1
|
Fan B, Chen G, Huang S, Li Y, Nabil ZUH, Yang Z. Summary of the mechanism of ferroptosis regulated by m6A modification in cancer progression. Front Cell Dev Biol 2025; 13:1507171. [PMID: 40271153 PMCID: PMC12014555 DOI: 10.3389/fcell.2025.1507171] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/07/2024] [Accepted: 03/25/2025] [Indexed: 04/25/2025] Open
Abstract
The most common form of internal RNA modification in eukaryotes is called n6-methyladenosine (m6A) methylation. It has become more and more well-known as a research issue in recent years since it alters RNA metabolism and is involved in numerous biological processes. Currently, m6A alteration offers new opportunities in clinical applications and is intimately linked to carcinogenesis. Ferroptosis-a form of iron-dependent, lipid peroxidation-induced regulated cell death-was discovered. In the development of cancer, it has become an important factor. According to newly available data, ferroptosis regulates tumor growth, and cancer exhibits aberrant m6A levels in crucial ferroptosis regulatory components. On the other hand, m6A has multiple roles in the development of tumors, and the relationship between m6A-modified ferroptosis and malignancies is quite intricate. In this review, we first give a thorough review of the regulatory and functional roles of m6A methylation, focusing on the molecular processes of m6A through the regulation of ferroptosis in human cancer progression and metastasis, which are strongly associated to cancer initiation, progression, and drug resistance. Therefore, it is crucial to clarify the relationship between m6A-mediated regulation of ferroptosis in cancer progression, providing a new strategy for cancer treatment with substantial clinical implications.
Collapse
Affiliation(s)
| | | | | | | | | | - Zuozhang Yang
- Bone and Soft Tissue Tumors Research Centre of Yunnan Province, Department of Orthopaedics, The Third Affiliated Hospital of Kunming Medical University (Yunnan Cancer Hospital), Kunming, Yunnan, China
| |
Collapse
|
2
|
Li Y, Fan C, Jiang F, Zhang J, Li Y, Jiang Y, Zhang R, Yu Z, Wang S. Identification of LIMK1 as a biomarker in clear cell renal cell carcinoma: from data mining to validation. J Cancer Res Clin Oncol 2025; 151:104. [PMID: 40056237 PMCID: PMC11890329 DOI: 10.1007/s00432-025-06146-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/24/2024] [Accepted: 02/20/2025] [Indexed: 03/10/2025]
Abstract
PURPOSE Clear cell renal cell carcinoma (ccRCC) is one of the most common types of renal cancer. LIM kinase 1 (LIMK1) reportedly plays an important role in tumorigenesis. However, the involvement of LIMK1 in the progression of ccRCC remains ambiguous. METHODS Based on the TCGA and CPTAC databases, the expression of LIMK1 in ccRCC was evaluated. In the TCGA-ccRCC cohort, the relationships between LIMK1 and immune cell infiltration as well as immune checkpoints were assessed. The high expression of LIMK1 in ccRCC was verified by qRT-PCR in four RCC cell lines. Immunohistochemistry was used to evaluate the expression of LIMK1 in clinical samples. The association between LIMK1 expression and survival prognosis was explored via Kaplan-Meier survival curve in the TCGA-ccRCC and local cohorts. The effects of LIMK1 knockdown on the proliferation, migration, and invasion abilities of RCC cells were evaluated via colony, CCK-8, wound healing, and Transwell assays. RESULTS Elevated expression level of LIMK1 was found in the TCGA-ccRCC cohort and was confirmed in RCC cell lines and clinical samples. Up-regulation of LIMK1 was found to be correlated with poor prognosis in TCGA-ccRCC and external cohorts. In addition, high-LIMK1 was associated with clinicopathological stage, immune cell infiltration and immune checkpoint in ccRCC. Importantly, knockdown of LIMK1 diminished the capability of proliferation, migration, and invasion in RCC cells. CONCLUSION LIMK1 may serve as a promising diagnostic and prognostic biomarker of ccRCC.
Collapse
Affiliation(s)
- Yifei Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Congcong Fan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Feng Jiang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Jingnan Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanzhen Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Yanjie Jiang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Rui Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, 325000, China
| | - Zhixian Yu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China
| | - Siqi Wang
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou, China.
| |
Collapse
|
3
|
Liang H, Cao Z, Ren Y, Li Y, Wang H, Sun F, Xue M, Zhu G, Zhou Y. Raman spectroscopy and bioinformatics-based identification of key genes and pathways capable of distinguishing between diffuse large B cell lymphoma and chronic lymphocytic leukemia. Front Immunol 2025; 16:1516946. [PMID: 40070829 PMCID: PMC11893875 DOI: 10.3389/fimmu.2025.1516946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/25/2024] [Accepted: 02/10/2025] [Indexed: 03/14/2025] Open
Abstract
Diffuse large B-cell lymphoma (DLBCL) and chronic lymphocytic leukemia (CLL) are subtypes of non-Hogkin lymphoma (NHL) that are generally distinct form one cases, but the transformation of one of these diseases into the other is possible. Some patients with CLL, for instance, have the potential to develop Richter transformation such that they are diagnosed with a rare, invasive DLBCL subtype. In this study, bioinformatics analyses of these two NHL subtypes were conducted, identifying key patterns of gene expression and then experimentally validating the results. Disease-related gene expression datasets from the GEO database were used to identify differentially expressed genes (DEGs) and DEG functions were examined using GO analysis and protein-protein interaction network construction. This strategy revealed many up- and down-regulated DEGs, with functional enrichment analyses identifying these genes as being closely associated with inflammatory and immune response activity. PPI network analyses and the evaluation of clustered network modules indicated the top 10 up- and down-regulated genes involved in disease onset and development. Serological analyses revealed significantly higher ALB, TT, and WBC levels in CLL patients relative to DLBCL patients, whereas the opposite was true with respect to TG, HDL, GGT, ALP, ALT, and NEUT% levels. In comparison to the CLL and DLBCL groups, the healthy control samples demonstrated higher signals of protein peak positions (621, 643, 848, 853, 869, 935, 1003, 1031, 1221, 1230, 1260, 1344, 1443, 1446, 1548, 1579, 1603, 1647 cm-1), nucleic acid peak positions (726, 781, 786, 1078, 1190, 1415, 1573, 1579 cm-1), beta carotene peak positions (957, 1155, 1162 cm-1), carbohydrate peak positions (842 cm-1), collagen peak positions (1345 cm-1), and lipid peak positions (957, 1078, 1119, 1285, 1299, 1437, 1443, 1446 cm-1) compared to the CLL and DLBCL groups. Verification of these key genes in patient samples yielded results consistent with findings derived from bioinformatics analyses, highlighting their relevance to diagnosing and treating these forms of NHL. Together, these analyses identified genes and pathways involved in both DLBCL and CLL. The set of molecular markers established herein can aid in patient diagnosis and prognostic evaluation, providing a valuable foundation for their therapeutic application.
Collapse
MESH Headings
- Humans
- Lymphoma, Large B-Cell, Diffuse/genetics
- Lymphoma, Large B-Cell, Diffuse/diagnosis
- Leukemia, Lymphocytic, Chronic, B-Cell/genetics
- Leukemia, Lymphocytic, Chronic, B-Cell/diagnosis
- Computational Biology/methods
- Protein Interaction Maps
- Gene Expression Profiling
- Male
- Female
- Middle Aged
- Gene Regulatory Networks
- Biomarkers, Tumor/genetics
- Diagnosis, Differential
- Aged
- Gene Expression Regulation, Neoplastic
- Transcriptome
- Signal Transduction/genetics
Collapse
Affiliation(s)
- Haoyue Liang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Zhijie Cao
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yansong Ren
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yihan Li
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Haoyu Wang
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Fanfan Sun
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Mei Xue
- School of Medical Technology, Tianjin University of Traditional Chinese Medicine, Tianjin, China
| | - Guoqing Zhu
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| | - Yuan Zhou
- State Key Laboratory of Experimental Hematology, National Clinical Research Center for Blood Diseases, Haihe Laboratory of Cell Ecosystem, Institute of Hematology & Blood Diseases Hospital, Chinese Academy of Medical Sciences & Peking Union Medical College, Tianjin, China
- Tianjin Institutes of Health Science, Tianjin, China
| |
Collapse
|
4
|
Li B, Wu M, Geng H, Li Y, Chen Z, Lu Z, Chen X, Wang Q, Song S, Li X, Zhu X, Wei Y, Zhu Y, Miao X, Tian J, Liu J, Huang C, Yang X. Integrative functional screen of genomic loci uncovers CCND2 and its genetic regulatory mechanism in colorectal cancer development. Carcinogenesis 2025; 46:bgae078. [PMID: 39680067 DOI: 10.1093/carcin/bgae078] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/26/2024] [Revised: 11/26/2024] [Accepted: 12/14/2024] [Indexed: 12/17/2024] Open
Abstract
Although genome-wide association studies have identified dozens of loci associated with colorectal cancer (CRC) susceptibility, the causal genes or risk variants within these loci and their biological functions often remain elusive. Recently, the genomic locus 12p13.32, with the tag single-nucleotide polymorphism rs10774214, was identified as a crucial CRC risk locus in Asian populations. However, the functional mechanism of this region has not been fully elucidated. Here, we applied a high-throughput RNA interference approach in CRC cell lines to interrogate the function of genes in this genomic region. Multiple genes were found to affect cell functions, with CCND2 having the most significant effect as an oncogene. Moreover, overexpressed CCND2 could promote CRC cell proliferation. Subsequently, by integrating a fine-mapping analysis and multi-ancestry large-scale population cohorts consisting of 14 358 CRC cases and 34 251 healthy controls, we identified a regulatory variant rs4477507-T that contributed to an increased CRC risk in populations from China (odds ratio = 1.16, 95% confidence interval = 1.11-1.22, P = 4.45 × 10-10) and Europe (odds ratio = 1.17, 95% confidence interval = 1.12-1.21, P = 1.65 × 10-14). Functional characterization of the variant demonstrated that it could act as an allele-specific enhancer to distally facilitate the expression of CCND2 mediated by the transcription factor TEAD4. Overall, our study underscores the essential role of CCND2 in CRC development and delineates its regulatory mechanism mediated by rs4477507, establishing an epidemiological and biological link between genetic variation and CRC pathogenesis.
Collapse
Affiliation(s)
- Bin Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Mei Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Hui Geng
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Yan Li
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Zhirui Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Zequn Lu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xu Chen
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Qiuhong Wang
- Department of Infection Control, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuchang District, Wuhan, 430060, China
| | - Shuxin Song
- Department of Integrated Traditional Chinese and Western Medicine, Union Hospital, Tongji Medical College, Huazhong University of Science and Technology, 1277 Jiefang Road, Jianghan District, Wuhan, 430022, China
| | - Xiangpan Li
- Department of Radiation Oncology, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuchang District, Wuhan, 430060, China
| | - Xu Zhu
- Department of Gastrointestinal Surgery, Renmin Hospital of Wuhan University, 99 Zhang Road, Wuchang District, Wuhan, 430060, China
| | - Yongchang Wei
- Department of Gastrointestinal Oncology, Hubei Cancer Clinical Study Center, Zhongnan Hospital of Wuhan University, 169 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Ying Zhu
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Xiaoping Miao
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- Jiangsu Collaborative Innovation Center for Cancer Personalized Medicine, Nanjing Medical University, 101 Longmian Road, Jiangning District, Nanjing, 211166, China
| | - Jianbo Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- Department of Gastrointestinal Oncology, Zhongnan Hospital of Wuhan University, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
- TaiKang Center for Life and Medical Sciences, Wuhan University, 115 Donghu Road, Wuchang District, Wuhan, 430071, China
| | - Jiuyang Liu
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Chaoqun Huang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| | - Xiaojun Yang
- Department of Gastrointestinal Surgery, Zhongnan Hospital of Wuhan University, Wuhan University, 169 Donghu Road, Wuchang District, Wuhan 430071, China
| |
Collapse
|
5
|
Zhao Y, Li J, Dian M, Bie Y, Peng Z, Zhou Y, Zhou B, Hao W, Wang X. Role of N6-methyladenosine methylation in nasopharyngeal carcinoma: current insights and future prospective. Cell Death Discov 2024; 10:490. [PMID: 39695216 DOI: 10.1038/s41420-024-02266-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2024] [Revised: 11/22/2024] [Accepted: 12/06/2024] [Indexed: 12/20/2024] Open
Abstract
Nasopharyngeal carcinoma (NPC) is a distinct type of head and neck squamous cell carcinoma prevalent in Southern China, Southeast Asia, and North Africa. Despite advances in treatment options, the prognosis for advanced NPC remains poor, underscoring the urgent need to explore its underlying mechanisms and develop novel therapeutic strategies. Epigenetic alterations have been shown to play a key role in NPC progression. Recent studies indicate that dysregulation of RNA modifications in NPC specifically affects tumor-related transcripts, influencing various oncogenic processes. This review provides a comprehensive overview of altered RNA modifications and their regulators in NPC, with a focus on m6A and its regulatory mechanisms. We discuss how m6A RNA modification influences gene expression and affects NPC initiation and progression at the molecular level, analyzing its impact on cancer-related biological functions. Understanding these modifications could reveal new biomarkers and therapeutic targets for NPC, offering promising directions for future research and precision medicine.
Collapse
Affiliation(s)
- YaYan Zhao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - Jie Li
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - MeiJuan Dian
- Department of Thoracic Surgery, Nanfang Hospital, Southern Medical University, Guangzhou, China
| | - YaNan Bie
- School of Basic Medical Sciences, Guangdong Pharmaceutical University, Guangzhou, China
| | - ZhiTao Peng
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - Ying Zhou
- Cancer Research Institute, School of Basic Medical Sciences, Southern Medical University, Guangzhou, China
| | - BingQian Zhou
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China
| | - WeiChao Hao
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| | - XiCheng Wang
- Department of Oncology, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
- Cancer Research Institute of Integrated Traditional Chinese and Western Medicine, The First Affiliated Hospital of Guangdong Pharmaceutical University, Guangzhou, China.
| |
Collapse
|
6
|
Chen A, Wang G, Wang D, Liu R. HPRT1: a preliminary investigation on its involvement in nasopharyngeal carcinoma. Discov Oncol 2024; 15:624. [PMID: 39505752 PMCID: PMC11541972 DOI: 10.1007/s12672-024-01506-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 06/28/2024] [Accepted: 11/01/2024] [Indexed: 11/08/2024] Open
Abstract
BACKGROUND Accumulating evidences have stressed the association between hypoxanthine phosphoribosyl transferase 1 (HPRT1) overexpression and the poor prognosis of various cancers. Our study, herein, preliminarily investigates the involvement of HPRT1 in nasopharyngeal carcinoma (NPC). METHODS Data from TCGA were applied to read HPRT1 expression in diverse cancers including NPC and to predict the prognosis of NPC patients. The total RNA and protein from NPC cells and nasopharyngeal epithelial cells NP460 were extracted to quantify HPRT1 expression. Following the completion of transfection, the proliferation and migration of NPC cells were determined employing MTT, colony formation and western blot assay (the quantification on expressions of protein related to proliferation and migration). RESULTS HPRT1 was differentially expressed in diverse cancers yet particularly highly expressed in NPC, and high HPRT1 expression was related to the poor prognosis of NPC patients. Also, HPRT1 expression was higher in NPC cells and its silencing diminished the viability and proliferation of NPC cells and reduced the expressions of CyclinD1, CyclinE, Multidrug Resistance Protein 1 (MDR1), matrix metalloproteinase (MMP)-2, and MMP-9. CONCLUSION This study preliminarily explored the involvement of HPRT1 in NPC based on some cellular assays in vitro, which may provide evidence for investigating the specific mechanism underlying the effects of HPRT1 in cancers.
Collapse
Affiliation(s)
- An Chen
- Otolaryngology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China
| | - Guifang Wang
- Department of Pediatrics, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China
| | - Deli Wang
- Otolaryngology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China
| | - Ruyang Liu
- Otolaryngology, The Second Affiliated Hospital of Shandong First Medical University, Tai'an, 271000, China.
| |
Collapse
|
7
|
Li L, Tang Q, Ge J, Wang D, Mo Y, Zhang Y, Wang Y, Xiong F, Yan Q, Liao Q, Guo C, Wang F, Zhou M, Xiang B, Zeng Z, Shi L, Chen P, Xiong W. METTL14 promotes lipid metabolism reprogramming and sustains nasopharyngeal carcinoma progression via enhancing m 6A modification of ANKRD22 mRNA. Clin Transl Med 2024; 14:e1766. [PMID: 39021049 PMCID: PMC11255023 DOI: 10.1002/ctm2.1766] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/22/2024] [Revised: 07/03/2024] [Accepted: 07/05/2024] [Indexed: 07/20/2024] Open
Abstract
BACKGROUND N6-methyladenosine (m6A) modification is essential for modulating RNA processing as well as expression, particularly in the context of malignant tumour progression. However, the exploration of m6A modification in nasopharyngeal carcinoma (NPC) remains very limited. METHODS RNA m6A levels were analysed in NPC using m6A dot blot assay. The expression level of methyltransferase-like 14 (METTL14) within NPC tissues was analysed from public databases as well as RT-qPCR and immunohistochemistry. The influences on METTL14 expression on NPC proliferation and metastasis were explored via in vitro as well as in vivo functional assays. Targeted genes of METTL14 were screened using the m6A and gene expression profiling microarray data. Actinomycin D treatment and polysome analysis were used to detect the half-life and translational efficiency of ANKRD22. Flow cytometry, immunofluorescence and immunoprecipitation were used to validate the role of ANKRD22 on lipid metabolism in NPC cells. ChIP-qPCR analysis of H3K27AC signalling near the promoters of METTL14, GINS3, POLE2, PLEK2 and FERMT1 genes. RESULTS We revealed METTL14, in NPC, correlating with poor patient prognosis. In vitro and in vivo assays indicated METTL14 actively promoted NPC cells proliferation and metastasis. METTL14 catalysed m6A modification on ANKRD22 messenger ribonucleic acid (mRNA), recognized by the reader IGF2BP2, leading to increased mRNA stability and higher translational efficiency. Moreover, ANKRD22, a metabolism-related protein on mitochondria, interacted with SLC25A1 to enhance citrate transport, elevating intracellular acetyl-CoA content. This dual impact of ANKRD22 promoted lipid metabolism reprogramming and cellular lipid synthesis while upregulating the expression of genes associated with the cell cycle (GINS3 and POLE2) and the cytoskeleton (PLEK2 and FERMT1) through heightened epigenetic histone acetylation levels in the nucleus. Intriguingly, our findings highlighted elevated ANKRD22-mediated histone H3 lysine 27 acetylation (H3K27AC) signals near the METTL14 promoter, which contributes to a positive feedback loop perpetuating malignant progression in NPC. CONCLUSIONS The identified METTL14-ANKRD22-SLC25A1 axis emerges as a promising therapeutic target for NPC, and also these molecules may serve as novel diagnostic biomarkers.
Collapse
Affiliation(s)
- Lvyuan Li
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Qiling Tang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Junshang Ge
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Dan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yongzhen Mo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Yijie Zhang
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Yumin Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Fang Xiong
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qijia Yan
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
- Department of Otolaryngology Head and Neck SurgeryXiangya Hospital, Central South UniversityChangshaChina
| | - Qianjin Liao
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Can Guo
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Fuyan Wang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Ming Zhou
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Bo Xiang
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Zhaoyang Zeng
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| | - Lei Shi
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Department of Pathologythe Second Xiangya Hospital, Central South UniversityChangshaChina
| | - Pan Chen
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
| | - Wei Xiong
- NHC Key Laboratory of Carcinogenesis and Hunan Key Laboratory of Cancer MetabolismHunan Cancer Hospital and the Affiliated Cancer Hospital of Xiangya School of Medicine, Central South UniversityChangshaChina
- Key Laboratory of Carcinogenesis and Cancer Invasion of the Chinese Ministry of EducationCancer Research Institute and School of Basic Medicine Sciences, Central South UniversityChangshaChina
| |
Collapse
|
8
|
Li Y, Fan C, Hu Y, Zhang W, Li H, Wang Y, Xu Z. Multi-cohort validation: A comprehensive exploration of prognostic marker in clear cell renal cell carcinoma. Int Immunopharmacol 2024; 135:112300. [PMID: 38781609 DOI: 10.1016/j.intimp.2024.112300] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/01/2024] [Revised: 05/07/2024] [Accepted: 05/16/2024] [Indexed: 05/25/2024]
Abstract
Clear cell renal cell carcinoma (ccRCC) is the most common form of RCC. It is characterized by resistance to traditional radiotherapy and chemotherapy, as well as an unfavorable clinical prognosis. Although TYMP is implicated in the advancement of tumor progression, the role of TYMP in ccRCC is still not understood. Heightened TYMP expression was identified in ccRCC through database mining and confirmed in RCC cell lines. Indeed, TYMP knockdown impacted RCC cell proliferation, migration, and invasion in vitro. TYMP showed a positive correlation with clinicopathological parameters (histological grade, pathological stage). Moreover, patients with high TYMP expression were indicative of poor prognosis in TCGA-ccRCC and external cohorts. The results of single-cell analysis showed that the distribution of TYMP was predominantly observed in monocytes and macrophages. Furthermore, there is a significant association between TYMP and immune status. Methylation analysis further elucidated the relationship between TYMP expression and multiple methylation sites. Drug sensitivity analysis unveiled potential pharmaceutical options. Additionally, mutation analyses identified an association between TYMP and the ccRCC driver genes like BAP1 and ROS1. In summary, TYMP may serve as a reliable prognostic indicator for ccRCC.
Collapse
Affiliation(s)
- Yifei Li
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Congcong Fan
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yuhang Hu
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Weizhi Zhang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Hang Li
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Yining Wang
- Zhejiang Key Laboratory of Intelligent Cancer Biomarker Discovery and Translation, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China
| | - Ziqiang Xu
- Department of Urology, The First Affiliated Hospital of Wenzhou Medical University, Wenzhou 325000, China.
| |
Collapse
|
9
|
Fang XL, Li QJ, Lin JY, Huang CL, Huang SY, Tan XR, He SW, Zhu XH, Li JY, Gong S, Qiao H, Li YQ, Liu N, Ma J, Zhao Y, Tang LL. Transcription factor ATMIN facilitates chemoresistance in nasopharyngeal carcinoma. Cell Death Dis 2024; 15:112. [PMID: 38321024 PMCID: PMC10847093 DOI: 10.1038/s41419-024-06496-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Revised: 01/22/2024] [Accepted: 01/23/2024] [Indexed: 02/08/2024]
Abstract
Despite that the docectaxel-cisplatin-5-fluorouracil (TPF) induction chemotherapy has greatly improved patients' survival and became the first-line treatment for advanced nasopharyngeal carcinoma (NPC), not all patients could benefit from this therapy. The mechanism underlying the TPF chemoresistance remains unclear. Here, by analyzing gene-expression microarray data and survival of patients who received TPF chemotherapy, we identify transcription factor ATMIN as a chemoresistance gene in response to TPF chemotherapy in NPC. Mass spectrometry and Co-IP assays reveal that USP10 deubiquitinates and stabilizes ATMIN protein, resulting the high-ATMIN expression in NPC. Knockdown of ATMIN suppresses the cell proliferation and facilitates the docetaxel-sensitivity of NPC cells both in vitro and in vivo, while overexpression of ATMIN exerts the opposite effect. Mechanistically, ChIP-seq combined with RNA-seq analysis suggests that ATMIN is associated with the cell death signaling and identifies ten candidate target genes of ATMIN. We further confirm that ATMIN transcriptionally activates the downstream target gene LCK and stabilizes it to facilitate cell proliferation and docetaxel resistance. Taken together, our findings broaden the insight into the molecular mechanism of chemoresistance in NPC, and the USP10-ATMIN-LCK axis provides potential therapeutic targets for the management of NPC.
Collapse
Affiliation(s)
- Xue-Liang Fang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Qing-Jie Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jia-Yi Lin
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Cheng-Long Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sheng-Yan Huang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xi-Rong Tan
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Shi-Wei He
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Xun-Hua Zhu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun-Yan Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Sha Gong
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Han Qiao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Ying-Qin Li
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Na Liu
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Jun Ma
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China
| | - Yin Zhao
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| | - Ling-Long Tang
- Department of Radiation Oncology, Sun Yat-sen University Cancer Center, State Key Laboratory of Oncology in South China, Collaborative Innovation Center for Cancer Medicine, Guangdong Key Laboratory of Nasopharyngeal Carcinoma Diagnosis and Therapy Center for Precision Medicine of Sun Yat-sen University, Guangzhou, 510060, PR China.
| |
Collapse
|
10
|
Liu M, Hu W, Meng X, Wang B. TEAD4: A key regulator of tumor metastasis and chemoresistance - Mechanisms and therapeutic implications. Biochim Biophys Acta Rev Cancer 2024; 1879:189050. [PMID: 38072284 DOI: 10.1016/j.bbcan.2023.189050] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/22/2023] [Revised: 12/03/2023] [Accepted: 12/04/2023] [Indexed: 01/16/2024]
Abstract
Cancer metastasis is a complex process influenced by various factors, including epithelial-mesenchymal transition (EMT), tumor cell proliferation, tumor microenvironment, and cellular metabolic status, which remains a significant challenge in clinical oncology, accounting for a majority of cancer-related deaths. TEAD4, a key mediator of the Hippo signaling pathway, has been implicated in regulating these factors that are all critical in the metastatic cascade. TEAD4 drives tumor metastasis and chemoresistance, and its upregulation is associated with poor prognosis in many types of cancers, making it an attractive target for therapeutic intervention. TEAD4 promotes EMT by interacting with coactivators and activating the transcription of genes involved in mesenchymal cell characteristics and extracellular matrix remodeling. Additionally, TEAD4 enhances the stemness of cancer stem cells (CSCs) by regulating the expression of genes associated with CSC maintenance. TEAD4 contributes to metastasis by modulating the secretion of paracrine factors and promoting heterotypic cellular communication. In this paper, we highlight the central role of TEAD4 in cancer metastasis and chemoresistance and its impact on various aspects of tumor biology. Understanding the mechanistic basis of TEAD4-mediated processes can facilitate the development of targeted therapies and combination approaches to combat cancer metastasis and improve treatment outcomes.
Collapse
Affiliation(s)
- Mohan Liu
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Weina Hu
- Department of General Practice, the Fourth Affiliated Hospital of China Medical University, Shenyang, Liaoning Province, PR China.
| | - Xiaona Meng
- Teaching Center for Basic Medical Experiment of China Medical University, Liaoning Province, PR China.
| | - Biao Wang
- Department of Biochemistry and Molecular Biology, School of Life Sciences of China Medical University, Shenyang, Liaoning Province, PR China.
| |
Collapse
|
11
|
Chen Y, Jiang Z, Yang Y, Zhang C, Liu H, Wan J. The functions and mechanisms of post-translational modification in protein regulators of RNA methylation: Current status and future perspectives. Int J Biol Macromol 2023; 253:126773. [PMID: 37690652 DOI: 10.1016/j.ijbiomac.2023.126773] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/10/2023] [Revised: 08/31/2023] [Accepted: 09/05/2023] [Indexed: 09/12/2023]
Abstract
RNA methylation, an epigenetic modification that does not alter gene sequence, may be important to diverse biological processes. Protein regulators of RNA methylation include "writers," "erasers," and "readers," which respectively deposit, remove, and recognize methylated RNA. RNA methylation, particularly N6-methyladenosine (m6A), 5-methylcytosine (m5C), N3-methylcytosine (m3C), N1-methyladenosine (m1A) and N7-methylguanosine (m7G), has been suggested as disease therapeutic targets. Despite advances in the structure and pharmacology of RNA methylation regulators that have improved drug discovery, regulating these proteins by various post-translational modifications (PTMs) has received little attention. PTM modifies protein structure and function, affecting all aspects of normal biology and pathogenesis, including immunology, cell differentiation, DNA damage repair, and tumors. It is becoming evident that RNA methylation regulators are also regulated by diverse PTMs. PTM of RNA methylation regulators induces their covalent linkage to new functional groups, hence modifying their activity and function. Mass spectrometry has identified many PTMs on protein regulators of RNA methylation. In this review, we describe the functions and PTM of protein regulators of RNA methylation and summarize the recent advances in the regulatory mode of human disease and its underlying mechanisms.
Collapse
Affiliation(s)
- Youming Chen
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Zuli Jiang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Ying Yang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Chenxing Zhang
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China
| | - Hongyang Liu
- Department of Obstetrics and Gynecology, The Third Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| | - Junhu Wan
- Department of Clinical Laboratory, The First Affiliated Hospital of Zhengzhou University, Zhengzhou, Henan, China.
| |
Collapse
|
12
|
Park MA, Lee YH, Gu MJ. High TEAD4 Expression is Associated With Aggressive Clear Cell Renal Cell Carcinoma, Regardless of YAP1 Expression. Appl Immunohistochem Mol Morphol 2023; 31:649-656. [PMID: 37779294 DOI: 10.1097/pai.0000000000001164] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/10/2023] [Accepted: 09/10/2023] [Indexed: 10/03/2023]
Abstract
Yes-associated protein 1 (YAP1) and transcriptional coactivator TEA domain transcription factor 4 (TEAD4) are the main effectors of the Hippo signaling pathway. Deregulation of the Hippo signaling pathway significantly impacts tumorigenesis and tumor progression. We evaluated the mRNA expression level of YAP1 and TEAD4 using the Gene Expression Profiling Interactive Analysis database and investigated the roles of YAP1 and TEAD4 in 349 surgically resected clear cell renal cell carcinoma (CCRCC) samples through immunohistochemical analysis. High YAP1 and TEAD4 expression were observed in 57 (16.3%) and 131 (37.5%) cases, respectively. High YAP1 expression was associated with a low nuclear grade only. High TEAD4 expression was significantly associated with large tumor size, high nuclear grade, lymphovascular invasion, advanced pT classification, advanced clinical stage, sarcomatous differentiation, and metastasis. CCRCC with YAP1-low/TEAD4-high expression was significantly associated with aggressive clinicopathological variables and poor outcomes. For CCRCC, higher tumor stage, sarcomatous differentiation, and metastasis were the independent prognostic factors for overall survival (OS) and disease-free survival (DFS). High TEAD4 expression was significantly associated with short OS and DFS but was not an independent prognostic factor. High TEAD4 and YAP1-low/TEAD4-high expression significantly correlated with adverse clinicopathological factors and worse OS and DFS in patients with CCRCC. YAP1 expression was not significantly associated with clinicopathological factors or patient survival. Therefore, TEAD4 plays a critical role in CCRCC tumor progression independent of YAP1 and may be a potential biomarker and therapeutic target for CCRCC.
Collapse
Affiliation(s)
- Min A Park
- Department of Pathology, Yeungnam University College of Medicine, Nam-gu, Daegu, Republic of Korea
| | | | | |
Collapse
|
13
|
Lv L, Zhou X. Targeting Hippo signaling in cancer: novel perspectives and therapeutic potential. MedComm (Beijing) 2023; 4:e375. [PMID: 37799806 PMCID: PMC10547939 DOI: 10.1002/mco2.375] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2023] [Revised: 08/23/2023] [Accepted: 08/29/2023] [Indexed: 10/07/2023] Open
Abstract
As highly conserved among diverse species, Hippo signaling pathway regulates various biological processes, including development, cell proliferation, stem cell function, tissue regeneration, homeostasis, and organ size. Studies in the last two decades have provided a good framework for how these fundamental functions of Hippo signaling are tightly regulated by a network with numerous intracellular and extracellular factors. The Hippo signaling pathway, when dysregulated, may lead to a wide variety of diseases, especially cancer. There is growing evidence demonstrating that dysregulated Hippo signaling is closely associated with tumorigenesis, cancer cell invasion, and migration, as well as drug resistance. Therefore, the Hippo pathway is considered an appealing therapeutic target for the treatment of cancer. Promising novel agents targeting the Hippo signaling pathway for cancers have recently emerged. These novel agents have shown antitumor activity in multiple cancer models and demonstrated therapeutic potential for cancer treatment. However, the detailed molecular basis of the Hippo signaling-driven tumor biology remains undefined. Our review summarizes current advances in understanding the mechanisms by which Hippo signaling drives tumorigenesis and confers drug resistance. We also propose strategies for future preclinical and clinical development to target this pathway.
Collapse
Affiliation(s)
- Liemei Lv
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
| | - Xiangxiang Zhou
- Department of HematologyShandong Provincial HospitalShandong UniversityJinanShandongChina
- Department of HematologyShandong Provincial Hospital Affiliated to Shandong First Medical UniversityJinanShandongChina
- Branch of National Clinical Research Center for Hematologic DiseasesJinanShandongChina
- National Clinical Research Center for Hematologic Diseasesthe First Affiliated Hospital of Soochow UniversitySuzhouChina
| |
Collapse
|