1
|
Wang S, Yang D, Zhang P, Guo Y, Liu X, Zhao M, Zhu J, Li P, Li X, Fan J, Zhi C. Liquid metal anode enables zinc-based flow batteries with ultrahigh areal capacity and ultralong duration. SCIENCE ADVANCES 2025; 11:eads3919. [PMID: 40315325 PMCID: PMC12047446 DOI: 10.1126/sciadv.ads3919] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/11/2024] [Accepted: 03/28/2025] [Indexed: 05/04/2025]
Abstract
Zinc-based flow batteries (Zn-FBs) are promising candidates for large-scale energy storage because of their intrinsic safety and high energy density. Unlike that conventional flow batteries operate on the basis of liquid-liquid conversions, the Zn anode in Zn-FBs adopts a solid-liquid conversion reaction, presenting challenges such as dendrite formation, poor reversibility, and low areal capacity, limiting its long-duration energy storage (LDES) applications. Here, we developed a liquid metal (LM) electrode that evolves the deposition/dissolution reaction of Zn into an alloying/dealloying process within the LM, thereby achieving extraordinary areal capacity and dendrite-free Zn-FBs with outstanding cycling stability. Both Zn-I2 and Zn-Br2 flow batteries using LM electrodes exhibited an ultrahigh areal capacity of 640 milliampere-hours per square centimeter, corresponding to an ultralong discharge duration of ~16 hours, thus exceeding the LDES standard defined by the US Department of Energy. This study breaks the solid-liquid working mode of the Zn anode, offering an effective solution for LDES applications with Zn-FBs.
Collapse
Affiliation(s)
- Shengnan Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Deshuai Yang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pu Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Yihui Guo
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Xingjun Liu
- School of Materials Science and Engineering, Harbin Institute of Technology, Shenzhen 518055, China
| | - Ming Zhao
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Pei Li
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, China
| | - Jun Fan
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, China
| |
Collapse
|
2
|
Alghamdi NS, Rakov D, Peng X, Lee J, Huang Y, Yang X, Zhang S, Gentle IR, Wang L, Luo B. Tailoring Zn-ion Solvation Structures for Enhanced Durability and Efficiency in Zinc-Bromine Flow Batteries. Angew Chem Int Ed Engl 2025:e202502739. [PMID: 40309920 DOI: 10.1002/anie.202502739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/02/2025] [Revised: 04/19/2025] [Accepted: 04/28/2025] [Indexed: 05/02/2025]
Abstract
Aqueous zinc-bromine flow batteries (ZBFBs) are among the most appealing technologies for large-scale stationary energy storage due to their scalability, cost-effectiveness, safety and sustainability. However, their long-term durability is challenged by issues like the hydrogen evolution reaction (HER) and dendritic zinc electroplating. Herein, we address these challenges by reshaping the Zn2+ ion solvation structures in zinc bromide (ZnBr2) aqueous electrolytes using a robust hydrogen bond acceptor as a cosolvent additive. Our findings highlight the critical role of interactions within the first and second Zn2+ solvation shells in determining electrochemical performance. By selectively incorporating a low volume percentage of organic additive into the second coordination shell of Zn2+, we achieve effective proton capture, electrolyte pH stabilization during the Zn0 electroplating, and mitigation of ion transport resistance. This approach prevents the formation of a passivation interphase layer on the electrode surface, which typically occurs with higher additive concentrations, leading to increased interphase resistance and cell polarization. This work opens a new avenue in modulating Zn2+ reactivity and stability through precise solvation structure design, enabling efficient and reversible Zn0/2+ plating/stripping in aqueous electrolytes with suppressed H2 evolution. These findings pave the way for the development of commercially viable, high-performance ZBFBs for energy storage applications.
Collapse
Affiliation(s)
- Norah S Alghamdi
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
- Department of Chemistry, Faculty of Science, Imam Mohammad Ibn Saud Islamic University (IMSIU), Riyadh, 11564, Saudi Arabia
| | - Dmitrii Rakov
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Adelaide, Adelaide, SA, 5005, Australia
| | - Xiyue Peng
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Jaeho Lee
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Yongxin Huang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Xingchen Yang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Shuangbin Zhang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Ian R Gentle
- School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Lianzhou Wang
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
- School of Chemical Engineering, The University of Queensland, Brisbane, QLD, 4072, Australia
| | - Bin Luo
- Australian Institute for Bioengineering and Nanotechnology, The University of Queensland, Brisbane, QLD, 4072, Australia
| |
Collapse
|
3
|
Liu H, Yang L, Shen T, Li C, Kang T, Niu H, Huang WH, Chang CC, Yang M, Cao G, Liu C. Distorting Local Structures to Modulate Ligand Fields in Vanadium Oxide for High-Performance Aqueous Zinc-Ion Batteries. ACS NANO 2025; 19:9132-9143. [PMID: 40019195 DOI: 10.1021/acsnano.4c18250] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 03/01/2025]
Abstract
Layered hydrate vanadates are promising cathode materials for aqueous zinc-ion batteries (AZIBs). Various intercalants have been preinserted into the interplanar space of hydrate vanadates with significantly enhanced kinetics and stabilized structures. However, such an enhancement is induced by various intercalants, and the relationship between the property enhancement and the type of intercalant still needs to be revealed. In this work, the distortion of octahedra induced by the preintercalation of benzyltrimethylammonium (BTA+) cations into hydrate vanadium pentoxide (V2O5·nH2O, VOH) and the change in ligand field are studied using synchrotron X-ray pair distribution function (PDF) and X-ray absorption fine structure (XAFS). Variations in the local coordination of vanadium alter the ligand field, decreasing the energy of the lowest unoccupied orbitals (e*), which leads to an increased electrochemical potential. Additionally, the introduced BTA+ facilitates fast ion diffusion and stabilizes the layer structure. A cathode with a distorted local structure delivers a specific capacity of 408 mAh/g at 0.5 A/g, with a capacity retention of 95% after 3000 cycles at 8 A/g.
Collapse
Affiliation(s)
- Heng Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Long Yang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Ting Shen
- Department of Materials Science and Engineering, Clemson University, Clemson, South Carolina 29634, United States
| | - Changyuan Li
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Te Kang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Huanhuan Niu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Wei-Hsiang Huang
- National Synchrotron Radiation Research Center (NSRRC), Hsinchu 300092, Taiwan
| | - Chun-Chi Chang
- Graduate Institute of Applied Science and Technology, National Taiwan University of Science and Technology, Taipei 10607, Taiwan
| | - Menghao Yang
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| | - Guozhong Cao
- Department of Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States
| | - Chaofeng Liu
- Interdisciplinary Materials Research Center, School of Materials Science and Engineering, Tongji University, Shanghai 201804, China
| |
Collapse
|
4
|
Guo X, Zhang S, Hong H, Wang S, Zhu J, Zhi C. Interface regulation and electrolyte design strategies for zinc anodes in high-performance zinc metal batteries. iScience 2025; 28:111751. [PMID: 39906556 PMCID: PMC11791299 DOI: 10.1016/j.isci.2025.111751] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 02/06/2025] Open
Abstract
Rechargeable zinc metal batteries (ZMBs) represent a promising solution for large-scale energy storage due to their safety, cost-effectiveness, and high theoretical capacity. However, the development of zinc metal anodes is hindered by challenges such as dendrite formation, hydrogen evolution reaction (HER), and low Coulombic efficiency stemming from undesirable interfacial processes in aqueous electrolytes. This review explores various strategies to enhance zinc anode performance, focusing on artificial SEI, morphology adjustments, electrolyte regulation, and flowing electrolyte. These approaches aim to suppress dendrite growth, mitigate side reactions, and optimize the electric double layer (EDL) and Zn2+ solvation structures. By addressing these interfacial challenges, the insights presented here pave the way for designing high-performance ZMBs, offering directions for future research into scalable and sustainable battery technologies.
Collapse
Affiliation(s)
- Xun Guo
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Shixun Wang
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Jiaxiong Zhu
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, 83 Tat Chee Avenue, Kowloon, Hong Kong 999077, P.R. China
- Center for Advanced Nuclear Safety and Sustainable Development, City University of Hong Kong, Kowloon, Hong Kong 999077, P.R. China
| |
Collapse
|
5
|
Wei Z, Qu G, Huang Z, Wang Y, Li D, Yang X, Zhang S, Chen A, Wang Y, Hong H, Li Q, Zhi C. Gradient Distribution of Zincophilic Sites for Stable Aqueous Zinc-Based Flow Batteries with High Capacity. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2414388. [PMID: 39543439 DOI: 10.1002/adma.202414388] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/23/2024] [Revised: 10/31/2024] [Indexed: 11/17/2024]
Abstract
Current collectors, as reaction sites, play a crucial role in influencing various electrochemical performances in emerging cost-effective zinc-based flow batteries (Zn-based FBs). 3D carbon felts (CF) are commonly used but lack effectiveness in improving Zn metal plating/stripping. Here, a current collector with gravity-induced gradient copper nanoparticles (CF-G-Cu NPs) is developed, integrating gradient conductivity and zincophilicity to regulate Zn deposition and suppress side reactions. The CF-G-Cu NPs electrode modulates Zn nucleation and growth via the zincophilic Cu/CuZn5 alloy has been confirmed by density functional theory (DFT) calculations. Finite element simulation demonstrates the gradient internal structure effectively optimizes the local electric/current field distribution to regulate the Zn2+ flux, improving bottom-up plating behavior for Zn metal and mitigating top-surface dendrite growth. As a result, Zn-based asymmetrical FBs with CF-G-Cu NPs electrodes achieve an areal capacity of 30 mAh cm-2 over 640 h with Coulombic efficiency of 99.5% at 40 mA cm-2. The integrated Zn-Iodide FBs exhibit a competitive long-term lifespan of 2910 h (5800 cycles) with low energy efficiency decay of 0.062% per cycle and high cumulative capacity of 112800 mAh cm-2 at a high current density of 100 mA cm-2. This gradient distribution strategy offers a simple mode for developing Zn-based FB systems.
Collapse
Affiliation(s)
- Zhiquan Wei
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Guangmeng Qu
- School of Chemistry and Chemical Engineering, Shandong University, Jinan, 250100, China
| | - Zhaodong Huang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
| | - Yiqiao Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Dedi Li
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Xinru Yang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Shaoce Zhang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Ao Chen
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Yanbo Wang
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Hu Hong
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
| | - Qing Li
- Institute of Applied Physics and Materials Engineering, University of Macau, Macau, SAR, 999078, China
| | - Chunyi Zhi
- Department of Materials Science and Engineering, City University of Hong Kong, Hong Kong, 999077, China
- Hong Kong Center for Cerebro-Cardiovascular Health Engineering (COCHE), Hong Kong, 999077, China
| |
Collapse
|
6
|
Wu J, Nie R, Yu L, Nie Y, Zhao Y, Liu L, Xi J. Next-Generation Ultrathin Lightweight Electrode for pH-Universal Aqueous Flow Batteries. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2405643. [PMID: 39308314 DOI: 10.1002/smll.202405643] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/07/2024] [Revised: 09/10/2024] [Indexed: 12/06/2024]
Abstract
Aqueous flow batteries (AFBs) are promising long-duration energy storage system owing to intrinsic safety, inherent scalability, and ultralong cycle life. However, due to the thicker (3-5 mm) and heavier (300-600 g m-2) nature, the current used graphite felt (GF) electrodes still limit the volume/weight power density of AFBs. Herein, a lightweight (≈50 g m-2) and ultrathin (≈0.3 mm) carbon microtube electrode (CME) is proposed derived from a scalable one-step carbonization of commercial cotton cloth. The unique loose woven structure composed of carbon microtube endows CME with excellent conductivity, abundant active sites, and enhanced electrolyte transport performance, thereby significantly reducing polarization in working AFBs. As a consequence, CME demonstrates excellent cycling performance in pH-universal AFBs, including acidic vanadium flow battery (maximum power density of 632.2 mW cm-2), neutral Zn-I2 flow battery (750 cycles with average Coulombic efficiency of 99.6%), and alkaline Zn-Fe flow battery (energy efficiency over 70% at 200 mA cm-2). More importantly, the estimated price of CME is only 5% of GF (≈3 vs ≈60 $ m-2). Therefore, it is reasonably anticipated that the lightweight and ultrathin CME may emerge as the next generation electrode for AFBs.
Collapse
Affiliation(s)
- Jiajun Wu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Rui Nie
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Lihong Yu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, China
| | - Yizhe Nie
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Yang Zhao
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Le Liu
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| | - Jingyu Xi
- Institute of Materials Research, Tsinghua Shenzhen International Graduate School, Tsinghua University, Shenzhen, 518055, China
| |
Collapse
|
7
|
Liu X, Jin S, Shao Y, Kuperman S, Pratt A, Zhang D, Lo J, Joo YL, Gat AD, Archer LA, Shepherd RF. The multifunctional use of an aqueous battery for a high capacity jellyfish robot. SCIENCE ADVANCES 2024; 10:eadq7430. [PMID: 39602530 PMCID: PMC11601206 DOI: 10.1126/sciadv.adq7430] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/29/2024] [Accepted: 10/24/2024] [Indexed: 11/29/2024]
Abstract
The batteries that power untethered underwater vehicles (UUVs) serve a single purpose: to provide energy to electronics and motors; the more energy required, the bigger the robot must be to accommodate space for more energy storage. By choosing batteries composed primarily of liquid media [e.g., redox flow batteries (RFBs)], the increased weight can be better distributed for improved capacity with reduced inertial moment. Here, we formed an RFB into the shape of a jellyfish, using two redox chemistries and architectures: (i) a secondary ZnBr2 battery and (ii) a hybrid primary/secondary ZnI2 battery. A UUV was able to be powered solely by RFBs with increased volumetric (Q ~ 11 ampere-hours per liter) and areal (108 milliampere-hours per square centimeter) energy density, resulting in a long operational lifetime (T ~ 1.5 hours) for UUVs composed of primarily electrochemically energy-dense liquid (~90% of the robot's weight).
Collapse
Affiliation(s)
- Xu Liu
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Shuo Jin
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yiqi Shao
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Sofia Kuperman
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Autumn Pratt
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Duhan Zhang
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Jacqueline Lo
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Yong Lak Joo
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Amir D. Gat
- Faculty of Mechanical Engineering, Technion-Israel Institute of Technology, Haifa 3200003, Israel
| | - Lynden A. Archer
- Robert Frederick Smith School of Chemical and Biomolecular Engineering, Cornell University, Ithaca, NY 14853, USA
| | - Robert F. Shepherd
- Sibley School of Mechanical and Aerospace Engineering, Cornell University, Ithaca, NY 14853, USA
| |
Collapse
|
8
|
Zhao Y, Wang X, Jia C, Ding M. Regulating the solvation structure of Zn 2+ via glycine enables a long-cycling neutral zinc-ferricyanide flow battery. J Colloid Interface Sci 2024; 673:496-503. [PMID: 38879991 DOI: 10.1016/j.jcis.2024.06.078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/08/2024] [Revised: 05/24/2024] [Accepted: 06/08/2024] [Indexed: 06/18/2024]
Abstract
Zinc-based flow batteries hold potential promise for extensive energy storage on a large scale owing to their high energy density and low cost. However, their widespread implementation is impeded by challenges associated with zinc (Zn) dendrites and side reactions like the hydrogen evolution reaction on the anode. Theoretical calculations have confirmed that glycine (Gly) has the ability to coordinate with Zn2+, displacing H2O molecules in the solvation shell, thereby restoring the solvation structure of Zn2+ and promoting the release of reactive Zn2+ during plating/stripping processes. As a result, the incorporation of Gly into the anolyte of a neutral zinc-ferricyanide (Zn/Fe) flow battery (ZIFB) effectively inhibits the formation of Zn dendrites and impedes side reactions, leading to highly reversible and stable Zn plating/stripping reactions. A Zn||Zn symmetric flow battery utilizing Gly in the anolyte demonstrated extended cycling durability, lasting over 550 h at a current density of 30 mA cm-2, in contrast to the failure of a Gly-free anolyte system after 150 h. Notably, this approach facilitates a neutral ZIFB achieving an impressive energy efficiency exceeding 70 %, even at a high current density of 70 mA cm-2, with a cycle lifespan exceeding 800 h (33 days) at a current density of 30 mA cm-2. Conversely, the neutral ZIFB lacking Gly showed a significantly shorter cycle life of only 260 h under identical operational conditions (30 mA cm-2). Due to the economic benefits of Gly and the proposed user-friendly route, this strategy demonstrates great potential for promoting the widespread adoption of zinc-based flow batteries with improved performance for practical use.
Collapse
Affiliation(s)
- Yi Zhao
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Xinan Wang
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Chuankun Jia
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China
| | - Mei Ding
- College of Materials Science and Engineering, Changsha University of Science & Technology, Changsha 410114, China; Institute of Energy Storage Technology, College of Energy and Power Engineering, Changsha University of Science & Technology, Changsha 410114, China.
| |
Collapse
|
9
|
Bavdane PP, Madiyan P, Bora DK, Nikumbe DY, Nagarale RK. Resilient and Reversible Phosphotungstic Acid Passivated Zinc Anode. LANGMUIR : THE ACS JOURNAL OF SURFACES AND COLLOIDS 2024; 40:17500-17509. [PMID: 39102286 DOI: 10.1021/acs.langmuir.4c01674] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/06/2024]
Abstract
Aqueous zinc ion batteries (ZIBs) present a compelling solution for grid-scale energy storage, which is crucial for integrating renewable energy resources into the electric infrastructure. The cycling stability of ZIBs hinges on the electrochemical reversibility of the zinc anode, which is often compromised by corrosion and dendritic zinc deposition. Here, we present a straightforward surface passivation strategy that significantly enhances the cycling stability of zinc anodes. By immersing zinc in a solution of phosphotungstic acid, we promoted the dominance of the 002 plane of zinc's hexagonal structure. This process facilitates the creation of a uniform nucleation and protective layer on the native zinc surface, resulting in a more uniform plating-stripping process and increased corrosion resistance. In symmetric cells, the passivated zinc exhibits a capacity retention of 68.7% after 1000 cycles at a current density of 1.0 Ag1-, whereas untreated zinc anodes retain only 7.4% of capacity under identical conditions. In full cell zinc iodine batteries employing the passivated zinc anode, over 1000 stable charge-discharge cycles were achieved at a current density of 20 mA cm-2, with approximately 96% Coulombic efficiency (CE), 86% voltage efficiency (VE), and 82% energy efficiency (EE). This study demonstrates a promising pathway for the construction and upscaling of flow batteries with high capacity and low cost.
Collapse
Affiliation(s)
- Priyanka P Bavdane
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Pooja Madiyan
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
| | - Dimple K Bora
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Devendra Y Nikumbe
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rajaram K Nagarale
- Membrane Science and Separation Technology Division, CSIR-Central Salt and Marine Chemicals Research Institute, Bhavnagar 364002, Gujarat, India
- Academy of Scientific and Innovative Research (AcSIR), Ghaziabad 201002, India
| |
Collapse
|
10
|
He Z, Wang G, Yu R, Jiang Y, Huang M, Xiong F, Tan S, De Volder MFL, An Q, Mai L. Enhancing Proton Co-Intercalation in Iron Ion Batteries Cathodes for Increased Capacity. ACS NANO 2024; 18:17304-17313. [PMID: 38904507 DOI: 10.1021/acsnano.4c05561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/22/2024]
Abstract
Recently, aqueous iron ion batteries (AIIBs) using iron metal anodes have gained traction in the battery community as low-cost and sustainable solutions for green energy storage. However, the development of AIIBs is significantly hindered by the limited capacity of existing cathode materials and the poor intercalation kinetic of Fe2+. Herein, we propose a H+ and Fe2+ co-intercalation electrochemistry in AIIBs to boost the capacity and rate capability of cathode materials such as iron hexacyanoferrate (FeHCF) and Na4Fe3(PO4)2(P2O7) (NFPP). This is achieved through an electrochemical activation step during which a FeOOH nanowire layer is formed in situ on the cathode. This layer facilitates H+ co-intercalation in AIIBs, resulting in a high specific capacity of 151 mAh g-1 and 93% capacity retention over 500 cycles for activated FeHCF cathodes. We found that this activation process can also be applied to other cathode chemistries, such as NFPP, where we found that the cathode capacity is doubled as a result of this process. Overall, the proposed H+/Fe2+ co-insertion electrochemistry expands the range of applications for AIBBs, in particular as a sustainable solution for storing renewable energy.
Collapse
Affiliation(s)
- Ze He
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Gao Wang
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Ruohan Yu
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
| | - Yalong Jiang
- State Key Laboratory of New Textile Materials and Advanced Processing Technologies, Wuhan Textile University, Wuhan 430200, China
| | - Meng Huang
- Sanya Science and Education Innovation Park of Wuhan University of Technology, Sanya 572000, China
| | - Fangyu Xiong
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Shuangshuang Tan
- College of Materials Science and Engineering, Chongqing University, Chongqing 400030, China
| | - Michael F L De Volder
- Institute for Manufacturing, Department of Engineering, University of Cambridge, Cambridge CB3 0FS, U.K
| | - Qinyou An
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang Demonstration Zone, Wuhan University of Technology, Xiangyang 441000, Hubei, China
| | - Liqiang Mai
- Key Laboratory of Advanced Technology for Materials Synthesis and Processing, Wuhan University of Technology, Wuhan 430070, China
- Hubei Longzhong Laboratory, Xiangyang Demonstration Zone, Wuhan University of Technology, Xiangyang 441000, Hubei, China
| |
Collapse
|
11
|
Ye X, Xiong N, Huang S, Wu Q, Chen H, Zhou X. Tin Hybrid Flow Batteries with Ultrahigh Areal Capacities Enabled by Double Gradients. SMALL METHODS 2024; 8:e2301233. [PMID: 38196072 DOI: 10.1002/smtd.202301233] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Revised: 12/20/2023] [Indexed: 01/11/2024]
Abstract
Tin-based hybrid flow batteries have demonstrated dendrite-free morphology and superior performance in terms of cycle life and energy density. However, the quick accumulation of electrodeposits near the electrode/membrane interface blocks the ion transport pathway during the charging of the battery, resulting to a very limited areal capacity (especially at high current density) that significantly hinders its deployment in long-duration storage applications. Herein, a conductivity-activity dual-gradient design is disclosed by electrically passivating the carbon felt near the membrane/electrode interface and chemically activating the carbon felt near the electrode/current collector interface. In consequence, the tin metals are preferentially plated at the region near electrode/current collector, preventing the ion transport pathway from being easily blocked. The resultant gradient electrode demonstrated an unprecedentedly high areal capacity of 268 mAh cm-2 at a current density of as high as 80 mA cm-2. Numerical modeling and experimental characterizations show that the dual-gradient electrode differs from conventional electrodes with regard to their reaction current density distribution and electrodeposit distribution during charging. This work demonstrates a new design strategy of 3D electrodes for hybrid flow batteries to induce a desirable distribution of electrodeposits and achieve a high areal capacity at commercially relevant current densities.
Collapse
Affiliation(s)
- Xiaolin Ye
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Ningxin Xiong
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Shaopei Huang
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Qixing Wu
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Hongning Chen
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| | - Xuelong Zhou
- Shenzhen Key Laboratory of New Lithium-ion Batteries and Mesoporous Materials, College of Chemistry and Environmental Engineering, Shenzhen University, Shenzhen, 518061, P. R. China
| |
Collapse
|
12
|
Zhang Q, Zhi P, Zhang J, Duan S, Yao X, Liu S, Sun Z, Jun SC, Zhao N, Dai L, Wang L, Wu X, He Z, Zhang Q. Engineering Covalent Organic Frameworks Toward Advanced Zinc-Based Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2313152. [PMID: 38491731 DOI: 10.1002/adma.202313152] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/05/2023] [Revised: 02/25/2024] [Indexed: 03/18/2024]
Abstract
Zinc-based batteries (ZBBs) have demonstrated considerable potential among secondary batteries, attributing to their advantages including good safety, environmental friendliness, and high energy density. However, ZBBs still suffer from issues such as the formation of zinc dendrites, occurrence of side reactions, retardation of reaction kinetics, and shuttle effects, posing a great challenge for practical applications. As promising porous materials, covalent organic frameworks (COFs) and their derivatives have rigid skeletons, ordered structures, and permanent porosity, which endow them with great potential for application in ZBBs. This review, therefore, provides a systematic overview detailing on COFs structure pertaining to electrochemical performance of ZBBs, following an in depth discussion of the challenges faced by ZBBs, which includes dendrites and side reactions at the anode, as well as dissolution, structural change, slow kinetics, and shuttle effect at the cathode. Then, the structural advantages of COF-correlated materials and their roles in various ZBBs are highlighted. Finally, the challenges of COF-correlated materials in ZBBs are outlined and an outlook on the future development of COF-correlated materials for ZBBs is provided. The review would serve as a valuable reference for further research into the utilization of COF-correlated materials in ZBBs.
Collapse
Affiliation(s)
- Qingqing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Peng Zhi
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Jing Zhang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Siying Duan
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xinyue Yao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Shude Liu
- College of Textiles, Donghua University, Shanghai, 201620, China
| | - Zhefei Sun
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| | - Seong Chan Jun
- School of Mechanical Engineering, Yonsei University, Seoul, 120-749, South Korea
| | - Ningning Zhao
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Lei Dai
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Ling Wang
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Xianwen Wu
- School of Chemistry and Chemical Engineering, Jishou University, Jishou, 416000, China
| | - Zhangxing He
- School of Chemical Engineering, North China University of Science and Technology, Tangshan, 063009, China
| | - Qiaobao Zhang
- State Key Laboratory of Physical Chemistry of Solid Surfaces, College of Materials, Xiamen University, Xiamen, Fujian, 361005, China
| |
Collapse
|
13
|
Liu Y, Lu C, Yang Y, Chen W, Ye F, Dong H, Wu Y, Ma R, Hu L. Multiple Cations Nanoconfinement in Ultrathin V 2O 5 Nanosheets Enables Ultrafast Ion Diffusion Kinetics Toward High-performance Zinc Ion Battery. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2312982. [PMID: 38287732 DOI: 10.1002/adma.202312982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Indexed: 01/31/2024]
Abstract
Nanoconfinement of cations in layered oxide cathode is an important approach to realize advanced zinc ion storage performance. However, thus far, the conventional hydrothermal/solvothermal route for this nanoconfinement has been restricted to its uncontrollable phase structure and the difficulty on the multiple cation co-confinement simultaneously. Herein, this work reports a general, supramolecular self-assembly of ultrathin V2O5 nanosheets using various unitary cations including Na+, K+, Mg2+, Ca2+, Zn2+, Al3+, NH4 +, and multiple cations (NH4 + + Na+, NH4 + + Na+ + Ca2+, NH4 + + Na+ + Ca2+ +Mg2+). The unitary cation confinement results in a remarkable increase in the specific capacity and Zn-ion diffusion kinetics, and the multiple cation confinement gives rise to superior structural and cycling stability by multiple cation synergetic pillaring effect. The optimized diffusion coefficient of Zn-ion (7.5 × 10-8 cm2 s-1) in this assembly series surpasses most of the V-based cathodes reported up to date. The work develops a novel multiple-cations nanoconfinement strategy toward high-performance cathode for aqueous battery. It also provides new insights into the guest cation regulation of zinc-ion diffusion kinetics through a general, supramolecular assembly pathway.
Collapse
Affiliation(s)
- Yang Liu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Chengjie Lu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Yunting Yang
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Wenshu Chen
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Fei Ye
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| | - Hongliang Dong
- Center for High Pressure Science and Technology Advanced Research, Shanghai, 201203, P. R. China
| | - Yuping Wu
- School of Energy and Environment, Southeast University, Nanjing, 211189, P. R. China
| | - Renzhi Ma
- Research Center for Materials Nanoarchitectonics, National Institute for Materials Science (NIMS), Namiki 1-1, Tsukuba, Ibaraki, 305-0044, Japan
| | - Linfeng Hu
- School of Materials Science and Engineering, Southeast University, Nanjing, 211189, P. R. China
| |
Collapse
|
14
|
Liu C, Dong W, Zhou H, Li J, Du H, Ji X, Cheng S. Achievement of Efficient and Stable Nonflow Zinc-Bromine Batteries Assisted by Rational Decoration upon the Two Electrodes. ACS APPLIED MATERIALS & INTERFACES 2024. [PMID: 38684068 DOI: 10.1021/acsami.4c01815] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/02/2024]
Abstract
Aqueous zinc-bromine batteries (ZBBs) are highly promising because of the advantages of safety and cost. Compared with flow ZBBs, static ones without the assistance of pumping and tank components possess decreased cost and increased energy density and efficiency. Yet, the issues of Zn dendrites and shuttle effect of polybromide ions (Brn-) are more serious in nonflow ZBBs. Meanwhile, the hydrogen evolution reaction (HER) and the sluggish kinetics of the Br2/Br- couple are also in-negligible. Herein, a compressive approach, the cation-exchange membrane (CEM) coating on Zn anodes and N-defect decoration toward carbon felt cathodes, is developed. The CEM with cation-only function can inhibit the formation of Zn dendrites via tuning the Zn2+ flow at the interface, block the noncationic substances, and hence prevent the shuttle of Br2/Brn- and the water decomposition-concerned HER. The optimized nonflow ZBBs can deliver high Coulombic, voltage, and energy efficiencies of 94.1, 92.8, and 87.4%, respectively, which can be well remained in 1000 cycles. Meanwhile, the output voltage is as high as 1.7 V at 10 mA cm-2 with a high areal capacity of 2 mA h cm-2, and a LED with a rated voltage of 1.6 V can be powered successfully, exhibiting high application value.
Collapse
Affiliation(s)
- Chenxu Liu
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Wenju Dong
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Huanzhu Zhou
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Juan Li
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Heliang Du
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| | - Xu Ji
- College of Automation, Zhongkai University of Agriculture and Engineering, Guangzhou 510225, China
| | - Shuang Cheng
- School of Environment and Energy, South China University of Technology, Guangzhou 510006, China
| |
Collapse
|
15
|
She L, Cheng H, Yuan Z, Shen Z, Wu Q, Zhong W, Zhang S, Zhang B, Liu C, Zhang M, Pan H, Lu Y. Rechargeable Aqueous Zinc-Halogen Batteries: Fundamental Mechanisms, Research Issues, and Future Perspectives. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2305061. [PMID: 37939285 PMCID: PMC10953720 DOI: 10.1002/advs.202305061] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/24/2023] [Revised: 09/13/2023] [Indexed: 11/10/2023]
Abstract
Aqueous zinc-halogen batteries (AZHBs) have emerged as promising candidates for energy storage applications due to their high security features and low cost. However, several challenges including natural subliming, sluggish reaction kinetics, and shuttle effect of halogens, as well as dendrite growth of the zinc (Zn) anode, have hindered their large-scale commercialization. In this review, first the fundamental mechanisms and scientific issues associated with AZHBs are summarized. Then the research issues and progresses related to the cathode, separator, anode, and electrolyte are discussed. Additionally, emerging research opportunities in this field is explored. Finally, ideas and prospects for the future development of AZHBs are presented. The objective of this review is to stimulate further exploration, foster the advancement of AZHBs, and contribute to the diversified development of electrochemical energy storage.
Collapse
Affiliation(s)
- Liaona She
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
| | - Hao Cheng
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| | - Ziyan Yuan
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| | - Zeyu Shen
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Qian Wu
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Wei Zhong
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| | - Shichao Zhang
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
| | - Bing Zhang
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
| | - Chengwu Liu
- Department of Chemical EngineeringShanghai Jiao Tong UniversityShanghai200240P. R. China
| | - Mingchang Zhang
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
| | - Hongge Pan
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
| | - Yingying Lu
- Institute of Science and Technology for New EnergyXi'an Technological UniversityXi'an710021P. R. China
- State Key Laboratory of Chemical EngineeringInstitute of Pharmaceutical EngineeringCollege of Chemical and Biological EngineeringZhejiang UniversityHangzhou310027China
- ZJU‐Hangzhou Global Scientific and Technological Innovation CenterZhejiang UniversityHangzhou311215China
- Institute of WenzhouZhejiang UniversityWenzhou325006China
| |
Collapse
|
16
|
Kong T, Li J, Wang W, Zhou X, Xie Y, Ma J, Li X, Wang Y. Enabling Long-Life Aqueous Organic Redox Flow Batteries with a Highly Stable, Low Redox Potential Phenazine Anolyte. ACS APPLIED MATERIALS & INTERFACES 2024; 16:752-760. [PMID: 38132704 DOI: 10.1021/acsami.3c15238] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
Aqueous organic redox flow batteries (AORFBs) are considered a promising energy storage technology due to the sustainability and designability of organic active molecules. Despite this, most of AORFBs suffer from limited stability and low voltage because of the chemical instability and high redox potential of organic molecules in anolyte. Herein, we propose a new phenazine derivative, 4,4'-(phenazine-2,3-diylbis(oxy))dibutyric acid (2,3-O-DBAP), as a water-soluble and chemically stable anodic active molecules. By combining calculations and experiments, we demonstrate that 2,3-O-DBAP exhibits a higher solubility, a lower redox potential (-0.699 V vs SHE), and greater chemical stability than other O-DBAP isomers. Then, we demonstrate a long-lasting flow cell with an average discharge voltage of 1.12 V, a low fade rate of 0.0127%, and a lifespan of 62 days at pH 14 using 2,3-O-DBAP paired with ferri/ferrocyanide. The negligible self-discharge behavior also verifies the high stability of 2,3-O-DBAP. These results highlight the importance of molecular engineering for AORFBs.
Collapse
Affiliation(s)
- Taoyi Kong
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Junjie Li
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Wei Wang
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xing Zhou
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Yihua Xie
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| | - Jing Ma
- Key Laboratory of Mesoscopic Chemistry of MOE, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing, Jiangsu 210023, China
| | - Xianfeng Li
- Division of Energy Storage, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, Dalian 116023, China
| | - Yonggang Wang
- Department of Chemistry and Shanghai Key Laboratory of Molecular Catalysis and Innovative Materials, Institute of New Energy, iChEM (Collaborative Innovation Center of Chemistry for Energy Materials), Fudan University, Shanghai 200433, China
| |
Collapse
|
17
|
Li Y, Li L, Zhao Y, Deng C, Yi Z, Xiao D, Mubarak N, Xu M, Li J, Luo G, Chen Q, Kim JK. Homogenizing Zn Deposition in Hierarchical Nanoporous Cu for a High-Current, High Areal-Capacity Zn Flow Battery. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2023; 19:e2303005. [PMID: 37269202 DOI: 10.1002/smll.202303005] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/11/2023] [Revised: 05/23/2023] [Indexed: 06/04/2023]
Abstract
A Zn anode can offset the low energy density of a flow battery for a balanced approach toward electricity storage. Yet, when targeting inexpensive, long-duration storage, the battery demands a thick Zn deposit in a porous framework, whose heterogeneity triggers frequent dendrite formation and jeopardizes the stability of the battery. Here, Cu foam is transferred into a hierarchical nanoporous electrode to homogenize the deposition. It begins with alloying the foam with Zn to form Cu5 Zn8 , whose depth is controlled to retain the large pores for a hydraulic permeability ≈10-11 m2 . Dealloying follows to create nanoscale pores and abundant fine pits below 10 nm, where Zn can nucleate preferentially due to the Gibbs-Thomson effect, as supported by a density functional theory simulation. Morphological evolution monitored by in situ microscopy confirms uniform Zn deposition. The electrode delivers 200 h of stable cycles in a Zn-I2 flow battery at 60 mAh cm-2 and 60 mA cm-2 , performance that meets practical demands.
Collapse
Affiliation(s)
- Yang Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Liangyu Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Yunhe Zhao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Canbin Deng
- Interdisciplinary Programs Office, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Zhibin Yi
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Diwen Xiao
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Nauman Mubarak
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Mengyang Xu
- Department of Chemical and Biological Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Jie Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Guangfu Luo
- Department of Materials Science and Engineering, Shenzhen Key Laboratory of Interfacial Science and Engineering of Materials, Southern University of Science and Technology, Shenzhen, Guangdong, 518055, P. R. China
| | - Qing Chen
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
- Department of Chemistry, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
| | - Jang-Kyo Kim
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Clear Water Bay, Hong Kong, P. R. China
- School of Mechanical and Manufacturing Engineering, University of New South Wales, Sydney, NSW, 2052, Australia
- Department of Mechanical Engineering, Khalifa University, Abu Dhabi, 127788, UAE
| |
Collapse
|
18
|
Zhang J, Huang W, Li L, Chang C, Yang K, Gao L, Pu X. Nonepitaxial Electrodeposition of (002)-Textured Zn Anode on Textureless Substrates for Dendrite-Free and Hydrogen Evolution-Suppressed Zn Batteries. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2023; 35:e2300073. [PMID: 36861496 DOI: 10.1002/adma.202300073] [Citation(s) in RCA: 72] [Impact Index Per Article: 36.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/03/2023] [Revised: 02/16/2023] [Indexed: 05/26/2023]
Abstract
Nontoxic and safe aqueous Zn batteries are largely restricted by the detrimental dendrite growth and hydrogen evolution of Zn metal anode. The (002)-textured Zn electrodeposition, demonstrated as an effective approach for solving these issues, is nevertheless achieved mainly by epitaxial or hetero-epitaxial deposition of Zn on pre-textured substrates. Herein, the electrodeposition of (002)-textured and compact Zn on textureless substrates (commercial Zn, Cu, and Ti foils) at a medium-high galvanostatic current density is reported. According to the systematic investigations on Zn nucleation and growth behaviors, this is ascribed to two reasons: i) the promoted nonepitaxial nucleation of fine horizontal (002) nuclei at increased overpotential and ii) the competitive growth advantages of (002)-orientated nuclei. The resulting freestanding (002)-textured Zn film exhibits significantly suppressed hydrogen evolution and prolonged Zn plating-stripping cycling life, achieving over 2100 mAh cm-2 cumulative capacity under a current density of 10 mA cm-2 and a high depth of discharge (DOD) of 45.5%. Therefore, this study provides both fundamental and practical insights into long-life Zn metal batteries.
Collapse
Affiliation(s)
- Jingmin Zhang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Weiwei Huang
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Longwei Li
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
| | - Caiyun Chang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Kai Yang
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| | - Lei Gao
- Beijing Advanced Innovation Center for Materials Genome Engineering, Institute for Advanced Materials and Technology, University of Science and Technology Beijing, Beijing, 100083, P. R. China
| | - Xiong Pu
- CAS Center for Excellence in Nanoscience, Beijing Key Laboratory of Micro-Nano Energy and Sensor, Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, P. R. China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, P. R. China
- Center on Nanoenergy Research, School of Chemistry and Chemical Engineering, School of Physical Science and Technology, Guangxi University, Nanning, 530004, P. R. China
| |
Collapse
|
19
|
Ling W, Wu X, Mo F. 3D Carbon Nanonetwork Coated Composite Electrode with Multi-Heteroatom Doping for High-Rate Vanadium Redox Flow Batteries. Polymers (Basel) 2022; 14:5269. [PMID: 36501663 PMCID: PMC9738268 DOI: 10.3390/polym14235269] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/04/2022] [Revised: 11/23/2022] [Accepted: 11/28/2022] [Indexed: 12/11/2022] Open
Abstract
With the advantages of benign mechanical property, electrochemical stability, and low cost, graphite fibers (GFs) have been widely used as electrodes for vanadium redox flow batteries (VRFBs). However, GFs usually possess inferior electrochemical activity and ion diffusion kinetics for electrode reaction, vastly limiting their application in VRFBs. Here, a 3D carbon nanonetwork coated GFs with multi-heteroatom doping was constructed for application in VRFBs via low temperature polymerization between linear polymer monomer and phytic acid, and subsequent carbonization (900 °C) on the GFs (GF@PCNs-900). Benefiting from the 3D structural features and multi-heteroatom doping (O, N and P), the composite electrode displayed sufficient diffusion of vanadium ions, rapid electron conduction, and highly enhanced electrochemical activity of reactive site on the electrodes. As a result, the GF@PCNs-900 delivered a high discharge capacity of 21 Ah L-1 and energy efficiency of above 70% with extraordinary stability during 200 cycles at 200 mA cm-2. Even at a huge current density of 400 mA cm-2, the GF@PCNs-900 still maintained a discharge capacity of 5.0 Ah L-1, indicating an excellent rate of performance for VRFBs. Such design strategy opens up a clear view for further development of energy storage field.
Collapse
Affiliation(s)
- Wei Ling
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| | - Xiongwei Wu
- School of Chemistry and Materials Science, Hunan Agricultural University, Changsha 410128, China
| | - Funian Mo
- School of Materials Science and Engineering, Harbin Institute of Technology (Shenzhen), Shenzhen 518055, China
| |
Collapse
|