1
|
Dietmar HF, Weidmann PA, Alberton P, Teichwart T, Gerstner M, Renkawitz T, Vortkamp A, Aszodi A, Richter W, Diederichs S. Load activated FGFR and beta1 integrins target distinct chondrocyte mechano-response genes. Matrix Biol 2025:S0945-053X(25)00047-2. [PMID: 40379111 DOI: 10.1016/j.matbio.2025.05.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2025] [Revised: 05/02/2025] [Accepted: 05/12/2025] [Indexed: 05/19/2025]
Abstract
In response to mechanical stimuli, chondrocytes adapt their transcriptional activity, thereby shaping the cellular mechano-response; however, it remains unclear whether the activation of cell surface receptors during mechanical loading converge in the activation of the same mechano-response genes, or whether pathway-specific genes can be defined. We aimed to determine whether load-activated FGF/FGFR signalling and β1 integrins activate ERK and control the same or distinct subsets of mechano-regulated genes. To this end, tissue-engineered neocartilage was generated from murine costal chondrocytes or human articular chondrocytes and subjected to dynamic unconfined compression with or without FGFR inhibition. To assess the role of β1 integrins, neocartilage was generated from embryonic β1 integrin-deficient or wild type costal chondrocytes. Load-activated FGFR signalling drove ERK activation in murine chondrocytes, and partially also in human chondrocytes, and mechano-response genes could be classified according to their regulation: Fosl1, Itga5, Ngf and Timp1 were regulated by load-activated FGFR depending on the developmental stage, whereas β1 integrins controlled Inhba expression. In human chondrocytes, load-activated FGFR signalling controlled expression of BMP2, PTGS2 and DUSP5, but not FOSB. We show here that the chondrocyte loading response is coordinated by concurrent activation of multiple receptors, and identified for the first time distinct target genes of activated receptors. These insights open up the opportunity to pharmacologically shape the mechano-response of chondrocytes in future studies with promising implications for the management of osteoarthritis and the development of novel therapeutic strategies.
Collapse
Affiliation(s)
- Helen F Dietmar
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Pia A Weidmann
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Paolo Alberton
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Centre Munich (MUM), Ludwig-Maximilians-University (LMU), Munich, Germany; Division of Hand, Plastic, and Aesthetic Surgery, LMU University Hospital, LMU Munich, Germany
| | - Terrilyn Teichwart
- Department of Developmental Biology, Center for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Matthias Gerstner
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Tobias Renkawitz
- Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Andrea Vortkamp
- Department of Developmental Biology, Center for Medical Biotechnology, University Duisburg-Essen, Essen, Germany
| | - Attila Aszodi
- Department of Orthopaedics and Trauma Surgery, Musculoskeletal University Centre Munich (MUM), Ludwig-Maximilians-University (LMU), Munich, Germany
| | - Wiltrud Richter
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany
| | - Solvig Diederichs
- Experimental Orthopaedics, Research Centre for Molecular and Regenerative Orthopaedics, Department of Orthopaedics, Heidelberg University Hospital, Heidelberg, Germany.
| |
Collapse
|
2
|
Chen N, Danalache M, Liang C, Alexander D, Umrath F. Mechanosignaling in Osteoporosis: When Cells Feel the Force. Int J Mol Sci 2025; 26:4007. [PMID: 40362247 PMCID: PMC12071322 DOI: 10.3390/ijms26094007] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2025] [Revised: 04/15/2025] [Accepted: 04/21/2025] [Indexed: 05/15/2025] Open
Abstract
Bone is a highly mechanosensitive tissue, where mechanical signaling plays a central role in maintaining skeletal homeostasis. Mechanotransduction regulates the balance between bone formation and resorption through coordinated interactions among bone cells. Key mechanosensing structures-including the extracellular/pericellular matrix (ECM/PCM), integrins, ion channels, connexins, and primary cilia, translate mechanical cues into biochemical signals that drive bone adaptation. Disruptions in mechanotransduction are increasingly recognized as an important factor in osteoporosis. Under pathological conditions, impaired mechanical signaling reduces bone formation and accelerates bone resorption, leading to skeletal fragility. Defects in mechanotransduction disrupt key pathways involved in bone metabolism, further exacerbating bone loss. Therefore, targeting mechanotransduction presents a promising pharmacological strategy for osteoporosis treatment. Recent advances have focused on developing drugs that enhance bone mechanosensitivity by modulating key mechanotransduction pathways, including integrins, ion channels, connexins, and Wnt signaling. A deeper understanding of mechanosignaling mechanisms may pave the way for novel therapeutic approaches aimed at restoring bone mass, mechanical integrity, and mechanosensitive bone adaptation.
Collapse
Affiliation(s)
- Nuo Chen
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
| | - Marina Danalache
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
| | - Chen Liang
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
| | - Dorothea Alexander
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany;
| | - Felix Umrath
- Department of Orthopedic Surgery, University Hospital Tübingen, 72072 Tübingen, Germany; (N.C.)
- Department of Oral and Maxillofacial Surgery, University Hospital Tübingen, 72076 Tübingen, Germany;
| |
Collapse
|
3
|
Harissa Z, Kim Y, Dicks AR, Steward N, Guilak F. Skeletal dysplasia-causing mutations in TRPV4 alter the chondrocyte transcriptomic response to mechanical loading. Am J Physiol Cell Physiol 2025; 328:C1135-C1149. [PMID: 40019039 DOI: 10.1152/ajpcell.01066.2024] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/30/2024] [Revised: 01/28/2025] [Accepted: 02/21/2025] [Indexed: 03/01/2025]
Abstract
Transient receptor potential vanilloid 4 (TRPV4) is a mechanosensitive ion channel highly expressed in chondrocytes that supports cartilage development and homeostasis. Mutations in the channel can cause skeletal dysplasias, including the gain-of-function mutations V620I and T89I, which lead to brachyolmia and metatropic dysplasia, respectively. These mutations suppress hypertrophic differentiation, but the mechanisms by which they alter chondrocyte response to mechanical load remain to be elucidated. To determine the effect of these mutations on chondrocyte mechanotransduction, tissue-engineered cartilage was derived from differentiated clustered regularly interspaced short palindromic repeats (CRISPR)-edited human-induced pluripotent stem cells (hiPSCs) harboring the moderate V620I or severe T89I TRPV4 mutations. Wild-type and mutant tissue-engineered hiPSC-derived cartilage contructs were subjected to compressive mechanical loading at physiological levels, and transcriptomic signatures were assessed by RNA-sequencing. Our results demonstrate that the V620I and T89I mutations diminish the mechanoresponsiveness of chondrocytes, as evidenced by reduced gene expression downstream of TRPV4 activation, including those involved in endochondral ossification. Changes in the expression of genes involved in extracellular matrix production and organization were found to contribute toward the phenotype in V620I mutant chondrocytes, whereas dysregulated retinoic acid signaling was linked to T89I, and disrupted proliferation was common to both. Our findings suggest that dysfunctional mechanotransduction due to V620I and T89I mutations in TRPV4 contribute to the developmental phenotypes, supporting TRPV4 modulation as a potential pharmacologic target.NEW & NOTEWORTHY Gain-of-function mutations in TRPV4, a mechano- and osmosensitive ion channel, are linked to skeletal dysplasias, but their effects on chondrocyte mechanotransduction remain unknown. Using human iPSCs harboring skeletal dysplasia-causing mutations, we developed and mechanically loaded tissue-engineered cartilage. Our findings show that V620I and T89I mutations reduce chondrocyte mechanoresponsiveness, evidenced by decreased gene expression downstream of TRPV4 activation, providing insight into TRPV4-related skeletal disorders and potential pharmacological targets.
Collapse
Affiliation(s)
- Zainab Harissa
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Yuseon Kim
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Amanda R Dicks
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Nancy Steward
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| | - Farshid Guilak
- Department of Orthopaedic Surgery, Washington University School of Medicine, St. Louis, Missouri, United States
- Shriners Hospitals for Children-St. Louis, St. Louis, Missouri, United States
- Department of Biomedical Engineering, Washington University, St. Louis, Missouri, United States
- Center of Regenerative Medicine, Washington University, St. Louis, Missouri, United States
| |
Collapse
|
4
|
Guan M, Han X, Liao B, Han W, Chen L, Zhang B, Peng X, Tian Y, Xiao G, Li X, Kuang L, Zhu Y, Bai D. LIPUS Promotes Calcium Oscillation and Enhances Calcium Dependent Autophagy of Chondrocytes to Alleviate Osteoarthritis. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025; 12:e2413930. [PMID: 40013941 PMCID: PMC12021083 DOI: 10.1002/advs.202413930] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/29/2024] [Revised: 02/02/2025] [Indexed: 02/28/2025]
Abstract
Osteoarthritis (OA) is a degenerative disease which places an enormous burden on society, effective treatments are still limited. As a non-invasive and safe physical therapy, low-intensity pulsed ultrasound (LIPUS) can alleviate OA progression, but the underlying mechanism is not fully understood, especially the mechanical transduction between LIPUS and the organism. In this pioneering study, the biomechanical effects of LIPUS on living mice chondrocytes and living body zebrafish are investigate by using fluorescence imaging technology, to dynamically "visualize" its invisible mechanical stimuli in the form of calcium oscillations. It is also confirmed that LIPUS maintains cartilage homeostasis by promoting chondrocyte autophagy in a calcium-dependent manner. In addition, chondrocyte ion channels are screened by scRNA-seq and confirm that the mechanosensitive ion channel transient receptor potential vanilloid 4 (TRPV4) mediated the biological effects of LIPUS on chondrocytes. Finally, it is found that a combination of pharmacologically induced and LIPUS-induced Ca2+ influx in chondrocytes enhances the cartilage-protective effect of LIPUS, which may provide new insights for optimizing LIPUS in the treatment of OA.
Collapse
Affiliation(s)
- Mengtong Guan
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Xiaoyu Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Bo Liao
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Wang Han
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Lin Chen
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Bin Zhang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Xiuqin Peng
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Yu Tian
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Gongyi Xiao
- Department of OrthopedicsChonggang General HospitalChongqing400000China
| | - Xinhe Li
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| | - Liang Kuang
- Center of Bone Metabolism and repair laboratory for Prevention and rehabilitation of Training injuries State Key laboratory of Trauma Burns and combined injury Trauma centerResearch Institute of Surgery Daping Hospital Army Medical University (Third Military Medical University)Chongqing400000China
| | - Ying Zhu
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
| | - Dingqun Bai
- Department of Rehabilitation MedicineKey Laboratory of Physical Medicine and Precision Rehabilitation of Chongqing Municipal Health CommissionThe First Affiliated Hospital of Chongqing Medical UniversityChongqing400010China
- State Key Laboratory of Ultrasound in Medicine and EngineeringChongqing Medical UniversityChongqing400016China
| |
Collapse
|
5
|
Huang J, Fussenegger M. Programming mammalian cell behaviors by physical cues. Trends Biotechnol 2025; 43:16-42. [PMID: 39179464 DOI: 10.1016/j.tibtech.2024.07.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/24/2024] [Revised: 07/24/2024] [Accepted: 07/26/2024] [Indexed: 08/26/2024]
Abstract
In recent decades, the field of synthetic biology has witnessed remarkable progress, driving advances in both research and practical applications. One pivotal area of development involves the design of transgene switches capable of precisely regulating specified outputs and controlling cell behaviors in response to physical cues, which encompass light, magnetic fields, temperature, mechanical forces, ultrasound, and electricity. In this review, we delve into the cutting-edge progress made in the field of physically controlled protein expression in engineered mammalian cells, exploring the diverse genetic tools and synthetic strategies available for engineering targeting cells to sense these physical cues and generate the desired outputs accordingly. We discuss the precision and efficiency limitations inherent in these tools, while also highlighting their immense potential for therapeutic applications.
Collapse
Affiliation(s)
- Jinbo Huang
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland
| | - Martin Fussenegger
- Department of Biosystems Science and Engineering, ETH Zurich, Klingelbergstrasse 48, CH-4056 Basel, Switzerland; Faculty of Science, University of Basel, Klingelbergstrasse 48, CH-4056 Basel, Switzerland.
| |
Collapse
|
6
|
Jörimann T, Füllemann P, Jose A, Matthys R, Wehrle E, Stoddart MJ, Verrier S. In Vitro Induction of Hypertrophic Chondrocyte Differentiation of Naïve MSCs by Strain. Cells 2024; 14:25. [PMID: 39791725 PMCID: PMC11720650 DOI: 10.3390/cells14010025] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/26/2024] [Revised: 12/14/2024] [Accepted: 12/18/2024] [Indexed: 01/12/2025] Open
Abstract
In the context of bone fractures, the influence of the mechanical environment on the healing outcome is widely accepted, while its influence at the cellular level is still poorly understood. This study explores the influence of mechanical load on naïve mesenchymal stem cell (MSC) differentiation, focusing on hypertrophic chondrocyte differentiation. Unlike primary bone healing, which involves the direct differentiation of MSCs into bone-forming cells, endochondral ossification uses an intermediate cartilage template that remodels into bone. A high-throughput uniaxial bioreactor system (StrainBot) was used to apply varying percentages of strain on naïve MSCs encapsulated in GelMa hydrogels. This research shows that cyclic uniaxial compression alone directs naïve MSCs towards a hypertrophic chondrocyte phenotype. This was demonstrated by increased cell volumes and reduced glycosaminoglycan (GAG) production, along with an elevated expression of hypertrophic markers such as MMP13 and Type X collagen. In contrast, Type II collagen, typically associated with resting chondrocytes, was poorly detected under mechanical loading alone conditions. The addition of chondrogenic factor TGFβ1 in the culture medium altered these outcomes. TGFβ1 induced chondrogenic differentiation, as indicated by higher GAG/DNA production and Type II collagen expression, overshadowing the effect of mechanical loading. This suggests that, under mechanical strain, hypertrophic differentiation is hindered by TGFβ1, while chondrogenesis is promoted. Biochemical analyses further confirmed these findings. Mechanical deformation alone led to a larger cell size and a more rounded cell morphology characteristic of hypertrophic chondrocytes, while lower GAG and proteoglycan production was observed. Immunohistology staining corroborated the gene expression data, showing increased Type X collagen with mechanical strain. Overall, this study indicates that mechanical loading alone drives naïve MSCs towards a hypertrophic chondrocyte differentiation path. These insights underscore the critical role of mechanical forces in MSC differentiation and have significant implications for bone healing, regenerative medicine strategies and rehabilitation protocols.
Collapse
Affiliation(s)
- Thomas Jörimann
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Priscilla Füllemann
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Anita Jose
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | | | - Esther Wehrle
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Martin J. Stoddart
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| | - Sophie Verrier
- AO Research Institute Davos, Clavadelerstrasse 8, 7270 Davos, Switzerland (E.W.); (M.J.S.)
| |
Collapse
|
7
|
Hernández-Vega AM, García-Villegas R, Rosenbaum T. Roles for TRPV4 in disease: A discussion of possible mechanisms. Cell Calcium 2024; 124:102972. [PMID: 39609180 DOI: 10.1016/j.ceca.2024.102972] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Revised: 11/20/2024] [Accepted: 11/21/2024] [Indexed: 11/30/2024]
Abstract
The transient receptor potential vanilloid 4 (TRPV4) ion channel is a ubiquitously expressed Ca2+-permeable ion channel that controls intracellular calcium ([Ca2+]i) homeostasis in various types of cells. The physiological roles for TRPV4 are tissue specific and the mechanisms behind this specificity remain mostly unclarified. It is noteworthy that mutations in the TRPV4 channel have been associated to a broad spectrum of congenital diseases, with most of these mutations mainly resulting in gain-of-function. Mutations have been identified in human patients showing a variety of phenotypes and symptoms, mostly related to skeletal and neuromuscular disorders. Since TRPV4 is so widely expressed throughout the body, it comes as no surprise that the literature is growing in evidence linking this protein to malfunction in systems other than the skeletal and neuromuscular. In this review, we summarize the expression patterns of TRPV4 in several tissues and highlight findings of recent studies that address critical structural and functional features of this channel, particularly focusing on its interactions and signaling pathways related to Ca2+ entry. Moreover, we discuss the roles of TRPV4 mutations in some diseases and pinpoint some of the mechanisms underlying pathological states where TRPV4's malfunction is prominent.
Collapse
Affiliation(s)
- Ana M Hernández-Vega
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico
| | - Refugio García-Villegas
- Departamento de Fisiología, Biofísica y Neurociencias, Centro de Investigación y de Estudios Avanzados del Instituto Politécnico Nacional, Av. Instituto Politécnico Nacional 2508, Ciudad de México, 07360, México
| | - Tamara Rosenbaum
- Departamento de Neurociencia Cognitiva, Instituto de Fisiología Celular, Universidad Nacional Autónoma de México, Ciudad de México, 04510, Mexico.
| |
Collapse
|
8
|
Abdul Halim MS, Dyson JM, Gong MM, O'Bryan MK, Nosrati R. Fallopian tube rheology regulates epithelial cell differentiation and function to enhance cilia formation and coordination. Nat Commun 2024; 15:7411. [PMID: 39198453 PMCID: PMC11358425 DOI: 10.1038/s41467-024-51481-9] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/14/2023] [Accepted: 08/08/2024] [Indexed: 09/01/2024] Open
Abstract
The rheological properties of the extracellular fluid in the female reproductive tract vary spatiotemporally, however, the effect on the behaviour of epithelial cells that line the tract is unexplored. Here, we reveal that epithelial cells respond to the elevated viscosity of culture media by modulating their development and functionality to enhance cilia formation and coordination. Specifically, ciliation increases by 4-fold and cilia beating frequency decreases by 30% when cells are cultured at 100 mPa·s. Further, cilia manifest a coordinated beating pattern that can facilitate the formation of metachronal waves. At the cellular level, viscous loading activates the TRPV4 channel in the epithelial cells to increase intracellular Ca2+, subsequently decreasing the mitochondrial membrane potential level for ATP production to maintain cell viability and function. Our findings provide additional insights into the role of elevated tubal fluid viscosity in promoting ciliation and coordinating their beating-a potential mechanism to facilitate the transport of egg and embryo, suggesting possible therapeutic opportunities for infertility treatment.
Collapse
Affiliation(s)
- Melati S Abdul Halim
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia
| | - Jennifer M Dyson
- Department of Materials Science and Engineering, Monash University, Clayton, Victoria, Australia
- Department of Biochemistry and Molecular Biology, Biomedicine Discovery Institute, Monash University, Clayton, Victoria, Australia
| | - Max M Gong
- Department of Biomedical Engineering, Trine University, Angola, IN, USA
| | - Moira K O'Bryan
- School of BioSciences and Bio21 Molecular Science and Biotechnology Institute, Faculty of Science, University of Melbourne, Parkville, Victoria, Australia
| | - Reza Nosrati
- Department of Mechanical and Aerospace Engineering, Monash University, Clayton, Victoria, Australia.
| |
Collapse
|
9
|
Chen YQ, Wu MC, Wei MT, Kuo JC, Yu HW, Chiou A. High-viscosity driven modulation of biomechanical properties of human mesenchymal stem cells promotes osteogenic lineage. Mater Today Bio 2024; 26:101058. [PMID: 38681057 PMCID: PMC11046220 DOI: 10.1016/j.mtbio.2024.101058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2024] [Revised: 04/10/2024] [Accepted: 04/13/2024] [Indexed: 05/01/2024] Open
Abstract
Biomechanical cues could effectively govern cell gene expression to direct the differentiation of specific stem cell lineage. Recently, the medium viscosity has emerged as a significant mechanical stimulator that regulates the cellular mechanical properties and various physiological functions. However, whether the medium viscosity can regulate the mechanical properties of human mesenchymal stem cells (hMSCs) to effectively trigger osteogenic differentiation remains uncertain. The mechanism by which cells sense and respond to changes in medium viscosity, and regulate cell mechanical properties to promote osteogenic lineage, remains elusive. In this study, we demonstrated that hMSCs, cultured in a high-viscosity medium, exhibited larger cell spreading area and higher intracellular tension, correlated with elevated formation of actin stress fibers and focal adhesion maturation. Furthermore, these changes observed in hMSCs were associated with activation of TRPV4 (transient receptor potential vanilloid sub-type 4) channels on the cell membrane. This feedback loop among TRPV4 activation, cell spreading and intracellular tension results in calcium influx, which subsequently promotes the nuclear localization of NFATc1 (nuclear factor of activated T cells 1). Concomitantly, the elevated intracellular tension induced nuclear deformation and promoted the nuclear localization of YAP (YES-associated protein). The concurrent activation of NFATc1 and YAP significantly enhanced alkaline phosphatase (ALP) for pre-osteogenic activity. Taken together, these findings provide a more comprehensive view of how viscosity-induced alterations in biomechanical properties of MSCs impact the expression of osteogenesis-related genes, and ultimately promote osteogenic lineage.
Collapse
Affiliation(s)
- Yin-Quan Chen
- Cancer Progression Research Center, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Chung Wu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Ming-Tzo Wei
- Department of Chemical and Biological Engineering, Princeton University, Princeton, NJ, USA
| | - Jean-Cheng Kuo
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Helen Wenshin Yu
- Institute of Biochemistry and Molecular Biology, National Yang Ming Chiao Tung University, Taipei, Taiwan
| | - Arthur Chiou
- Institute of Biophotonics, National Yang Ming Chiao Tung University, Taipei, Taiwan
| |
Collapse
|
10
|
Zhang Y, Yuan X, Wang J, Han M, Lu H, Wang Y, Liu S, Yang S, Xing HC, Cheng J. TRPV4 promotes HBV replication and capsid assembly via methylation modification of H3K4 and HBc ubiquitin. J Med Virol 2024; 96:e29510. [PMID: 38573018 DOI: 10.1002/jmv.29510] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/19/2023] [Revised: 02/21/2024] [Accepted: 02/25/2024] [Indexed: 04/05/2024]
Abstract
Hepatitis B virus (HBV) infection poses a significant burden on global public health. Unfortunately, current treatments cannot fully alleviate this burden as they have limited effect on the transcriptional activity of the tenacious covalently closed circular DNA (cccDNA) responsible for viral persistence. Consequently, the HBV life cycle should be further investigated to develop new anti-HBV pharmaceutical targets. Our previous study discovered that the host gene TMEM203 hinders HBV replication by participating in calcium ion regulation. The involvement of intracellular calcium in HBV replication has also been confirmed. In this study, we found that transient receptor potential vanilloid 4 (TRPV4) notably enhances HBV reproduction by investigating the effects of several calcium ion-related molecules on HBV replication. The in-depth study showed that TRPV4 promotes hepatitis B core/capsid protein (HBc) protein stability through the ubiquitination pathway and then promotes the nucleocapsid assembly. HBc binds to cccDNA and reduces the nucleosome spacing of the cccDNA-histones complex, which may regulate HBV transcription by altering the nucleosome arrangement of the HBV genome. Moreover, our results showed that TRPV4 promotes cccDNA-dependent transcription by accelerating the methylation modification of H3K4. In conclusion, TRPV4 could interact with HBV core protein and regulate HBV during transcription and replication. These data suggest that TRPV4 exerts multifaceted HBV-related synergistic factors and may serve as a therapeutic target for CHB.
Collapse
Affiliation(s)
- Yu Zhang
- Peking University Ditan Teaching Hospital, Beijing, China
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Xiaoxue Yuan
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Jun Wang
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, Peking University Ditan Teaching Hospital, Beijing, China
| | - Ming Han
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Hongping Lu
- Beijing Pan-Asia Tongze Institute of Biomedicine Co, Ltd, Beijing, China
| | - Yun Wang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
- Beijing Key Laboratory of Emerging Infectious Diseases, The First Section of Liver Disease, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Shunai Liu
- Beijing Key Laboratory of Emerging Infectious Diseases, Institute of Infectious Diseases, Beijing Ditan Hospital, Capital Medical University, Beijing, China
| | - Song Yang
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Hui-Chun Xing
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| | - Jun Cheng
- Peking University Ditan Teaching Hospital, Beijing, China
- Department of Hepatology, Beijing Ditan Hospital of Capital Medical University, Beijing, China
| |
Collapse
|
11
|
Yang D, Xu K, Xu X, Xu P. Revisiting prostaglandin E2: A promising therapeutic target for osteoarthritis. Clin Immunol 2024; 260:109904. [PMID: 38262526 DOI: 10.1016/j.clim.2024.109904] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 01/08/2024] [Accepted: 01/14/2024] [Indexed: 01/25/2024]
Abstract
Osteoarthritis (OA) is a complex disease characterized by cartilage degeneration and persistent pain. Prostaglandin E2 (PGE2) plays a significant role in OA inflammation and pain. Recent studies have revealed the significant role of PGE2-mediated skeletal interoception in the progression of OA, providing new insights into the pathogenesis and treatment of OA. This aspect also deserves special attention in this review. Additionally, PGE2 is directly involved in pathologic processes including aberrant subchondral bone remodeling, cartilage degeneration, and synovial inflammation. Therefore, celecoxib, a commonly used drug to alleviate inflammatory pain through inhibiting PGE2, serves not only as an analgesic for OA but also as a potential disease-modifying drug. This review provides a comprehensive overview of the discovery history, synthesis and release pathways, and common physiological roles of PGE2. We discuss the roles of PGE2 and celecoxib in OA and pain from skeletal interoception and multiple perspectives. The purpose of this review is to highlight PGE2-mediated skeletal interoception and refresh our understanding of celecoxib in the pathogenesis and treatment of OA.
Collapse
Affiliation(s)
- Dinglong Yang
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Ke Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Xin Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China
| | - Peng Xu
- Department of Joint Surgery, Honghui Hospital, Xi'an Jiaotong University, Xi'an 710054, China.
| |
Collapse
|
12
|
Collins JM, Lang A, Parisi C, Moharrer Y, Nijsure MP, Thomas Kim JH, Ahmed S, Szeto GL, Qin L, Gottardi R, Dyment NA, Nowlan NC, Boerckel JD. YAP and TAZ couple osteoblast precursor mobilization to angiogenesis and mechanoregulation in murine bone development. Dev Cell 2024; 59:211-227.e5. [PMID: 38141609 PMCID: PMC10843704 DOI: 10.1016/j.devcel.2023.11.029] [Citation(s) in RCA: 22] [Impact Index Per Article: 22.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2023] [Revised: 08/07/2023] [Accepted: 11/30/2023] [Indexed: 12/25/2023]
Abstract
Fetal bone development occurs through the conversion of avascular cartilage to vascularized bone at the growth plate. This requires coordinated mobilization of osteoblast precursors with blood vessels. In adult bone, vessel-adjacent osteoblast precursors are maintained by mechanical stimuli; however, the mechanisms by which these cells mobilize and respond to mechanical cues during embryonic development are unknown. Here, we show that the mechanoresponsive transcriptional regulators Yes-associated protein (YAP) and transcriptional co-activator with PDZ-binding motif (TAZ) spatially couple osteoblast precursor mobilization to angiogenesis, regulate vascular morphogenesis to control cartilage remodeling, and mediate mechanoregulation of embryonic murine osteogenesis. Mechanistically, YAP and TAZ regulate a subset of osteoblast-lineage cells, identified by single-cell RNA sequencing as vessel-associated osteoblast precursors, which regulate transcriptional programs that direct blood vessel invasion through collagen-integrin interactions and Cxcl12. Functionally, in 3D human cell co-culture, CXCL12 treatment rescues angiogenesis impaired by stromal cell YAP/TAZ depletion. Together, these data establish functions of the vessel-associated osteoblast precursors in bone development.
Collapse
Affiliation(s)
- Joseph M Collins
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Annemarie Lang
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Cristian Parisi
- Department of Bioengineering, Imperial College London, London, UK
| | - Yasaman Moharrer
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Mechanical Engineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Madhura P Nijsure
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Jong Hyun Thomas Kim
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Saima Ahmed
- Department of Bioengineering, Imperial College London, London, UK
| | | | - Ling Qin
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA
| | - Riccardo Gottardi
- Department of Pediatrics, Division of Pulmonary Medicine, The Children's Hospital of Philadelphia, Philadelphia, PA, USA
| | - Nathaniel A Dyment
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA
| | - Niamh C Nowlan
- Department of Bioengineering, Imperial College London, London, UK; School of Mechanical and Materials Engineering, University College Dublin, Dublin, Ireland; UCD Conway Institute, University College Dublin, Dublin, Ireland
| | - Joel D Boerckel
- Department of Bioengineering, University of Pennsylvania, Philadelphia, PA, USA; Department of Orthopaedic Surgery, Perelman School of Medicine, University of Pennsylvania, Philadelphia, PA, USA.
| |
Collapse
|
13
|
Min Q, Gao Y, Wang Y. Bioelectricity in dental medicine: a narrative review. Biomed Eng Online 2024; 23:3. [PMID: 38172866 PMCID: PMC10765628 DOI: 10.1186/s12938-023-01189-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/07/2023] [Accepted: 12/05/2023] [Indexed: 01/05/2024] Open
Abstract
BACKGROUND Bioelectric signals, whether exogenous or endogenous, play crucial roles in the life processes of organisms. Recently, the significance of bioelectricity in the field of dentistry is steadily gaining greater attention. OBJECTIVE This narrative review aims to comprehensively outline the theory, physiological effects, and practical applications of bioelectricity in dental medicine and to offer insights into its potential future direction. It attempts to provide dental clinicians and researchers with an electrophysiological perspective to enhance their clinical practice or fundamental research endeavors. METHODS An online computer search for relevant literature was performed in PubMed, Web of Science and Cochrane Library, with the keywords "bioelectricity, endogenous electric signal, electric stimulation, dental medicine." RESULTS Eventually, 288 documents were included for review. The variance in ion concentration between the interior and exterior of the cell membrane, referred to as transmembrane potential, forms the fundamental basis of bioelectricity. Transmembrane potential has been established as an essential regulator of intercellular communication, mechanotransduction, migration, proliferation, and immune responses. Thus, exogenous electric stimulation can significantly alter cellular action by affecting transmembrane potential. In the field of dental medicine, electric stimulation has proven useful for assessing pulp condition, locating root apices, improving the properties of dental biomaterials, expediting orthodontic tooth movement, facilitating implant osteointegration, addressing maxillofacial malignancies, and managing neuromuscular dysfunction. Furthermore, the reprogramming of bioelectric signals holds promise as a means to guide organism development and intervene in disease processes. Besides, the development of high-throughput electrophysiological tools will be imperative for identifying ion channel targets and precisely modulating bioelectricity in the future. CONCLUSIONS Bioelectricity has found application in various concepts of dental medicine but large-scale, standardized, randomized controlled clinical trials are still necessary in the future. In addition, the precise, repeatable and predictable measurement and modulation methods of bioelectric signal patterns are essential research direction.
Collapse
Affiliation(s)
- Qingqing Min
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yajun Gao
- Department of Endodontics, Wuxi Stomatology Hospital, Wuxi, 214000, China
| | - Yao Wang
- Department of Implantology, Wuxi Stomatology Hospital, Wuxi, 214000, China.
| |
Collapse
|
14
|
张 强, Godfred GKT, 张 艳, 卫 小, 陈 维, 张 全. [Research progress of chondrocyte mechanotransduction mediated by TRPV4 and PIEZOs]. SHENG WU YI XUE GONG CHENG XUE ZA ZHI = JOURNAL OF BIOMEDICAL ENGINEERING = SHENGWU YIXUE GONGCHENGXUE ZAZHI 2023; 40:638-644. [PMID: 37666753 PMCID: PMC10477401 DOI: 10.7507/1001-5515.202301029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Subscribe] [Scholar Register] [Received: 01/30/2023] [Revised: 05/08/2023] [Indexed: 09/06/2023]
Abstract
Mechanical signal transduction are crucial for chondrocyte in response to mechanical cues during the growth, development and osteoarthritis (OA) of articular cartilage. Extracellular matrix (ECM) turnover regulates the matrix mechanical microenvironment of chondrocytes. Thus, understanding the mechanotransduction mechanisms during chondrocyte sensing the matrix mechanical microenvironment can develop effective targeted therapy for OA. In recent decades, growing evidences are rapidly advancing our understanding of the mechanical force-dependent cartilage remodeling and injury responses mediated by TRPV4 and PIEZOs. In this review, we highlighted the mechanosensing mechanism mediated by TRPV4 and PIEZOs during chondrocytes sensing mechanical microenvironment of the ECM. Additionally, the latest progress in the regulation of OA by inflammatory signals mediated by TRPV4 and PIEZOs was also introduced. These recent insights provide the potential mechanotheraputic strategies to target these channels and prevent cartilage degeneration associated with OA. This review will shed light on the pathogenesis of articular cartilage, searching clinical targeted therapies, and designing cell-induced biomaterials.
Collapse
Affiliation(s)
- 强 张
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - Godfred K Tawiah Godfred
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 艳君 张
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- 山西医科大学 第二临床医院 骨与软骨组织损伤修复山西省重点实验室(太原 030001)Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, the Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, P. R. China
| | - 小春 卫
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 维毅 陈
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
| | - 全有 张
- 太原理工大学 生物医学工程学院(太原 030024)College of Biomedical Engineering, Taiyuan University of Technology, Taiyuan 030024, P. R. China
- 山西医科大学 第二临床医院 骨与软骨组织损伤修复山西省重点实验室(太原 030001)Shanxi Key Laboratory of Bone and Soft Tissue Injury Repair, the Second Hospital of Shanxi Medical University, Shanxi Medical University, Taiyuan 030001, P. R. China
| |
Collapse
|
15
|
Murphy P, Rolfe RA. Building a Co-ordinated Musculoskeletal System: The Plasticity of the Developing Skeleton in Response to Muscle Contractions. ADVANCES IN ANATOMY, EMBRYOLOGY, AND CELL BIOLOGY 2023; 236:81-110. [PMID: 37955772 DOI: 10.1007/978-3-031-38215-4_4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/14/2023]
Abstract
The skeletal musculature and the cartilage, bone and other connective tissues of the skeleton are intimately co-ordinated. The shape, size and structure of each bone in the body is sculpted through dynamic physical stimuli generated by muscle contraction, from early development, with onset of the first embryo movements, and through repair and remodelling in later life. The importance of muscle movement during development is shown by congenital abnormalities where infants that experience reduced movement in the uterus present a sequence of skeletal issues including temporary brittle bones and joint dysplasia. A variety of animal models, utilising different immobilisation scenarios, have demonstrated the precise timing and events that are dependent on mechanical stimulation from movement. This chapter lays out the evidence for skeletal system dependence on muscle movement, gleaned largely from mouse and chick immobilised embryos, showing the many aspects of skeletal development affected. Effects are seen in joint development, ossification, the size and shape of skeletal rudiments and tendons, including compromised mechanical function. The enormous plasticity of the skeletal system in response to muscle contraction is a key factor in building a responsive, functional system. Insights from this work have implications for our understanding of morphological evolution, particularly the challenging concept of emergence of new structures. It is also providing insight for the potential of physical therapy for infants suffering the effects of reduced uterine movement and is enhancing our understanding of the cellular and molecular mechanisms involved in skeletal tissue differentiation, with potential for informing regenerative therapies.
Collapse
Affiliation(s)
- Paula Murphy
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland.
| | - Rebecca A Rolfe
- School of Natural Sciences, Trinity College Dublin, The University of Dublin, Dublin 2, Ireland
| |
Collapse
|