1
|
Park J, Cheong DY, Lee G, Han CE. Deep learning-based denoising for unbiased analysis of morphology and stiffness in amyloid fibrils. Comput Biol Med 2025; 184:109410. [PMID: 39577350 DOI: 10.1016/j.compbiomed.2024.109410] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/23/2024] [Revised: 11/08/2024] [Accepted: 11/08/2024] [Indexed: 11/24/2024]
Abstract
Understanding the morphology of amyloid fibrils is crucial for comprehending the aggregation and degradation mechanisms of abnormal proteins implicated in various diseases, such as Alzheimer's disease, Parkinson's disease, type II diabetes, and various forms of amyloidosis. Atomic force microscopy (AFM) stands as the most representative method for studying amyloid fibril morphology. However, obstacles in AFM images, including noise, salt, and amorphous aggregates, often impede accurate sample quantification. In this study, we developed denoising software employing a U-Net deep learning architecture to address this issue. The software efficiently eliminated various impediments that interfere with fibril analysis in noisy AFM images, thereby facilitating precise quantification of amyloid fibrils. We also developed automated fibril analysis technologies using the denoised AFM images, leading to quicker, more precise, and more objective assessments of fibril morphology. Furthermore, we presented a method for fibril stiffness extraction from a modulus image through mask creation based on a denoised height image. Our approach secures time efficiency and precision in analyzing amyloid morphology, and we believe it will significantly advance the currently stagnant research on amyloid-related diseases.
Collapse
Affiliation(s)
- Jaehee Park
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea
| | - Da Yeon Cheong
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Gyudo Lee
- Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea; Department of Biotechnology and Bioinformatics, Korea University, Sejong, 30019, Republic of Korea
| | - Cheol E Han
- Department of Electronics and Information Engineering, Korea University, Sejong, 30019, Republic of Korea; Interdisciplinary Graduate Program for Artificial Intelligence Smart Convergence Technology, Korea University, Sejong, 30019, Republic of Korea.
| |
Collapse
|
2
|
González Díaz A, Cataldi R, Mannini B, Vendruscolo M. Preparation and Characterization of Zn(II)-Stabilized Aβ 42 Oligomers. ACS Chem Neurosci 2024; 15:2586-2599. [PMID: 38979921 PMCID: PMC11258685 DOI: 10.1021/acschemneuro.4c00084] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/06/2024] [Revised: 06/11/2024] [Accepted: 06/12/2024] [Indexed: 07/10/2024] Open
Abstract
Aβ oligomers are being investigated as cytotoxic agents in Alzheimer's disease (AD). Because of their transient nature and conformational heterogeneity, the relationship between the structure and activity of these oligomers is still poorly understood. Hence, methods for stabilizing Aβ oligomeric species relevant to AD are needed to uncover the structural determinants of their cytotoxicity. Here, we build on the observation that metal ions and metabolites have been shown to interact with Aβ, influencing its aggregation and stabilizing its oligomeric species. We thus developed a method that uses zinc ions, Zn(II), to stabilize oligomers produced by the 42-residue form of Aβ (Aβ42), which is dysregulated in AD. These Aβ42-Zn(II) oligomers are small in size, spanning the 10-30 nm range, stable at physiological temperature, and with a broad toxic profile in human neuroblastoma cells. These oligomers offer a tool to study the mechanisms of toxicity of Aβ oligomers in cellular and animal AD models.
Collapse
Affiliation(s)
- Alicia González Díaz
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Rodrigo Cataldi
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| | - Benedetta Mannini
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
- Department
of Experimental and Clinical Biomedical Sciences Mario Serio, University
of Florence, 50134 Florence, Italy
| | - Michele Vendruscolo
- Centre
for Misfolding Diseases, Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, United Kingdom
| |
Collapse
|
3
|
Miller A, Chia S, Klimont E, Knowles TPJ, Vendruscolo M, Ruggeri FS. Maturation-dependent changes in the size, structure and seeding capacity of Aβ42 amyloid fibrils. Commun Biol 2024; 7:153. [PMID: 38321144 PMCID: PMC10847148 DOI: 10.1038/s42003-024-05858-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Accepted: 01/26/2024] [Indexed: 02/08/2024] Open
Abstract
Many proteins self-assemble to form amyloid fibrils, which are highly organized structures stabilized by a characteristic cross-β network of hydrogen bonds. This process underlies a variety of human diseases and can be exploited to develop versatile functional biomaterials. Thus, protein self-assembly has been widely studied to shed light on the properties of fibrils and their intermediates. A still open question in the field concerns the microscopic processes that underlie the long-time behaviour and properties of amyloid fibrillar assemblies. Here, we use atomic force microscopy with angstrom-sensitivity to observe that amyloid fibrils undergo a maturation process, associated with an increase in both fibril length and thickness, leading to a decrease of their density, and to a change in their cross-β sheet content. These changes affect the ability of the fibrils to catalyse the formation of new aggregates. The identification of these changes helps us understand the fibril maturation processes, facilitate the targeting of amyloid fibrils in drug discovery, and offer insight into the development of biocompatible and sustainable protein-based materials.
Collapse
Affiliation(s)
- Alyssa Miller
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Sean Chia
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Ewa Klimont
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK
| | - Tuomas P J Knowles
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
- Cavendish Laboratory, University of Cambridge, Cambridge, CB3 0HE, UK.
| | - Michele Vendruscolo
- Yusuf Hamied Department of Chemistry, University of Cambridge, Lensfield Road, Cambridge, CB2 1EW, UK.
| | - Francesco Simone Ruggeri
- Laboratory of Organic Chemistry, Wageningen University & Research, Stippeneng 4, Wageningen, 6703 WE, the Netherlands.
- Physical Chemistry and Soft Matter, Wageningen University & Research, Wageningen University, Stippeneng 4, Wageningen, 6703 WE, the Netherlands.
| |
Collapse
|
4
|
Ferreira MML, de Souza SEG, da Silva CC, Souza LEA, Bicev RN, da Silva ER, Nakaie CR. Pyroglutamination-Induced Changes in the Physicochemical Features of a CXCR4 Chemokine Peptide: Kinetic and Structural Analysis. Biochemistry 2023; 62:2530-2540. [PMID: 37540799 DOI: 10.1021/acs.biochem.3c00124] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/06/2023]
Abstract
We investigate the physicochemical effects of pyroglutamination on the QHALTSV-NH2 peptide, a segment of cytosolic helix 8 of the human C-X-C chemokine G-protein-coupled receptor type 4 (CXCR4). This modification, resulting from the spontaneous conversion of glutamine to pyroglutamic acid, has significant impacts on the physicochemical features of peptides. Using a static approach, we compared the transformation in different conditions and experimentally found that the rate of product formation increases with temperature, underscoring the need for caution during laboratory experiments to prevent glutamine cyclization. Circular dichroism experiments revealed that the QHALTSV-NH2 segment plays a minor role in the structuration of H8 CXCR4; however, its pyroglutaminated analogue interacts differently with its chemical environment, showing increased susceptibility to solvent variations compared to the native form. The pyroglutaminated analogue exhibits altered behavior when interacting with lipid models, suggesting a significant impact on its interaction with cell membranes. A unique combination of atomic force microscopy and infrared nanospectroscopy revealed that pyroglutamination affects supramolecular self-assembly, leading to highly packed molecular arrangements and a crystalline structure. Moreover, the presence of pyroglumatic acid has been found to favor the formation of amyloidogenic aggregates. Our findings emphasize the importance of considering pyroglutamination in peptide synthesis and proteomics and its potential significance in amyloidosis.
Collapse
Affiliation(s)
- Mariana M L Ferreira
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Sinval E G de Souza
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Caroline C da Silva
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Louise E A Souza
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Renata N Bicev
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Emerson R da Silva
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| | - Clovis R Nakaie
- Departamento de Biofísica─Escola Paulista de Medicina, Universidade Federal de São Paulo─São Paulo, São Paulo 04023-062, Brazil
| |
Collapse
|