboratory of Cytochemistry, School of Chemistry and Chemical Engineering, Changsha University of Science and Technology, Changsha 410114, China.
| |
Collapse
|
2
|
Chen Q, Cao Z, Zhao H, Deng Y, Peng X, Ding Z, Zhang G, Yu L, Wang Y, Tu B, Xue Y. Electrostatically Gated Trilayer Graphene Nanopore as an Ultrathin Rectifying Ion Filter. ACS NANO 2025; 19:21589-21599. [PMID: 40457217 DOI: 10.1021/acsnano.5c03775] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/18/2025]
Abstract
Biological ion channels have significant ion selectivity and rectification properties due to angstrom-scale selectivity filters, but it is challenging to develop artificial analogs. Nanopores in two-dimensional (2D) materials have presented various potential applications such as energy conversion, ion separation, and biosensing. Here, we report a subnanometer trilayer graphene (TLG) nanopore with a conical structure as a switchable biomimetic ion filter under electrostatic gating. The nanopores show high ion selectivity and rectified current-voltage characteristics. Electrostatic gating significantly enhances the rectification ratio to an ultrahigh value. The transmembrane voltage induces reversible conductance "on" and "off" states of the TLG nanopore, which simulates the action potentials in electrically excitable cells. Theoretical modeling reveals that the unique ion transport through the 1 nm thick conical channels is attributed to the contrasting overlapping intensity of the electrical double layers (EDL) at the base and tip of the TLG nanopore. Combined with the different internal inhomogeneous electric fields, this leads to a reversed rectification direction, distinct from conventional microscopical conical channels. This study suggests ways to develop ultrathin in vitro biomimetic devices for broad applications in energy conversion and biosensing.
Collapse
Affiliation(s)
- Qiang Chen
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Zhouwen Cao
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - He Zhao
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Yunsheng Deng
- Pico Center and SUSTech Core Research Facilities, Southern University of Science and Technology, Shenzhen 518055, P. R. China
| | - Xin Peng
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Zhenya Ding
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Guoyuan Zhang
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Lingfeng Yu
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| | - Yunjiao Wang
- Chongqing Institute of Green and Intelligent Technology, Chinese Academy of Sciences, Chongqing, 400714, P. R. China
- Chongqing School, University of Chinese Academy of Sciences, Chongqing, 400714, P. R. China
| | - Bin Tu
- Laboratory of Theoretical and Computational Nanoscience, CAS Key Laboratory for Biological Effects of Nanomaterials & Nanosafety, CAS Center for Excellence in Nanoscience, National Center for Nanoscience and Technology, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Yahui Xue
- Department of Mechanics and Aerospace Engineering & Center for Complex Flows and Soft Matter Research, Southern University of Science and Technology (SUSTech), Shenzhen 518055, P. R. China
| |
Collapse
|
3
|
Shi S, Zhao C, Wang Y, Hou J, Wang H, Zhang H. Exceptional Monovalent Anion Selectivity in One-Dimensional Rectifying Metal-Organic Framework Subnanochannels. ACS NANO 2025. [PMID: 40489258 DOI: 10.1021/acsnano.5c02063] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/11/2025]
Abstract
Selective anion transport is crucial for water treatment, energy harvesting, and biosensing. Inspired by biological anion channels known for their exceptional selectivity, permeability, and rectification properties, replicating these functions in artificial channels is highly desirable to enhance sensitivity in ion detection and reduce energy consumption in separation processes; however, accomplishing this remains a significant challenge. In this study, we present monovalent anion-selective channels fabricated from aluminum-based metal-organic frameworks (MOFs), MIL-53-X (X = NH2 and N+(CH3)3), embedded in polymer substrates. These MOFs feature one-dimensional sub-1-nanometer pores and highly positive surface charges. The asymmetric configurations of the synthesized MOF channels promote unidirectional transport of the monovalent anions (Cl- and NO3-), closely mimicking the function of biological anion channels. The resulting channels exhibit excellent Cl-/SO42- selectivity ranging from ∼13 to ∼80 and NO3-/SO42- selectivity from ∼7 to ∼46, along with ion rectification ratios of up to ∼110 for Cl- and ∼93 for NO3-. These results demonstrate the artificial anion channels' high monovalent anion selectivity and unidirectional transport capabilities, offering a promising approach for selective ion electrodes and energy-efficient separation technologies.
Collapse
Affiliation(s)
- Sijia Shi
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Chen Zhao
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Yuqi Wang
- Department of Mechanical Engineering and Product Design Engineering, School of Engineering, Swinburne University of Technology, HawthRorn, Victoria 3122, Australia
| | - Jue Hou
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3168, Australia
| | - Huacheng Zhang
- Department of Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria 3000, Australia
| |
Collapse
|
4
|
Zhang X, Wu S, Huang Y, Chen W, Li Z, Huangfu X, Li S. Crown ether-functionalized metal organic framework biomimetic nanochannels membrane for efficient Tl + ion transport and Tl +/Li + sieving. JOURNAL OF HAZARDOUS MATERIALS 2025; 489:137535. [PMID: 39938373 DOI: 10.1016/j.jhazmat.2025.137535] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/03/2024] [Revised: 02/06/2025] [Accepted: 02/07/2025] [Indexed: 02/14/2025]
Abstract
Fueled by the new energy revolution, the demand for lithium has soared beyond its supply, with lithium mining and smelting emerging as a crucial source. In this process, thallium-containing wastewater is produced, causing environmental pollution. In this work, inspired by the biological K+ ion channel, which preferentially transports Tl+ due to its similarity to K+, we constructed a conical single nanochannel (SCN) membrane modified with crown ether (4AB18C6) and MOF (UiO-66-(COOH)2) for Tl+ ultrafast transport, instead of Li+. The 4AB18C6/MOF-MCN exhibited the Tl+ permeation rate of 5.72 mmol m-2 h-1 at low concentrations, with a Tl+/Li+ selectivity of about 30 in the binary system. The shape and charge properties of the SCN itself, along with its specific binding with 4AB18C6/MOF for fast Tl+ transport. The competitive inhibition arising from the difference of Tl+ and Li+ dehydration in a binary system further enhances the Tl+ ion selectivity. This work provides an efficient approach to excellent Tl+ transport and sieving capabilities, potentially inspiring further research on Tl pollution and resource recycling in the lithium industry.
Collapse
Affiliation(s)
- Xiaoling Zhang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Sisi Wu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Yuheng Huang
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Wanpeng Chen
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China
| | - Zhi Li
- Southwestern Institute of Physics, Chengdu 610025, China
| | - Xiaoliu Huangfu
- Key Laboratory of Three Gorges Reservoir Region's Eco-Environments, Ministry of Education, College of Environment and Ecology, Chongqing University, Chongqing 400044, China.
| | - Shuo Li
- School of Food and Bioengineering, Qiqihar University, Qiqihar 161006, China
| |
Collapse
|
5
|
Xu R, Yu H, Ren J, Zhang W, Kang Y, Wang Z, Feng F, Xia X, Liu JZ, Peng L, Zhang X, Pan B. Regulate Ion Transport in Subnanochannel Membranes by Ion-Pairing. J Am Chem Soc 2025; 147:17144-17151. [PMID: 40329776 DOI: 10.1021/jacs.5c02722] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
The ability of biological ion channels to respond to environmental stimuli, regulate ion permeation rates, and selectively transport specific ions is essential for sustaining physiological functions and holds immense potential for various practical applications. In this study, we report a highly selective ion separation membrane capable of responding to ionic stimuli, thereby regulating the permeation rate of the target ions. This membrane is constructed from two-dimensional MXene nanosheets functionalized with γ-poly(glutamic acid) (γ-PGA) molecules. Its biomimetic ion channel structure provides spatial confinements, as well as ion recognition and response sites. Remarkably, the membrane demonstrates the ability to respond to stimulus ions, achieving regulation of target ion permeation rates by over 2 orders of magnitude and achieving a K+/Mg2+ selectivity exceeding 10.3 Unlike traditional nanochannel membranes, where ion transport is predominantly driven by ion-channel interactions, this membrane operates through an ion-ion interaction-dominated mechanism. The introduction of stimulus ions dynamically alters ion-pair formation within the subnanochannels, thereby modulating the permeation rates of target ions. This study provides a fresh perspective on ion transport mechanisms in nanoconfined environments, reflecting conditions closer to those in real-world systems. It underscores the pivotal role of ion-ion interactions in regulating ion transport and offers valuable insights into the design of next-generation ion separation membranes with tailored responsiveness.
Collapse
Affiliation(s)
- Rongming Xu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Hang Yu
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Jiachun Ren
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Weiming Zhang
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| | - Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, Clayton, Victoria 3800, Australia
| | - Zhuyuan Wang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Fan Feng
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Xiaoli Xia
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jefferson Zhe Liu
- Department of Mechanical Engineering, The University of Melbourne, Parkville, Victoria 3010, Australia
| | - Luming Peng
- Key Laboratory of Mesoscopic Chemistry of Ministry of Education and Collaborative Innovation Center of Chemistry for Life Sciences, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, Queensland 4072, Australia
| | - Bingcai Pan
- State Key Laboratory of Water Pollution Control and Green Resource Recycling, School of Environment, Nanjing University, Nanjing 210023, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, Nanjing 210023, China
| |
Collapse
|
6
|
Zhang J, Villalobos LF, Lee J, Zhong M, Elimelech M. Ionophore-Based Molecular Layer-by-Layer Polyamide Membranes for Facilitated Single-Ion Transport. ACS APPLIED MATERIALS & INTERFACES 2025. [PMID: 40359549 DOI: 10.1021/acsami.5c02331] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/15/2025]
Abstract
Single-ion-selective membranes are indispensable for efficient ion separations in environmental, energy, and biomedical technologies. Inspired by biological ion channels, this work harnessed the selective and reversible ion binding features of ionophores to fabricate an ultrathin, ionophore-based K+-selective polyamide membrane through molecular layer-by-layer (m-LbL) polymerization with 18-crown-6-functionalized monomers. Compared with Cs+, Li+, and Mg2+, K+ exhibited the highest binding energy to 18-crown-6, facilitating its transport over the competing cations across the sub-10 nm polyamide film in a binary salt mixture. The need for competitive binding for selective K+ transport was further demonstrated through investigations of ion selectivity at varying concentration ratios between K+ and competing cations. Additionally, we extended the Nernst-Planck equation to describe individual ion flux in a binary system, identifying factors that govern ion transport. Our findings demonstrate the potential of selective single-ion transport enabled by preferential ion binding, showing promise for the development of biomimetic ion-selective polymeric membranes.
Collapse
Affiliation(s)
- Junwei Zhang
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Luis Francisco Villalobos
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
- Mork Family Department of Chemical Engineering and Materials Science, University of Southern California, Los Angeles, California 90089, United States
| | - Junwoo Lee
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Mingjiang Zhong
- Department of Chemical and Environmental Engineering, Yale University, New Haven, Connecticut 06520, United States
| | - Menachem Elimelech
- Department of Civil and Environmental Engineering, Rice University, Houston, Texas 77005, United States
- Department of Chemical and Biomolecular Engineering, Rice University, Houston, Texas 77005, United States
- Rice WaTER Institute, Rice University, Houston, Texas 77005, United States
| |
Collapse
|
7
|
Guo Q, Xing Z, Guo H, Lai Z, Yi J, Wu D, Dai Z, Zhang L, Wang S, Ma S, Sun Q. Creating Sodium Ion Channels via De Novo Encapsulation of Ionophores for Enhanced Water Energy Harvesting. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2420636. [PMID: 40159803 DOI: 10.1002/adma.202420636] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/31/2024] [Revised: 03/19/2025] [Indexed: 04/02/2025]
Abstract
Biological ion channels achieve remarkable permselectivity and cation discrimination through the synergy of their intricate architectures and specialized ionophores within confined nanospaces, enabling efficient energy conversion. Emulating such selectivity in synthetic nanochannels, however, remains a persistent challenge. To address this, a novel host-guest assembly membrane is developed by incorporating sodium-selective ionophores into a β-ketoenamine-linked covalent organic framework (COF). This design confers exceptional permselectivity and Na+ selectivity, achieving Na+/K+ and Na+/Li+ selectivity ratios of 3.6 and 103, respectively, along with near-perfect Na+/Cl- selectivity under a 0.5 M || 0.01 M salinity gradient. Notably, the membrane dynamically switches its permselectivity to favor anion transport in the presence of high-valent cations (e.g., Ca2+), overcoming limitations such as uphill cation diffusion and back currents observed in conventional cation-selective membranes. This adaptive behavior yields a 4.6-fold increase in output power density in Ca2+-rich environments. These findings advance the design of biomimetic nanochannels with unparalleled ion selectivity and enhanced energy conversion efficiency.
Collapse
Affiliation(s)
- Qing Guo
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhiwei Xing
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Huaxi Guo
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Zhuozhi Lai
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Jiaming Yi
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Di Wu
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| | - Zhifeng Dai
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Li Zhang
- Key Laboratory of Surface & Interface Science of Polymer Materials of Zhejiang Province, School of Chemistry and Chemical Engineering, Zhejiang Sci-Tech University, Hangzhou, 310018, China
| | - Sai Wang
- Hangzhou Institute of Advanced Studies, Zhejiang Normal University, Hangzhou, 311231, China
| | - Shengqian Ma
- Department of Chemistry, University of North Texas, 1508 W Mulberry St, Denton, TX, 76201, USA
| | - Qi Sun
- Zhejiang Provincial Key Laboratory of Advanced Chemical Engineering Manufacture Technology, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou, 310027, China
| |
Collapse
|
8
|
Liu X, Liu P, Wang H, Khashab NM. Advanced Microporous Framework Membranes for Sustainable Separation. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2500310. [PMID: 40275732 DOI: 10.1002/adma.202500310] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/06/2025] [Revised: 04/07/2025] [Indexed: 04/26/2025]
Abstract
Advancements in membrane-based separation hinge on the design of materials that transcend conventional limitations. Microporous materials, including metal-organic frameworks (MOFs), covalent-organic frameworks (COFs), macrocycles, and porous organic cages (POCs) offer unprecedented control over pore architecture, chemical functionality, and transport properties, making them promising candidates for next-generation membrane technologies. The well-defined and tunable micropores provide a pathway to directly address the permeability-selectivity trade-off inherent in conventional polymer membranes. Here, this review explores the latest advancements in these four representative microporous membranes, emphasizing their breakthroughs in hydrocarbon separation, liquid-phase molecular sieving, and ion-selective transport, particularly focusing on their structure-performance relationships. While their tailored structures enable exceptional performance, practical adoption requires overcoming hurdles in scalability, durability, and compatibility with industrial processes. By offering insights into membrane structure optimization and innovative design strategies, this review provides a roadmap for advancing microporous membranes from laboratory innovation to real-world implementation, ultimately supporting global sustainability goals through energy-efficient separation processes.
Collapse
Affiliation(s)
- Xin Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Peiren Liu
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Haochen Wang
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| | - Niveen M Khashab
- Smart Hybrid Materials Laboratory (SHMs), Department of Chemistry, Division of Physical Science and Engineering, King Abdullah University of Science and Technology (KAUST), Thuwal, 23955-6900, Kingdom of Saudi Arabia
| |
Collapse
|
9
|
Bao S, Ma Z, Yu L, Li Q, Xia J, Song S, Sui K, Zhao Y, Liu X, Gao J. Randomly oriented covalent organic framework membrane for selective Li + sieving from other ions. Nat Commun 2025; 16:3896. [PMID: 40274803 PMCID: PMC12022084 DOI: 10.1038/s41467-025-59188-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2024] [Accepted: 04/14/2025] [Indexed: 04/26/2025] Open
Abstract
Certain biological channels exhibit remarkable selectivity, effectively distinguishing between competing cations. If artificial membranes could achieve similar precision in differentiating competing ions from Li+, it could advance sustainable technologies in lithium extraction. In this study, we present a covalent organic framework (COF) membrane featuring a randomly oriented structure that enables selective separation of major competing ions from Li+. The random orientation results in narrow pores, which impart size-based selectivity among alkaline ions. Additionally, the COF incorporates sulfonic groups that preferentially bind to Na+ and K+, facilitating their transport while retaining Li+. These synergistic mechanisms endow the membrane with a selectivity beyond detection limit for K+ and Na+ over Li+. When driven by an electrical potential, the ion flux through the membrane is enhanced by over an order of magnitude. Notably, the membrane also permits the transport of Mg2+ and Ca2+ while still rejecting Li+, leveraging differences in their ion mobility. This work should advance the design and construction of biomimetic materials for the extraction of valuable species from seawater and other aqueous sources.
Collapse
Affiliation(s)
- Shiwen Bao
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Zhaoyu Ma
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Lei Yu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Qi Li
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Jiaxiang Xia
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Song Song
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Kunyan Sui
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China.
| | - Yongye Zhao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China
| | - Xueli Liu
- State Key Laboratory of Bio-Fibers and Eco-textiles, College of Materials Science and Engineering, Shandong Collaborative Innovation Center of Marine Biobased Fibers and Ecological Textiles, Qingdao University, Qingdao, P. R. China.
| | - Jun Gao
- Key Laboratory of Photoelectric Conversion and Utilization of Solar Energy, Qingdao Institute of Bioenergy and Bioprocess Technology Chinese Academy of Sciences, Qingdao, P. R. China.
- Shandong Energy Institute, Qingdao, P. R. China.
| |
Collapse
|
10
|
Jiang D, Hill JP, Henzie J, Nam HN, Phung QM, Zhu L, Wang J, Xia W, Zhao Y, Kang Y, Asahi T, Bu R, Xu X, Yamauchi Y. Selective Electrochemical Capture of Monovalent Cations Using Crown Ether-Functionalized COFs. J Am Chem Soc 2025; 147:12460-12468. [PMID: 40185696 DOI: 10.1021/jacs.4c16346] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/07/2025]
Abstract
Electrochemical adsorption offers a promising approach for the separation of monovalent cations, which is an important but challenging subject in separation science. However, progress in this area has been hampered by the lack of suitable materials with effective ion selectivity. In this work, we present the synthesis of covalent organic frameworks (COFs) functionalized with a series of crown ethers (NCx-TAB-COFs, x donate 12, 15, 18, indicating the size of crown ether) for the efficient and highly selective electrochemical capture of monovalent cations. In our design, crown ether moieties act as confinement sites, imparting high selectivity for different monovalent cations depending on the cavity dimensions of the crown ether present. COFs electrodes prepared using the novel crown-COFs exhibit superior performance for the selective sequestration of monovalent (alkali metal) cations. Notably, 18-crown-6 ether-substituted COF (NC18-TAB-COF) shows a remarkable selectivity (14.26) for K+ over Na+ and a substantial Rb+/Na+ selectivity of 22.4. Furthermore, NCx-TAB-COFs maintain their remarkable selectivity and capacity under mixed-cation conditions. Density functional theory calculations and molecular dynamics simulations suggest that the unexpectedly high selectivity for larger cations is likely due to diverse binding modes in conjunction with the porous structure of the COFs. Given their lower dehydration-free energies and smaller hydrodynamic radii, K+, Rb+, and Cs+ more readily permeate the confined channels of COFs. In contrast, Na+ and Li+, with higher dehydration-free energies and hydrodynamic radii, diffuse into the NCx-TAB-COFs structure at a much slower rate and are bound predominantly to the surfaces of the COFs.
Collapse
Affiliation(s)
- Dong Jiang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Jonathan P Hill
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Joel Henzie
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science, 1-1 Namiki, Tsukuba, Ibaraki 305-0044, Japan
| | - Ho Ngoc Nam
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Quan Manh Phung
- Department of Chemistry, Graduate School of Science, Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8602, Japan
- Institute of Transformative Bio-Molecules (WPI-ITbM), Nagoya University, Furo-cho, Chikusa-ku, Nagoya 464-8601, Japan
| | - Liyang Zhu
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Jie Wang
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| | - Wei Xia
- School of Chemistry and Chemical Engineering, Anhui University of Technology, Ma'anshan, Anhui 243002, P. R. China
| | - Yingji Zhao
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Yunqing Kang
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
| | - Toru Asahi
- Faculty of Science and Engineering, Waseda University, 3-4-1 Okubo, Shinjuku, Tokyo 169-8555, Japan
| | - Ran Bu
- State Key Laboratory of Chemical Engineering, Institute of Pharmaceutical, Engineering, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, P. R. China
| | - Xingtao Xu
- Marine Science and Technology College, Zhejiang Ocean University, 316022 Zhoushan, P. R. China
| | - Yusuke Yamauchi
- Department of Materials Process Engineering, Graduate School of Engineering, Nagoya University, Nagoya 464-8603, Japan
- Australian Institute for Bioengineering and Nanotechnology (AIBN), The University of Queensland, Brisbane, QLD 4072, Australia
| |
Collapse
|
11
|
Huang Y, Song Y, Wang S. Nature-Inspired Engineering Separation Materials and Devices. ACS NANO 2025; 19:11477-11488. [PMID: 40101135 DOI: 10.1021/acsnano.4c17912] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/20/2025]
Abstract
Separation is a fundamental process in natural living systems. Their separation capabilities have inspired the design of various separation materials and devices. Despite some progress having been made, a comprehensive overview is still lacking. In this Perspective, we first review the development of separation technologies. We then summarize some typical living systems exhibiting superior separation capabilities from compositions and microstructures to separation mechanisms. Next, we highlight key advancements in nature-inspired separation materials and integrated devices. Finally, we propose future research directions and opportunities, emphasizing the importance of physical and chemical design and internal and external stimulus regulation. These nature-inspired materials and devices show great potential in biomedicine, environmental remediation, energy conversion, food safety, and analysis testing.
Collapse
Affiliation(s)
- Yanling Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
| | - Yongyang Song
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Shutao Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R. China
- University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
12
|
Baradari E, Akan OB. Molecular Communication-Based Intelligent Dopamine Rate Modulator for Parkinson's Disease Treatment. IEEE Trans Nanobioscience 2025; 24:136-144. [PMID: 39264786 DOI: 10.1109/tnb.2024.3456031] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/14/2024]
Abstract
Parkinson's disease (PD) is a progressive neurodegenerative disease, and it is caused by the loss of dopaminergic neurons in the basal ganglia (BG). Currently, there is no definite cure for PD, and available treatments mainly aim to alleviate its symptoms. Due to impaired neurotransmitter-based information transmission in PD, molecular communication-based approaches can be employed as potential solutions to address this issue. Molecular Communications (MC) is a bio-inspired communication method utilizing molecules to carry information. This mode of communication stands out for developing bio-compatible nanomachines for diagnosing and treating, particularly in addressing neurodegenerative diseases like PD, due to its compatibility with biological systems. This study presents a novel treatment method that introduces an Intelligent Dopamine Rate Modulator (IDRM), which is located in the synaptic gap between the substantia nigra pars compacta (SNc) and striatum to compensate for insufficiency dopamine release in BG caused by PD. For storing dopamine in the IDRM, dopamine compound (DAC) is swallowed and crossed through the digestive system, blood circulatory system, blood-brain barrier (BBB), and brain extracellular matrix uptakes with IDRMs. Here, the DAC concentration is calculated in these regions, revealing that the required exogenous dopamine consistently reaches IDRM. Therefore, the perpetual dopamine insufficiency in BG associated with PD can be compensated. This method reduces drug side effects because dopamine is not released in other brain regions. Unlike other treatments, this approach targets the root cause of PD rather than just reducing symptoms.
Collapse
|
13
|
Chen Y, Li X, Yue X, Yu W, Shi Y, He Z, Wang Y, Huang Y, Xia F, Li F. Sub-femtomolar drug monitoring via co-calibration mechanism with nanoconfined DNA probes. Nat Commun 2025; 16:1863. [PMID: 39984441 PMCID: PMC11845792 DOI: 10.1038/s41467-025-57112-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/28/2024] [Accepted: 02/12/2025] [Indexed: 02/23/2025] Open
Abstract
Synthetic drugs fundamentally reshape the illicit drug market due to their low cost, ease of production, and rapid manufacturing processes. However, current drug detection methods, which rely on complex instruments, have limited applicability and often neglect the influence of pH fluctuations, leading to potential bias and unreliable results. Herein, we propose co-calibration DNA probes on a nanoconfined biosensor (NCBS), covering the range of sweat pH 3-8 to achieve significantly enhanced target signal recognition. The NCBS exhibits a linear response range of 103-108 fM with a low limit of detection (LOD) of 3.58 fM in artificial sweat. Compared to the single-aptamer NCBS, the dual-aptamer NCBS offers a broader linear response range, primarily due to the synergistic effects of changes in surface wettability and the capture of hydrion, which together reduce signal interference in proton transport. The linear response range doubles, and its detection sensitivity improves by 4-5 orders of magnitude compared to existing drug detection methods. This sensing strategy expands the application scope of aptamer-based composite probes, offering an approach for ultra-sensitive drug detection and demonstrating significant potential in sweat sensing and drug monitoring fields.
Collapse
Affiliation(s)
- Yonghuan Chen
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, PR China
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, PR China
| | - Xiuying Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, PR China
| | - Xinru Yue
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, PR China
| | - Weihua Yu
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, PR China
| | - Yuesen Shi
- Anti-Drug Technology Center of Guangdong Province, Guangdong Province Key Laboratory of Psychoactive Substances Monitoring and Safety, Guangzhou, PR China
| | - Zilong He
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, PR China
| | - Yuanfeng Wang
- Key Laboratory of Evidence Science, China University of Political Science and Law, Beijing, PR China
| | - Yu Huang
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, PR China.
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Material Science and Chemistry, China University of Geosciences, Wuhan, PR China
| | - Fengyu Li
- College of Chemistry and Materials Science, Guangdong Provincial Key Laboratory of Speed Capability Research, Su Bingtian Center for Speed Research and Training, Jinan University, Guangzhou, PR China.
- College of Chemistry, Zhengzhou University, Zhengzhou, PR China.
| |
Collapse
|
14
|
Wu Y, Wang Q, Li X, Li K, Huang D, Zou K, Zhang Z, Qian Y, Zhu C, Kong XY, Wen L. Olfactory-Inspired Separation-Sensing Nanochannel-Based Electronics for Wireless Sweat Monitoring. ACS NANO 2025; 19:3781-3790. [PMID: 39808732 DOI: 10.1021/acsnano.4c14660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
Human sweat has the potential to be sufficiently utilized for noninvasive monitoring. Given the complexity of sweat secretion, the sensitivity and selectivity of sweat monitoring should be further improved. Here, we developed an olfactory-inspired separation-sensing nanochannel-based electronic for sensitive and selective sweat monitoring, which was simultaneously endowed with interferent separation and target detection performances. The special separation-sensing strategy imparts functional composite membranes with a high sensitivity of 113 mV dec-1 for potassium detection. The excellent mechanical properties and conformability of the Kevlar aramid nanofiber layer bring well-wearing performances to realize continuous wireless sweat monitoring. The recognition between functional molecules and target ions is proved at the molecular level in detail in the article. The replacement of functional molecules proves the universality of the strategy for performance enhancement in intricate biofluid analysis systems.
Collapse
Affiliation(s)
- Yuge Wu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Qi Wang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xin Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Ke Li
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Dehua Huang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Kehan Zou
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Zhehua Zhang
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
| | - Yongchao Qian
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Congcong Zhu
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
| | - Xiang-Yu Kong
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
| | - Liping Wen
- CAS Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P.R. China
- School of Future Technology, University of Chinese Academy of Sciences, Beijing 100049, P.R. China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu 215123, P.R. China
- School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, Anhui 230026, P.R. China
- Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, P.R. China
| |
Collapse
|
15
|
Zhang Z, Zhu H, Jin H, Cao Y, Fang W, Zhang Z, Ma Q, Choi J, Li Y. Restricting Linker Rotation in Nanocages of ZIF-8 Membranes using Crown Ether "Molecular Locks" for Enhanced Propylene/Propane Separation. Angew Chem Int Ed Engl 2025; 64:e202415023. [PMID: 39324847 DOI: 10.1002/anie.202415023] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/07/2024] [Revised: 09/13/2024] [Accepted: 09/26/2024] [Indexed: 09/27/2024]
Abstract
ZIF-8 membranes have long been prized for their exceptional C3H6/C3H8 separation performance. On the other hand, ZIF-8 has structural flexibility, where the external pressure triggers channel expansion, potentially deteriorating the molecular sieving ability. Here, we demonstrate a reliable strategy to fine-tune the flexible pore structure of ZIF-8 by embedding crown ether within a ZIF-8 membrane. Benzo-15-crown-5 (15C5) was selected as the cavity occupant and perfectly confined in the sodalite (SOD) cage of ZIF-8. The 15C5 molecules, which have a size comparable to the nanocage, impose a spatial constraint on linker rotation, enabling the phase transition to a rigid structure in the flexible ZIF-8. The corresponding 15C5@ZIF-8 membranes achieve an ultrahigh C3H6/C3H8 selectivity of 220, outperforming that of most membranes. Unlike their flexible counterparts, the resulting membranes manifest a positive increase in the C3H6/C3H8 separation factor with elevated pressure, securing a record-high C3H6/C3H8 separation factor of 331 under 7 bar. More importantly, extraordinary separation stability was demonstrated with continuous measurement, which is highly desirable for practical applications.
Collapse
Affiliation(s)
- Zinan Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Han Zhu
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Hua Jin
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Yi Cao
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Wei Fang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Zhenxin Zhang
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Qiang Ma
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| | - Jungkyu Choi
- Department of Chemical and Biological Engineering, Korea University, Seoul, 02841, Republic of Korea
| | - Yanshuo Li
- School of Materials Science and Chemical Engineering, Ningbo University, Ningbo, 315211, China
| |
Collapse
|
16
|
Yu W, Ma J, Tan M, Wang J, Zheng X, Wu B, Chen B, Chu C. Visualizing Hydrogen Peroxide Diffusion in Soils with Precipitation-Based Fluorescent Probe. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2025; 59:545-552. [PMID: 39742462 DOI: 10.1021/acs.est.4c11790] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Abstract
Hydrogen peroxide (H2O2)-based advanced oxidation technology has emerged as a cost-effective and green solution for tackling soil pollution. Given the highly heterogeneous nature of soil, the effectiveness of H2O2 remediation is significantly influenced by its diffusion distance in soils. However, the dynamics of H2O2 diffusion and its effective range remain largely unexplored, primarily due to the lack of analytical methods for mapping H2O2 in soils. This study introduces a precipitation-based fluorescent probe (PFP) method for in situ, high-resolution (micrometer scale) mapping of H2O2 diffusion in soils. Using the PFP method, we visualized real-time H2O2 diffusion in various types of soils, revealing distinct diffusion patterns with rates ranging from 0.011 to >0.56 mm min-1. The observed differences in diffusion rates are associated with soil permeability. Additionally, soils exhibited a wide range of diffusion distances, from 0.22 to >11 mm in 20 min. Soil's reactivity for H2O2 decomposition, a previously overlooked factor, is critical in determining the diffusion distance of H2O2. We further demonstrate that the efficacy of H2O2 diffusion in soils is a pivotal factor in controlling pollutant degradation and soil remediation efficiency. These findings enhance our understanding of reagent diffusion processes in soil remediation, informing the optimization of more efficient soil remediation strategies.
Collapse
Affiliation(s)
- Wanchao Yu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
- Future Environment Laboratory, Innovation Center of Yangtze River Delta, Zhejiang University, Jiaxing 314100, China
| | - Junye Ma
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Mengxi Tan
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Jingyi Wang
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Xiaoshan Zheng
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Binbin Wu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Baoliang Chen
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| | - Chiheng Chu
- Department of Environmental Science, Zhejiang University, Hangzhou 310058, China
| |
Collapse
|
17
|
Wang X, Zhang H, Wei G, Xing J, Chen S, Quan X. Comediation of voltage gating and ion charge in MXene membrane for controllable and selective monovalent cation separation. SCIENCE ADVANCES 2024; 10:eado3998. [PMID: 39630891 PMCID: PMC11616687 DOI: 10.1126/sciadv.ado3998] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2024] [Accepted: 10/29/2024] [Indexed: 12/07/2024]
Abstract
Artificial ion channels with controllable mono/monovalent cation separation fulfill important roles in biomedicine, ion separation, and energy conversion. However, it remains a daunting challenge to develop an artificial ion channel similar to biological ion channels due to ion-ion competitive transport and lack of ion-gating ability of channels. Here, we report a conductive MXene membrane with polydopamine-confined angstrom-scale channels and propose a voltage gating and ion charge comediation strategy to concurrently achieve gated and selective mono/monovalent cation separation. The membrane shows a highly switchable "on-off" ratio of ∼9.9 for K+ transport and an excellent K+/Li+ selectivity of 40.9, outperforming the ion selectivity of reported membranes with electrical gating (typically 1.5 to 6). Theoretical simulations reveal that the introduced high-charge cations such as Mg2+ enable the preferential distribution of target K+ over competing Li+ at the channel entrance, and the surface potential reduces the ionic transport energy barrier for allowing K+ to pass quickly through the channel.
Collapse
Affiliation(s)
| | | | - Gaoliang Wei
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Jiajian Xing
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Shuo Chen
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| | - Xie Quan
- Key Laboratory of Industrial Ecology and Environmental Engineering (Ministry of Education, China), School of Environmental Science and Technology, Dalian University of Technology, Dalian 116024, China
| |
Collapse
|
18
|
Wu B, Yan Y, Chu X, Miao J, Ge Q, Lin X, Ge L, Qian J. Reverse-Selective Anion Separation Relies on Charged "Hourglass" Gate. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2404061. [PMID: 39072922 DOI: 10.1002/smll.202404061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/19/2024] [Revised: 07/04/2024] [Indexed: 07/30/2024]
Abstract
According to the hydration size and charge property of separated ions, the transport channel can be constructed to achieve precision ion separation, but the ion geometry as a separation parameter to design the channel structure is rarely reported. Herein, a reverse-selective anion separation membrane composed of a metal-organic frameworks (MOFs) layer with a charged "hourglass" channel as an ion-selective switch to manipulate oxoanion transport is developed. The gate in "hourglass" with tetrahedral geometry similar to the oxoanion (such as SO2- 4, Cr 2O2- 7, and MnO- 4) boosts the transmission effect oxoanion much larger than Cl- through geometric matching and Coulomb interaction. Specific channel structure exhibits an abnormal selectivity for SO2- 4/Cl- of 20, Cr 2O2- 7/Cl- of 6.6, and MnO- 4/Cl- of 4.0 in a binary-ion system. The transfer behavior of SO2- 4 in the channel revealed by molecular dynamics simulation and density functional theory calculation further indicates the mechanism of the abnormal separation performance. The universality of the membrane structure is validated by the formation of different nitrogen-containing modified layers, which also achieves in situ growth of the MOFs layer, and exhibits similar reversal separation performance. The geometric configuration control of ion transport channels presents a novel effective strategy to realize the precise separation of target ions.
Collapse
Affiliation(s)
- Bin Wu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Yunfei Yan
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Xiaorui Chu
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Jibin Miao
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Qianqian Ge
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| | - Xiaocheng Lin
- College of Chemical Engineering, School of Future Membrane Technology, Fuzhou University, Fuzhou, 350116, China
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Liang Ge
- Key Laboratory of Precision and Intelligent Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei, 230026, China
| | - Jiasheng Qian
- Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, School of Chemistry & Chemical Engineering, Anhui University, Hefei, 230601, China
| |
Collapse
|
19
|
Liu M, Wang Y, Li Y, Wu F, Li H, Li Y, Feng X, Long B, Ni Q, Wu C, Bai Y. Dual-Functional Interfacial Layer Enabled by Gating-Shielding Effects for Ultra-Stable Zn Anode. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406145. [PMID: 39221543 DOI: 10.1002/adma.202406145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 08/05/2024] [Indexed: 09/04/2024]
Abstract
Large-scale application of low-cost, high-safety and environment-compatible aqueous Zn metal batteries (ZMBs) is hindered by Zn dendrite failure and side reactions. Herein, highly reversible ZMBs are obtained by addition of trace D-pantothenate calcium additives to engineer a dual-functional interfacial layer, which is enabled by a bioinspired gating effect for excluding competitive free water near Zn surface due to the trapping and immobilization of water by hydroxyl groups, and guiding target Zn2+ transport across interface through carboxyl groups of pantothenate anions, as well as a dynamic electrostatic shielding effect around Zn protuberances from Ca2+ cations to ensure uniform Zn2+ deposition. In consequence, interfacial side reactions are perfectly inhibited owing to reduced water molecules reaching Zn surface, and the uniform and compact deposition of Zn2+ is achieved due to promoted Zn2+ transport and deposition kinetics. The ultra-stable symmetric cells with beyond 9000 h at 0.5 mA cm-2 with 0.5 mAh cm-2 and over 5000 h at 5 mA cm-2 with 1 mAh cm-2, and an average Coulombic efficiency of 99.8% at 1 mA cm-2 with 1 mAh cm-2, are amazingly realized. The regulated-electrolyte demonstrates high compatibility with verified cathodes for stable full cells. This work opens a brand-new pathway to regulate Zn/electrolyte interface to promise reversible ZMBs.
Collapse
Affiliation(s)
- Mingquan Liu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
- College of Materials Science and Engineering, Fuzhou University, Fuzhou, 350108, P. R. China
| | - Yahui Wang
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Yu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Feng Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Huanyu Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Ying Li
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Xin Feng
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Bo Long
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Qiao Ni
- Faculty of Arts and Sciences, Beijing Normal University, Zhuhai, 519087, P. R. China
| | - Chuan Wu
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing, 314019, P. R. China
| | - Ying Bai
- School of Materials Science and Engineering, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
20
|
Wang W, Zhang Y, Wang C, Sun H, Guo J, Shao L. Simultaneous Manipulation of Membrane Enthalpy and Entropy Barriers towards Superior Ion Separations. Angew Chem Int Ed Engl 2024; 63:e202408963. [PMID: 39031735 DOI: 10.1002/anie.202408963] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/12/2024] [Revised: 06/11/2024] [Accepted: 06/21/2024] [Indexed: 07/22/2024]
Abstract
Sub-nanoporous membranes with ion selective transport functions are important for energy utilization, environmental remediation, and fundamental bioinspired engineering. Although mono/multivalent ions can be separated by monovalent ion selective membranes (MISMs), the current theory fails to inspire rapid advances in MISMs. Here, we apply transition state theory (TST) by regulating the enthalpy barrier (ΔH) and entropy barrier (ΔS) for designing next-generation monovalent cation exchange membranes (MCEMs) with great improvement in ion selective separation. Using a molecule-absorbed porous material as an interlayer to construct a denser selective layer can achieve a greater absolute value of ΔS for Li+ and Mg2+ transport, greater ΔH for Mg2+ transport and lower ΔH for Li+ transport. This recorded performance with a Li+/Mg2+ perm-selectivity of 25.50 and a Li+ flux of 1.86 mol ⋅ m-2 ⋅ h-1 surpasses the contemporary "upper bound" plot for Li+/Mg2+ separations. Most importantly, our synthesized MCEM also demonstrates excellent operational stability during the selective electrodialysis (S-ED) processes for realizing scalability in practical applications.
Collapse
Affiliation(s)
- Wenguang Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Yanqiu Zhang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Chao Wang
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Haixiang Sun
- School of Materials Science and Engineering, China University of Petroleum (East China), 266580, Qingdao, China
| | - Jing Guo
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| | - Lu Shao
- State Key Laboratory of Urban Water Resource and Environment, School of Chemistry and Chemical Engineering, Harbin Institute of Technology, 150001, Harbin, China
| |
Collapse
|
21
|
Fan F, Ren Y, Zhang S, Tang Z, Wang J, Han X, Yang Y, Lu G, Zhang Y, Chen L, Wang Z, Zhang K, Gao J, Zhao J, Cui G, Tang B. A Bioinspired Membrane with Ultrahigh Li +/Na + and Li +/K + Separations Enables Direct Lithium Extraction from Brine. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2402898. [PMID: 39030996 PMCID: PMC11425256 DOI: 10.1002/advs.202402898] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/20/2024] [Revised: 06/16/2024] [Indexed: 07/22/2024]
Abstract
Membranes with precise Li+/Na+ and Li+/K+ separations are imperative for lithium extraction from brine to address the lithium supply shortage. However, achieving this goal remains a daunting challenge due to the similar valence, chemical properties, and subtle atomic-scale distinctions among these monovalent cations. Herein, inspired by the strict size-sieving effect of biological ion channels, a membrane is presented based on nonporous crystalline materials featuring structurally rigid, dimensionally confined, and long-range ordered ion channels that exclusively permeate naked Li+ but block Na+ and K+. This naked-Li+-sieving behavior not only enables unprecedented Li+/Na+ and Li+/K+ selectivities up to 2707.4 and 5109.8, respectively, even surpassing the state-of-the-art membranes by at least two orders of magnitude, but also demonstrates impressive Li+/Mg2+ and Li+/Ca2+ separation capabilities. Moreover, this bioinspired membrane has to be utilized for creating a one-step lithium extraction strategy from natural brines rich in Na+, K+, and Mg2+ without utilizing chemicals or creating solid waste, and it simultaneously produces hydrogen. This research has proposed a new type of ion-sieving membrane and also provides an envisioning of the design paradigm and development of advanced membranes, ion separation, and lithium extraction.
Collapse
Affiliation(s)
- Faying Fan
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yongwen Ren
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Shu Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhilei Tang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jia Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Xiaolei Han
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yuanyuan Yang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guoli Lu
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Yaojian Zhang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Lin Chen
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Zhe Wang
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | | | - Jun Gao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Jingwen Zhao
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Guanglei Cui
- Qingdao Industrial Energy Storage Research Institute, Qingdao Institute of Bioenergy and Bioprocess Technology, Chinese Academy of Sciences, Qingdao, 266101, China
- Shandong Energy Institute, Qingdao, 266101, China
- Qingdao New Energy Shandong Laboratory, Qingdao, 266101, China
| | - Bo Tang
- Tang Bo's institution, Laoshan Laboratory, Qingdao, China
| |
Collapse
|
22
|
Wang Y, Hu Y, Guo JP, Gao J, Song B, Jiang L. A physical derivation of high-flux ion transport in biological channel via quantum ion coherence. Nat Commun 2024; 15:7189. [PMID: 39168976 PMCID: PMC11339410 DOI: 10.1038/s41467-024-51045-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 07/25/2024] [Indexed: 08/23/2024] Open
Abstract
Biological ion channels usually conduct the high-flux transport of 107 ~ 108 ions·s-1; however, the underlying mechanism is still lacking. Here, by applying the KcsA potassium channel as a typical example, and performing multitimescale molecular dynamics simulations, we demonstrate that there is coherence of the K+ ions confined in biological channels, which determines transport. The coherent oscillation state of confined K+ ions with a nanosecond-level lifetime in the channel dominates each transport event, serving as the physical basis for the high flux of ~108 ions∙s-1. The coherent transfer of confined K+ ions only takes several picoseconds and has no perturbation effect on the ion coherence, acting as the directional key of transport. Such ion coherence is allowed by quantum mechanics. An increase in the coherence can significantly enhance the ion conductance. These findings provide a potential explanation from the perspective of coherence for the high-flux ion transport with ultralow energy consumption of biological channels.
Collapse
Affiliation(s)
- Yue Wang
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Yixiao Hu
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jian-Ping Guo
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China
| | - Jun Gao
- Hubei Key Laboratory of Agricultural Bioinformatics, College of Informatics, Huazhong Agricultural University, Wuhan, 430070, China.
| | - Bo Song
- School of Optical‑Electrical Computer Engineering, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Shanghai Key Lab of Modern Optical Systems, University of Shanghai for Science and Technology, Shanghai, 200093, China.
- Key Laboratory of Optical Technology and Instruments for Medicine, Ministry of Education, Shanghai, 200093, China.
| | - Lei Jiang
- Key Laboratory of Bio-inspired Materials and Interfacial Science, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing, 100190, China
- Nano Science and Technology Institute, University of Science and Technology of China, Hefei, 230026, China
- Suzhou Institute for Advanced Research, University of Science and Technology of China, Suzhou, Jiangsu, 215123, China
- Institute for Biomedical Materials & Devices (IBMD), Faculty of Science, University of Technology Sydney, Sydney, NSW, 2007, Australia
| |
Collapse
|
23
|
Jiang Y, Wang R, Ye C, Wang X, Wang D, Du Q, Liang H, Zhang S, Gao P. Stimuli-Responsive Ion Transport Regulation in Nanochannels by Adhesion-Induced Functionalization of Macroscopic Outer Surface. ACS APPLIED MATERIALS & INTERFACES 2024; 16:35666-35674. [PMID: 38924711 DOI: 10.1021/acsami.4c02299] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/28/2024]
Abstract
Responsive regulation of ion transport through nanochannels is crucial in the design of smart nanofluidic devices for sequencing, sensing, and water-energy nexus. Functionalization of the inner wall of the nanochannel enhances interaction with ions and fluid but restricts versatile chemical approaches and accurate characterizations of fluidic interfaces. Herein, we reveal a responsive regulating mechanism of ion transport through nanochannels by polydopamine (PDA)-induced functionalization on the macroscopic outer surface of nanochannels. Responsive molecules were codeposited with PDA on the outer surface of nanochannels and formed a valve of nanometer thickness to manually manipulate ion transport by changing its gap spacing, surface charge, and wettability under external stimulus. The response ratio can be up to 100-fold by maximizing the proportion of responsive molecules on the outer surface. Laminating the codepositions of different responsive molecules with PDA on the channel's outer surface produces multiple responses. A nearly universal adhesion of PDA with responsive molecules on the open outer surface induces nanochannels responsive to different external stimuli with variable response ratios and arbitrary combinations. The results challenge the primary role of functionalization on the nanoconfined interface of nanofluidics and open opportunities for developing new-style nanofluidic devices through the functionalization of macroscopic interface.
Collapse
Affiliation(s)
- You Jiang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Rongsheng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Chunxi Ye
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Xinmeng Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Dagui Wang
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, P. R. China
| | - Huageng Liang
- Department of Urology, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430022, P. R. China
| | - Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, P. R. China
| | - Pengcheng Gao
- Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, P. R. China
| |
Collapse
|
24
|
Liang J, Zhang X, Li H, Wen C, Tian L, Chen X, Li Z. Constructing Two-Dimensional (2D) Heterostructure Channels with Engineered Biomembrane and Graphene for Precise Scandium Sieving. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2404629. [PMID: 38805571 DOI: 10.1002/adma.202404629] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2024] [Revised: 05/23/2024] [Indexed: 05/30/2024]
Abstract
The special properties of rare earth elements (REE) have effectively broadened their application fields. How to accurately recognize and efficiently separate target rare earth ions with similar radii and chemical properties remains a formidable challenge. Here, precise two-dimensional (2D) heterogeneous channels are constructed using engineered E. coli membranes between graphene oxide (GO) layers. The difference in binding ability and corresponding conformational change between Lanmodulin (LanM) and rare earth ions in the heterogeneous channel allows for precisely recognizing and sieving of scandium ions (Sc3+). The engineered E. coli membranes not only can protect the integrity of structure and functionality of LanM, the rich lipids and sugars, but also help the Escherichia coli (E. coli) membranes closely tile on the GO nanosheets through interaction, preventing swelling and controlling interlayer spacing accurately down to the sub-nanometer. Apparently, the 2D heterogeneous channels showcase excellent selectivity for trivalent ions (SFFe /Sc≈3), especially for Sc3+ ions in REE with high selectivity (SFCe/Sc≈167, SFLa/Sc≈103). The long-term stability and tensile strain tests verify the membrane's outstanding stability. Thus, this simple, efficient, and cost-effective work provides a suggestion for constructing 2D interlayer heterogeneous channels for precise sieving, and this valuable strategy is proposed for the efficient extraction of Sc.
Collapse
Affiliation(s)
- Jing Liang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Xin Zhang
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Haidong Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Chuanxi Wen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Longlong Tian
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Ximeng Chen
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
| | - Zhan Li
- MOE Frontiers Science Center for Rare Isotopes, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- Institute of National Nuclear Industry, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Nuclear Science and Technology, Lanzhou University, 222 Tianshui South Road, Lanzhou, 730000, China
- School of Chemistry and Chemical Engineering, Qinghai Nationalities University, 3 Bayi Middle Road, Xining, 810007, China
| |
Collapse
|
25
|
Liu J, Li B, Lu G, Wang G, Zheng J, Huang L, Feng Y, Xu S, Jiang Y, Liu N. Toward Selective Transport of Monovalent Metal Ions with High Permeability Based on Crown Ether-Encapsulated Metal-Organic Framework Sub-Nanochannels. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26634-26642. [PMID: 38722947 DOI: 10.1021/acsami.4c05672] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Achieving selective transport of monovalent metal ions with high precision and permeability analogues to biological protein ion channels has long been explored for fundamental research and various applications, such as ion sieving, mineral extraction, and energy harvesting and conversion. However, it still remains a significant challenge to construct artificial nanofluidic devices to realize the trade-off effects between selective ion transportation and high ion permeability. In this work, we report a bioinspired functional micropipet with in situ growth of crown ether-encapsulated metal-organic frameworks (MOFs) inside the tip and realize selective transport of monovalent metal ions. The functional ion-selective micropipet with sub-nanochannels was constructed by the interfacial growth method with the formation of composite MOFs consisting of ZIF-8 and 15-crown-5. The resulting micropipet device exhibited obvious monovalent ion selectivity and high flux of Li+ due to the synergistic effects of size sieving in subnanoconfined space and specific coordination of 15-crown-5 toward Na+. The selectivity of Li+/Na+, Li+/K+, Li+/Ca2+, and Li+/Mg2+ with 15-crown-5@ZIF-8-functionalized micropipet reached 3.9, 5.2, 105.8, and 122.4, respectively, which had an obvious enhancement compared to that with ZIF-8. Notably, the ion flux of Li+ can reach up to 93.8 ± 3.6 mol h-1·m-2 that is much higher than previously reported values. Furthermore, the functional micropipet with 15-crown-5@ZIF-8 sub-nanochannels exhibited stable Li+ selectivity under various conditions, such as different ion concentrations, pH values, and mixed ion solutions. This work not only provides new opportunities for the development of MOF-based nanofluidic devices for selective ion transport but also facilitates the promising practical applications in lithium extraction from salt-like brines, sewage treatment, and other related aspects.
Collapse
Affiliation(s)
- Jiahao Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Baijun Li
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guofeng Wang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Liying Huang
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yueyue Feng
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Shiwei Xu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Nannan Liu
- College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325000, China
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry & Materials Engineering, Wenzhou University, Wenzhou 325027, China
| |
Collapse
|
26
|
Feng Y, Xu S, Zheng J, Huang L, Ye T, Wang G, Jiang Y, Liu N. Crown-Ether Crystal Channel Membranes with Subnanometer Pores for Selective Na + Transport. ACS APPLIED MATERIALS & INTERFACES 2024; 16:26817-26823. [PMID: 38727564 DOI: 10.1021/acsami.4c05613] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2024]
Abstract
Emulating biological sodium ion channels to achieve high selectivity and rapid Na+ transport is important for water desalination, energy conversion, and separation processes. However, the development of artificial ion channels, especially multichannels, to achieve high ion selectivity, remains a challenge. In this work, we demonstrate the fabrication of ion channel membranes utilizing crown-ether crystals (DA18C6-nitrate crystals), which feature extremely consistent subnanometer pores. The polyethylene terephthalate (PET) membranes were initially subjected to amination, followed by the in situ growth of DA18C6-nitrate crystals to establish ordered multichannels aimed at facilitating selective Na+ conductance. These channels allow rapid Na+ transport while inhibiting the migration of other ions (K+ and Ca2+). The Na+ transport rate was 2.15 mol m-2 h-1, resulting in the Na+/K+ and Na+/Ca2+ selectivity ratios of 6.53 and 12.56, respectively. Due to the immobilization of the crown-ether ring, when the size of the transmembrane ion exceeded that of the crown-ether ring's cavity, the ions had to undergo a dehydration process to pass through the channel. This resulted in the ions encountering a higher energy barrier upon entering the channel, making it more difficult for them to permeate. However, the size of Na+ was compatible with the cavity of the crown-ether ring and was able to displace the hydrated layer effectively, facilitating selective Na+ translocation. In summary, this research offers a promising approach for the future development of functionalized ion channels and efficient membrane materials tailored for high-performance Na+ separation.
Collapse
Affiliation(s)
- Yueyue Feng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Shiwei Xu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Liying Huang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Guofeng Wang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, Zhejiang, P.R. China
- Institute of New Materials and Industry Technology, Wenzhou University, Wenzhou 325000, P.R China
| |
Collapse
|
27
|
Xu T, Wu B, Li W, Li Y, Zhu Y, Sheng F, Li Q, Ge L, Li X, Wang H, Xu T. Perfect confinement of crown ethers in MOF membrane for complete dehydration and fast transport of monovalent ions. SCIENCE ADVANCES 2024; 10:eadn0944. [PMID: 38718127 PMCID: PMC11078184 DOI: 10.1126/sciadv.adn0944] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 04/04/2024] [Indexed: 05/12/2024]
Abstract
Fast transport of monovalent ions is imperative in selective monovalent ion separation based on membranes. Here, we report the in situ growth of crown ether@UiO-66 membranes at a mild condition, where dibenzo-18-crown-6 (DB18C6) or dibenzo-15-crown-5 is perfectly confined in the UiO-66 cavity. Crown ether@UiO-66 membranes exhibit enhanced monovalent ion transport rates and mono-/divalent ion selectivity, due to the combination of size sieving and interaction screening effects toward the complete monovalent ion dehydration. Specifically, the DB18C6@UiO-66 membrane shows a permeation rate (e.g., K+) of 1.2 mol per square meter per hour and a mono-/divalent ion selectivity (e.g., K+/Mg2+) of 57. Theoretical calculations and simulations illustrate that, presumably, ions are completely dehydrated while transporting through the DB18C6@UiO-66 cavity with a lower energy barrier than that of the UiO-66 cavity. This work provides a strategy to develop efficient ion separation membranes via integrating size sieving and interaction screening and to illuminate the effect of ion dehydration on fast ion transport.
Collapse
Affiliation(s)
- Tingting Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Bin Wu
- School of Chemistry and Chemical Engineering, Key Laboratory of Environment-Friendly Polymeric Materials of Anhui Province, Anhui University, Hefei 230601, China
| | - Wenmin Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yifan Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Yanran Zhu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Fangmeng Sheng
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Qiuhua Li
- Hefei National Research Center for Physical Sciences at the Microscale, University of Science and Technology of China, Hefei 230026, China
| | - Liang Ge
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Xingya Li
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| | - Huanting Wang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC 3800, Australia
| | - Tongwen Xu
- Key Laboratory of Precision and Intelligent Chemistry, Department of Applied Chemistry, School of Chemistry and Materials Science, University of Science and Technology of China, Hefei 230026, China
| |
Collapse
|
28
|
Zhang S, Wang J, Yaroshchuk A, Du Q, Xin P, Bruening ML, Xia F. Addressing Challenges in Ion-Selectivity Characterization in Nanopores. J Am Chem Soc 2024. [PMID: 38606686 DOI: 10.1021/jacs.4c00603] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/13/2024]
Abstract
Ion selectivity is the basis for designing smart nanopore/channel-based devices, e.g., ion separators and biosensors. Quantitative characterization of ion selectivities in nanopores often employs the Nernst or Goldman-Hodgkin-Katz (GHK) equation to interpret transmembrane potentials. However, the direction of the measured transmembrane potential drop is not specified in these equations, and selectivity values calculated using absolute values of transmembrane potentials do not directly reveal the ion for which the membrane is selective. Moreover, researchers arbitrarily choose whether to use the Nernst or GHK equation and overlook the significant differences between them, leading to ineffective quantitative comparisons between studies. This work addresses these challenges through (a) specifying the transmembrane potential (sign) and salt concentrations in terms of working and reference electrodes and the solutions in which they reside when using the Nernst and GHK equations, (b) reporting of both Nernst-selectivity and GHK-selectivity along with solution compositions and transmembrane potentials when comparing different nanopores/channels, and (c) performing simulations to define an ideal selectivity for nanochannels. Experimental and modeling studies provide significant insight into these fundamental equations and guidelines for the development of nanopore/channel-based devices.
Collapse
Affiliation(s)
- Shouwei Zhang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Jinfeng Wang
- National Local Joint Laboratory for Advanced Textile Processing and Clean Production, Wuhan Textile University, Wuhan 430200, China
| | - Andriy Yaroshchuk
- Department of Chemical Engineering, Polytechnic University of Catalonia-Barcelona Tech, Avenida Diagonal 647, Barcelona 08028, Spain
- ICREA, pg.L.Companys 23, 08010 Barcelona, Spain
| | - Qiujiao Du
- School of Mathematics and Physics, China University of Geosciences, Wuhan 430074, China
| | - Pengyang Xin
- State Key Laboratory of Antiviral Drugs, Pingyuan Laboratory, NMPA (National Medical Products Administration) Key Laboratory for Research and Evaluation of Innovative Drug, Henan Normal University, Xinxiang 453007, China
| | - Merlin L Bruening
- Department of Chemical and Biomolecular Engineering and Department of Chemistry and Biochemistry, University of Notre Dame, Notre Dame, Indiana 46556, United States
| | - Fan Xia
- State Key Laboratory of Biogeology and Environmental Geology, Engineering Research Center of Nano-Geomaterials of Ministry of Education, Faculty of Materials Science and Chemistry, China University of Geosciences, Wuhan 430074, China
| |
Collapse
|
29
|
Hou J, Zhao C, Zhang H. Bio-Inspired Subnanofluidics: Advanced Fabrication and Functionalization. SMALL METHODS 2024; 8:e2300278. [PMID: 37203269 DOI: 10.1002/smtd.202300278] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 05/02/2023] [Indexed: 05/20/2023]
Abstract
Biological ion channels can realize high-speed and high-selective ion transport through the protein filter with the sub-1-nanometer channel. Inspired by biological ion channels, various kinds of artificial subnanopores, subnanochannels, and subnanoslits with improved ion selectivity and permeability are recently developed for efficient separation, energy conversion, and biosensing. This review article discusses the advanced fabrication and functionalization methods for constructing subnanofluidic pores, channels, tubes, and slits, which have shown great potential for various applications. Novel fabrication methods for producing subnanofluidics, including top-down techniques such as electron beam etching, ion irradiation, and electrochemical etching, as well as bottom-up approaches starting from advanced microporous frameworks, microporous polymers, lipid bilayer embedded subnanochannels, and stacked 2D materials are well summarized. Meanwhile, the functionalization methods of subnanochannels are discussed based on the introduction of functional groups, which are classified into direct synthesis, covalent bond modifications, and functional molecule fillings. These methods have enabled the construction of subnanochannels with precise control of structure, size, and functionality. The current progress, challenges, and future directions in the field of subnanofluidic are also discussed.
Collapse
Affiliation(s)
- Jue Hou
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Chen Zhao
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| | - Huacheng Zhang
- Chemical and Environmental Engineering, School of Engineering, RMIT University, Melbourne, Victoria, 3000, Australia
| |
Collapse
|
30
|
Qian R, Wu M, Yang Z, Wu Y, Guo W, Zhou Z, Wang X, Li D, Lu Y. Rectifying artificial nanochannels with multiple interconvertible permeability states. Nat Commun 2024; 15:2051. [PMID: 38448408 PMCID: PMC10918189 DOI: 10.1038/s41467-024-46312-w] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/29/2023] [Accepted: 02/16/2024] [Indexed: 03/08/2024] Open
Abstract
Transmembrane channels play a vital role in regulating the permeation process, and have inspired recent development of biomimetic channels. Herein, we report a class of artificial biomimetic nanochannels based on DNAzyme-functionalized glass nanopipettes to realize delicate control of channel permeability, whereby the surface wettability and charge can be tuned by metal ions and DNAzyme-substrates, allowing reversible conversion between different permeability states. We demonstrate that the nanochannels can be reversibly switched between four different permeability states showing distinct permeability to various functional molecules. By embedding the artificial nanochannels into the plasma membrane of single living cells, we achieve selective transport of dye molecules across the cell membrane. Finally, we report on the advanced functions including gene silencing of miR-21 in single cancer cells and selective transport of Ca2+ into single PC-12 cells. In this work, we provide a versatile tool for the design of rectifying artificial nanochannels with on-demand functions.
Collapse
Affiliation(s)
- Ruocan Qian
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China.
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China.
| | - Mansha Wu
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Zhenglin Yang
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Yuting Wu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA
| | - Weijie Guo
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA
| | - Zerui Zhou
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Xiaoyuan Wang
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Dawei Li
- Key Laboratory for Advanced Materials, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Feringa Nobel Prize Scientist Joint Research Center, Joint International Laboratory for Precision Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- Frontiers Science Center for Materiobiology & Dynamic Chemistry, East China University of Science and Technology, Shanghai, 200237, P. R. China
- School of Chemistry and Molecular Engineering, East China University of Science and Technology, Shanghai, 200237, P. R. China
| | - Yi Lu
- Department of Chemistry, University of Texas at Austin, Austin, TX, 78712, USA.
- Department of Molecular Biosciences, University of Texas at Austin, Austin, TX, 78712, USA.
| |
Collapse
|
31
|
Liu Y, Qian Y, Fu L, Zhu C, Li X, Wang Q, Ling H, Du H, Zhou S, Kong XY, Jiang L, Wen L. Archaea-Inspired Switchable Nanochannels for On-Demand Lithium Detection by pH Activation. ACS CENTRAL SCIENCE 2024; 10:469-476. [PMID: 38435527 PMCID: PMC10906035 DOI: 10.1021/acscentsci.3c01179] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Revised: 11/30/2023] [Accepted: 11/30/2023] [Indexed: 03/05/2024]
Abstract
With the rapid development of the lithium ion battery industry, emerging lithium (Li) enrichment in nature has attracted ever-growing attention due to the biotoxicity of high Li levels. To date, fast lithium ion (Li+) detection remains urgent but is limited by the selectivity, sensitivity, and stability of conventional technologies based on passive response processes. In nature, archaeal plasma membrane ion exchangers (NCLX_Mj) exhibit Li+-gated multi/monovalent ion transport behavior, activated by different stimuli. Inspired by NCLX_Mj, we design a pH-controlled biomimetic Li+-responsive solid-state nanochannel system for on-demand Li+ detection using 2-(2-hydroxyphenyl)benzoxazole (HPBO) units as Li+ recognition groups. Pristine HPBO is not reactive to Li+, whereas negatively charged HPBO enables specific Li+ coordination under alkaline conditions to decrease the ion exchange capacity of nanochannels. On-demand Li+ detection is achieved by monitoring the decline in currents, thereby ensuring precise and stable Li+ recognition (>0.1 mM) in the toxic range of Li+ concentration (>1.5 mM) for human beings. This work provides a new approach to constructing Li+ detection nanodevices and has potential for applications of Li-related industries and medical services.
Collapse
Affiliation(s)
- Yang Liu
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Yongchao Qian
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Lin Fu
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Congcong Zhu
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Xin Li
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Qingchen Wang
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Haoyang Ling
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Huaqing Du
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Shengyang Zhou
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
| | - Xiang-Yu Kong
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
- Suzhou
Institute for Advanced Research, University
of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| | - Lei Jiang
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
| | - Liping Wen
- CAS
Key Laboratory of Bio-inspired Materials and Interfacial Science,
Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, P. R.
China
- School
of Future Technology, University of Chinese
Academy of Sciences, Beijing 100049, P. R.
China
- Suzhou
Institute for Advanced Research, University
of Science and Technology of China, Suzhou, Jiangsu 215123, P. R. China
| |
Collapse
|
32
|
Liu J, Lu J, Ji W, Lu G, Wang J, Ye T, Jiang Y, Zheng J, Yu P, Liu N, Jiang Y, Mao L. Ion-Selective Micropipette Sensor for In Vivo Monitoring of Sodium Ion with Crown Ether-Encapsulated Metal-Organic Framework Subnanopores. Anal Chem 2024; 96:2651-2657. [PMID: 38306178 DOI: 10.1021/acs.analchem.3c05366] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/04/2024]
Abstract
In vivo sensing of the dynamics of ions with high selectivity is essential for gaining molecular insights into numerous physiological and pathological processes. In this work, we report an ion-selective micropipette sensor (ISMS) through the integration of functional crown ether-encapsulated metal-organic frameworks (MOFs) synthesized in situ within the micropipette tip. The ISMS features distinctive sodium ion (Na+) conduction and high selectivity toward Na+ sensing. The selectivity is attributed to the synergistic effects of subnanoconfined space and the specific coordination of 18-crown-6 toward potassium ions (K+), which largely increase the steric hindrance and transport resistance for K+ to pass through the ISMS. Furthermore, the ISMS exhibits high stability and sensitivity, facilitating real-time monitoring of Na+ dynamics in the living rat brain during spreading of the depression events process. In light of the diversity of crown ethers and MOFs, we believe this study paves the way for a nanofluidic platform for in vivo sensing and neuromorphic electrochemical sensing.
Collapse
Affiliation(s)
- Jiahao Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiahao Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
| | - Wenliang Ji
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Guangwen Lu
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Jiao Wang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Tingyan Ye
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yisha Jiang
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Juanjuan Zheng
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Ping Yu
- Beijing National Laboratory for Molecular Science, Key Laboratory of Analytical Chemistry for Living Biosystems, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
- University of Chinese Academy of Sciences, Beijing 100049, China
| | - Nannan Liu
- Key Laboratory of Carbon Materials of Zhejiang Province, College of Chemistry and Materials Engineering, Wenzhou University, Wenzhou 325027, China
| | - Yanan Jiang
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| | - Lanqun Mao
- College of Chemistry, Beijing Normal University, Beijing 100875, China
| |
Collapse
|
33
|
Zhao K, Lee WC, Rezaei M, Chi HY, Li S, Villalobos LF, Hsu KJ, Zhang Y, Wang FC, Agrawal KV. Tuning Pore Size in Graphene in the Angstrom Regime for Highly Selective Ion-Ion Separation. ACS NANO 2024. [PMID: 38320296 PMCID: PMC10883049 DOI: 10.1021/acsnano.3c11068] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/08/2024]
Abstract
Zero-dimensional pores spanning only a few angstroms in size in two-dimensional materials such as graphene are some of the most promising systems for designing ion-ion selective membranes. However, the key challenge in the field is that so far a crack-free macroscopic graphene membrane for ion-ion separation has not been realized. Further, methods to tune the pores in the Å-regime to achieve a large ion-ion selectivity from the graphene pore have not been realized. Herein, we report an Å-scale pore size tuning tool for single layer graphene, which incorporates a high density of ion-ion selective pores between 3.5 and 8.5 Å while minimizing the nonselective pores above 10 Å. These pores impose a strong confinement for ions, which results in extremely high selectivity from centimeter-scale porous graphene between monovalent and bivalent ions and near complete blockage of ions with the hydration diameter, DH, greater than 9.0 Å. The ion diffusion study reveals the presence of an energy barrier corresponding to partial dehydration of ions with the barrier increasing with DH. We observe a reversal of K+/Li+ selectivity at elevated temperature and attribute this to the relative size of the dehydrated ions. These results underscore the promise of porous two-dimensional materials for solute-solute separation when Å-scale pores can be incorporated in a precise manner.
Collapse
Affiliation(s)
- Kangning Zhao
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Wan-Chi Lee
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Mojtaba Rezaei
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Heng-Yu Chi
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Shaoxian Li
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Luis Francisco Villalobos
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Kuang-Jung Hsu
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| | - Yuyang Zhang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Feng-Chao Wang
- CAS Key Laboratory of Mechanical Behavior and Design of Materials, Department of Modern Mechanics, University of Science and Technology of China, Hefei 230027, China
| | - Kumar Varoon Agrawal
- Laboratory of Advanced Separations (LAS), École Polytechnique Fédérale de Lausanne (EPFL), Sion, CH-1950 Switzerland
| |
Collapse
|
34
|
Xu D, Yan M, Xie Y. Energy harvesting from water streaming at charged surface. Electrophoresis 2024; 45:244-265. [PMID: 37948329 DOI: 10.1002/elps.202300102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/10/2023] [Revised: 09/15/2023] [Accepted: 10/26/2023] [Indexed: 11/12/2023]
Abstract
Water flowing at a charged surface may produce electricity, known as streaming current/potentials, which may be traced back to the 19th century. However, due to the low gained power and efficiencies, the energy conversion from streaming current was far from usable. The emergence of micro/nanofluidic technology and nanomaterials significantly increases the power (density) and energy conversion efficiency. In this review, we conclude the fundamentals and recent progress in electrical double layers at the charged surface. We estimate the generated power by hydrodynamic energy dissipation in multi-scaling flows considering the viscous systems with slipping boundary and inertia systems. Then, we review the coupling of volume flow and current flow by the Onsager relation, as well as the figure of merits and efficiency. We summarize the state-of-the-art of electrokinetic energy conversions, including critical performance metrics such as efficiencies, power densities, and generated voltages in various systems. We discuss the advantages and possible constraints by the figure of merits, including single-phase flow and flying droplets.
Collapse
Affiliation(s)
- Daxiang Xu
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Meng Yan
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
| | - Yanbo Xie
- School of Physical Science and Technology, Northwestern Polytechnical University, Xi'an, P. R. China
- School of Aeronautics and Institute of Extreme Mechanics, Northwestern Polytechnical University, Xi'an, P. R. China
| |
Collapse
|
35
|
Zeng F, Yang Y, Li X, Yang Y. Ionic Sieving at Sub-Angstrom Precision Enabled by Metal Organic Frameworks. ACS APPLIED MATERIALS & INTERFACES 2023; 15:40839-40845. [PMID: 37599605 DOI: 10.1021/acsami.3c07914] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/22/2023]
Abstract
The demand for cesium is expanding rapidly in light of its necessity in high-tech industries. Thus, technologies that can efficiently extract cesium from the sources are critically needed. Here, the metal-organic framework (MOF) membranes created from -Cl and -NH2 functionalized MIL-53 enabled highly selective transport of cesium ions. The angstrom-scale pore windows in these MOFs conduct Cs+ ions at high throughput, 2 orders of magnitude faster than other marginally larger ions. Ascribed to size sieving effects, MIL-53-NH2 containing 6.6 Å size channels realized an exceedingly high Cs+/Li+ selectivity up to ∼315. The rapid transport of Cs+ ions relative to other ions is greatly dependent on the precision of the angstrom-scale pores. Our work highlights the enormous potential of realizing high ion selectivity with MOFs and drives the further development of these materials in a variety of advanced separations.
Collapse
Affiliation(s)
- Fengmi Zeng
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yihui Yang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Xianhui Li
- Guangdong Provincial Key Laboratory of Water Quality Improvement and Ecological Restoration for Watersheds, School of Ecology, Environment and Resources, Guangdong University of Technology, Guangzhou 510006, China
| | - Yang Yang
- Research Centre of Ecology and Environment for Coastal Area and Deep Sea, Southern Marine Science and Engineering Guangdong Laboratory (Guangzhou), Guangzhou 511458, China
| |
Collapse
|
36
|
Xu R, Kang Y, Zhang W, Pan B, Zhang X. Two-dimensional MXene membranes with biomimetic sub-nanochannels for enhanced cation sieving. Nat Commun 2023; 14:4907. [PMID: 37582789 PMCID: PMC10427654 DOI: 10.1038/s41467-023-40742-8] [Citation(s) in RCA: 39] [Impact Index Per Article: 19.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/21/2023] [Accepted: 08/04/2023] [Indexed: 08/17/2023] Open
Abstract
Membranes with high ion permeability and selectivity are of considerable interest for sustainable water treatment, resource extraction and energy storage. Herein, inspired by K+ channel of streptomyces A (KcsA K+), we have constructed cation sieving membranes using MXene nanosheets and Ethylenediaminetetraacetic acid (EDTA) molecules as building blocks. Numerous negatively charged oxygen atoms of EDTA molecules and 6.0 Å two-dimensional (2D) sub-nanochannel of MXene nanosheets enable biomimetic channel size, chemical groups and tunable charge density for the resulting membranes. The membranes show the capability to recognize monovalent/divalent cations, achieving excellent K+/Mg2+ selectivity of 121.2 using mixed salt solution as the feed, which outperforms other reported membranes under similar testing conditions and transcends the current upper limit. Characterization and simulations indicate that the cation recognition effect of EDTA and partial dehydration effects play critical roles in cations selective sieving and increasing the local charge density within the sub-nanochannel significantly improves cation selectivity. Our findings provide a theoretical basis for ions transport in sub-nanochannels and an alternative strategy for design ions separation membranes.
Collapse
Affiliation(s)
- Rongming Xu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 210023, Nanjing, China
| | - Yuan Kang
- Department of Chemical and Biological Engineering, Monash University, Clayton, VIC, 3800, Australia
| | - Weiming Zhang
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 210023, Nanjing, China.
| | - Bingcai Pan
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, 210023, Nanjing, China.
- Research Center for Environmental Nanotechnology (ReCENT), Nanjing University, 210023, Nanjing, China.
| | - Xiwang Zhang
- UQ Dow Centre for Sustainable Engineering Innovation, School of Chemical Engineering, The University of Queensland, St Lucia, QLD, 4072, Australia.
| |
Collapse
|