1
|
Xiong Z, Sui X, Bai Y, Liu Y, Leng Y, Wang S, Su B, Liu Z, Liu T. Hua Zheng San Ji Fang suppresses liver cancer progression by inhibiting TYRO3 expression via the ERK signaling pathway. PHYTOMEDICINE : INTERNATIONAL JOURNAL OF PHYTOTHERAPY AND PHYTOPHARMACOLOGY 2025; 139:156497. [PMID: 40023065 DOI: 10.1016/j.phymed.2025.156497] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/18/2024] [Revised: 02/07/2025] [Accepted: 02/10/2025] [Indexed: 03/04/2025]
Abstract
BACKGROUND Liver cancer poses a significant global health challenge owing to its increasing incidence and associated mortality rates. Traditional Chinese Medicine (TCM) has garnered attention for its potential in oncology, with formulations such as Hua Zheng San Ji Fang (HZSJF) exhibiting antineoplastic effects. HZSJF is clinically employed in China for cancer treatment; however, its molecular mechanisms in liver cancer remain elusive. TYRO3 plays a key role in tumor progression via the ERK signaling pathway, rendering it a potential therapeutic target. However, the effect of HZSJF on TYRO3 expression and its downstream signaling in liver cancer remains unexplored. PURPOSE This study aimed to investigate the molecular mechanisms through which HZSJF alleviates liver cancer progression, focusing on its regulation of TYRO3 and the ERK signaling pathway. METHODS TYRO3 expression in liver cancer and para-carcinoma tissues was analyzed using immunohistochemistry, reverse transcription-quantitative PCR, and western blotting. Liver cancer cells were used to investigate HZSJF-regulated pathways. Transcriptome sequencing was used to identify HZSJF-targeted genes. Cell proliferation, apoptosis, invasion, and migration were assessed using EdU, YO-PRO-1/PI staining, and transwell assays. ERK signaling involvement was examined using a specific inhibitor and validated in vivo using subcutaneous nude mouse tumor models. RESULTS HZSJF significantly inhibited TYRO3 expression and ERK pathway activation, reducing proliferation, invasion, and migration while promoting apoptosis. The ERK inhibitor corroborated the pathway's role in the antitumor effects of HZSJF. HZSJF suppressed tumor growth and TYRO3 expression in vivo. CONCLUSION HZSJF alleviated liver cancer progression through the ERK signaling pathway by inhibiting TYRO3 expression, presenting a potential therapeutic approach.
Collapse
Affiliation(s)
- Zhuang Xiong
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China; Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Road, Changchun City, Jilin Province, China.
| | - Xiaodan Sui
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China; Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Road, Changchun City, Jilin Province, China.
| | - Yu Bai
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China; ICU, Changchun University of Traditional Chinese Medicine Affiliated Third Clinical Hospital, 1643 Jing Yue Street, Changchun City, Jilin Province, China.
| | - Yangyang Liu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China; Preventive Medicine Department, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Road, Changchun City, Jilin Province, China.
| | - Yan Leng
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China; Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Road, Changchun City, Jilin Province, China.
| | - Song Wang
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China; Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Road, Changchun City, Jilin Province, China.
| | - Boyang Su
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China.
| | - Zhiyuan Liu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China.
| | - Tiejun Liu
- Changchun University of Chinese Medicine, 1035 Bo Shuo Road, Changchun City, Jilin Province, China; Department of Liver, Spleen and Gastroenterology, First Affiliated Hospital to Changchun University of Chinese Medicine, 1478 Gong Nong Road, Changchun City, Jilin Province, China.
| |
Collapse
|
2
|
Chen Z, Fang Y, Zhong S, Lin S, Yang X, Chen S. ITGB5 is a prognostic factor in colorectal cancer and promotes cancer progression and metastasis through the Wnt signaling pathway. Sci Rep 2025; 15:9225. [PMID: 40097546 PMCID: PMC11914080 DOI: 10.1038/s41598-025-93081-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Accepted: 03/04/2025] [Indexed: 03/19/2025] Open
Abstract
Integrin beta5 (ITGB5) expression levels are dysregulated in a variety of cancers. However, the mechanism and clinical value of ITGB5 in colorectal cancer (CRC) remain unclear. The Gene Expression Omnibus (GEO) database, real-time PCR, Western blotting and immunohistochemistry were utilized to evaluate ITGB5 expression levels in CRC tissue. Clinical data from the GEO database were obtained to further explore the associations of ITGB5 with clinical features and patient survival. Gene Ontology (GO), Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway enrichment analysis and gene set enrichment analysis (GSEA) were performed to explore the functions and signaling pathways of ITGB5. In addition, ITGB5 expression was inhibited by siRNA, and the roles of ITGB5 in SW480 and RKO cell growth, migration and invasion, as well as in the Wnt/β-catenin signaling pathway, were investigated. Pancancer studies have shown that ITGB5 is highly expressed in a variety of cancers. Moreover, ITGB5 expression is significantly increased in CRC tissues and is correlated with TNM stage, invasion depth, lymph node metastasis and distant metastasis stage. Kaplan-Meier analysis and meta-analysis of the GSE39582 and GSE17538 datasets indicated that a high level of ITGB5 is a high risk factor for overall survival (OS) and disease-free survival (DFS). In addition, receiver operating characteristic (ROC) curve analysis revealed the value of ITGB5 in predicting DFS, and univariate and multivariate analyses showed that ITGB5 may be an independent prognostic factor for DFS. GO and KEGG analyses indicated that many GO terms related to the extracellular matrix (ECM), focal adhesion and ECM-receptor interaction pathways were enriched. GSEA revealed focal adhesion, cancer pathways, ECM-receptor interactions and Wnt signaling pathways in the samples with high ITGB5 expression. Correlation analysis revealed that high ITGB5 expression is significantly correlated with the TGF-β/EMT pathway and WNT targets. Silencing of ITGB5 inhibited SW480 and RKO cell proliferation, invasion and migration. Mechanistically, downregulated ITGB5 expression blocked the Wnt/β-catenin signaling pathway and epithelial-mesenchymal transition (EMT) in CRC cells. Moreover, ITGB5 expression was related to M0 macrophages, M2 macrophages, neutrophils and plasma cell fractions. ITGB5 may be associated with poor prognosis and metastasis in patients with CRC. ITGB5 may hold promise as a prognostic biomarker and a new potential therapeutic target for CRC.
Collapse
Affiliation(s)
- Zhihua Chen
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Gastrointestinal Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 66, Jintang Road, Jianxin Town, Cangshan District, Fuzhou, 350002, Fujian, China
| | - Yuan Fang
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
| | - Shuwu Zhong
- Intensive Care Unit (ICU), The Second Affiliated Hospital of University of South China, No. 35 Jiefang Avenue, Zhengxiang District, Hengyang, 421001, Hunan, China
| | - Suyong Lin
- Department of Gastrointestinal Surgery, the First Affiliated Hospital, Fujian Medical University, No. 20, Chazhong Road, Taijiang District, Fuzhou, 350005, Fujian, China
- Department of Gastrointestinal Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 66, Jintang Road, Jianxin Town, Cangshan District, Fuzhou, 350002, Fujian, China
| | - Xiaoyu Yang
- School of Basic Medicine Sciences, Fujian Medical University, No. 1, Xuefu North Road, Minhou County, Fuzhou, 350122, China.
| | - Shaoqin Chen
- Department of Gastrointestinal Surgery, Mengchao Hepatobiliary Hospital of Fujian Medical University, No. 66, Jintang Road, Jianxin Town, Cangshan District, Fuzhou, 350002, Fujian, China.
| |
Collapse
|
3
|
Seehawer M, Polyak K. Epigenetic drivers of metalloproteinases and metastasis. Trends Cell Biol 2025:S0962-8924(25)00044-3. [PMID: 40089451 DOI: 10.1016/j.tcb.2025.02.010] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/11/2024] [Revised: 02/18/2025] [Accepted: 02/19/2025] [Indexed: 03/17/2025]
Abstract
Metalloproteinases (MPs) are crucial for development and homeostasis due to their diverse physiological functions, from the cellular to the organismal level. Their activity is tightly regulated at multiple levels, including epigenetic regulation through DNA methylation and histone modifications. Aberrant MP expression can result in pathological events, involving extracellular matrix remodeling, which can facilitate cancer cell invasion and dissemination. As clinical testing of MP inhibitors has been limited by toxicity, alternative approaches are needed. Epigenetically-driven MP expression is often specific to cancer cells, giving an enticing possibility for cancer cell-specific targeting. Moreover, aberrant epigenetic activity can also drive other metastatic events. Therefore, targeting the epigenetic regulators of MP expression may be a promising alternative approach for the prevention and treatment of metastatic disease.
Collapse
Affiliation(s)
- Marco Seehawer
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA
| | - Kornelia Polyak
- Department of Medical Oncology, Dana-Farber Cancer Institute, Boston, MA 02215, USA; Department of Medicine, Brigham and Women's Hospital, Boston, MA 02115, USA; Department of Medicine, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
4
|
Malikova I, Worth A, Aliyeva D, Khassenova M, Kriajevska MV, Tulchinsky E. Proteolysis of TAM receptors in autoimmune diseases and cancer: what does it say to us? Cell Death Dis 2025; 16:155. [PMID: 40044635 PMCID: PMC11883011 DOI: 10.1038/s41419-025-07480-9] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/13/2024] [Revised: 02/06/2025] [Accepted: 02/24/2025] [Indexed: 03/09/2025]
Abstract
Proteolytic processing of Receptor Tyrosine Kinases (RTKs) leads to the release of ectodomains in the extracellular space. These soluble ectodomains often retain the ligand binding activity and dampen canonical pathways by acting as decoy receptors. On the other hand, shedding the ectodomains may initiate new molecular events and diversification of signalling. Members of the TAM (TYRO3, AXL, MER) family of RTKs undergo proteolytic cleavage, and their soluble forms are present in the extracellular space and biological fluids. TAM receptors are expressed in professional phagocytes, mediating apoptotic cell clearance, and suppressing innate immunity. Enhanced shedding of TAM ectodomains is documented in autoimmune and some inflammatory conditions. Also, soluble TAM receptors are present at high levels in the biological fluids of cancer patients and are associated with poor survival. We outline the biology of TAM receptors and discuss how their proteolytic processing impacts autoimmunity and tumorigenesis. In autoimmune diseases, proteolysis of TAM receptors likely reflects reduced canonical signalling in professional phagocytes. In cancer, TAM receptors are expressed in the immune cells of the tumour microenvironment, where they control pathways facilitating immune evasion. In tumour cells, ectodomain shedding activates non-canonical TAM pathways, leading to epithelial-mesenchymal transition, metastasis, and drug resistance.
Collapse
Affiliation(s)
- Ilona Malikova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Anastassiya Worth
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Diana Aliyeva
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Madina Khassenova
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
| | - Marina V Kriajevska
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK
| | - Eugene Tulchinsky
- Department of Biomedical Sciences, Nazarbayev University School of Medicine, Astana, 020000, Kazakhstan.
- Department of Genetics and Genome Biology, University of Leicester, Leicester, UK.
| |
Collapse
|
5
|
Kirimlioglu E, Katirci E, Simsek M. Distinct TYRO3 and PROS1 expression levels contribute to preeclampsia pathogenesis. Histochem Cell Biol 2025; 163:29. [PMID: 39878883 DOI: 10.1007/s00418-024-02351-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 12/14/2024] [Indexed: 01/31/2025]
Abstract
Preeclampsia (PE) is a severe placental complication occurring after the 20th week of pregnancy. PE is associated with inflammation and an increased immune reaction against the fetus. TYRO3 and PROS1 suppress inflammation by clearing apoptotic cells. Disruptions in TYRO3/PROS1 signaling may increase the risk of PE. This study investigated the role of TYRO3/PROS1 signaling in the development of PE using healthy placentae (HP) and preeclamptic placentae (PP) of six pregnant women each. Tissue morphology using hematoxylin and eosin (H&E), TYRO3, MERTK, PROS1, and GAS6 mRNA levels using qPCR and localization and expression levels of TYRO3 and PROS1 using immunohistochemical staining (IHC) were evaluated. The study results show that the levels of TYRO3, MERTK, PROS1 and GAS6 mRNA, as well as TYRO3 protein, increased in PE. TYRO3 expression was observed in extravillous trophoblast (EVTs) and syncytiotrophoblast cells (SCTs). PROS1 was observed in HP fetal vessels through IHC while absent in PP. The reduced presence of PROS1 in the cytotrophoblast layer in PE may indicate a compromised blood-placental barrier. The absence of PROS1 in fetal vessels may suggest potential complement activation and thrombosis. TYRO3, MERTK, PROS1 and GAS6 may help balance impaired inflammation, apoptosis, thrombosis, complement activation and the blood-placental barrier in PE.
Collapse
Affiliation(s)
- Esma Kirimlioglu
- Departments of Histology and Embryology, School of Medicine, Faculty of Medicine, Akdeniz University, Antalya, Turkey.
| | - Ertan Katirci
- Departments of Histology and Embryology, School of Medicine, Faculty of Medicine, Akdeniz University, Antalya, Turkey
- Faculty of Medicine, Department of Histology and Embryology, Ahi Evran University, Kırşehir, Turkey
| | - Mehmet Simsek
- Departments of Obstetrics and Gynecology, School of Medicine, Akdeniz University, Antalya, Turkey
| |
Collapse
|
6
|
Sun W, Cheng J, Zhao R, Xiang Y, Li Y, Yu C, Deng Y, Cai G, Huang H, Lei Q, Liao Y, Liu Q. Ku70 targets BRD3-MYC/Cyclin D1 axis to drive hepatocellular carcinoma progression. Exp Cell Res 2025; 444:114404. [PMID: 39743013 DOI: 10.1016/j.yexcr.2024.114404] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 12/10/2024] [Accepted: 12/30/2024] [Indexed: 01/04/2025]
Abstract
Hepatocellular carcinoma (HCC) is a common cancer characterized by robustly proliferative and metastatic capabilities. Bromodomain-containing proteins are critical to the development of diverse diseases via regulating cell proliferation, differentiation, and death. However, the role of Bromodomain-containing protein 3 (BRD3) in HCC is elusive. Here, we found that BRD3 is notably upregulated in HCC samples and promotes the proliferation of HCC cells. Depletion of BRD3 notably inhibits the expression of c-MYC and Cyclin D1 and abrogates cell cycle progression in HCC cells. Co-IP and biomass spectrometry found that Ku70 interacts with BRD3 in the nucleus. The Ku70-BRD3 complex increases the expression of Cyclin D1 and c-MYC at transcriptional level in HCC. Additionally, depletion of Ku70/BRD3 ameliorates the growth of HCC xenografts established in mice. More importantly, the expression of Ku70 or BRD3 is positively correlated with the protein expression of c-MYC and Cyclin D1 in HCC samples. High expression of BRD3 or Ku70 is closely associated with poor prognosis in HCC patients. Overall, we reveal the important role of the Ku70-BRD3 complex in the onset and progression of HCC, suggesting that the Ku70-BRD3 complex is a promising target for clinical intervention in HCC.
Collapse
Affiliation(s)
- Wenshuang Sun
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ji Cheng
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Ruijun Zhao
- Department of Breast Surgery, Nanchang People's Hospital, Nanchang, Jiangxi, 330009, China
| | - Yujie Xiang
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Yuting Li
- Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Cuifu Yu
- Shenshan Medical Center, Memorial Hospital of Sun Yat-sen University, Shanwei, Guangdong, 516600, China
| | - Yuanfei Deng
- Department of Pathology, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Gengxi Cai
- Department of Breast Surgery, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China
| | - Hongbiao Huang
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China
| | - Qiucheng Lei
- Department of Organ Transplantation, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| | - Yuning Liao
- Guangzhou Institute of Cancer Research, the Affiliated Cancer Hospital, Guangzhou Medical University, Guangzhou, 510095, China; Guangzhou Municipal and Guangdong Provincial Key Laboratory of Protein Modification and Degradation, School of Basic Medical Sciences, Guangzhou Medical University, Guangzhou, Guangdong, 511436, China.
| | - Qing Liu
- Department of Pathology, The First People's Hospital of Foshan, Foshan, Guangdong, 528000, China.
| |
Collapse
|
7
|
Tanim K, Holtzhausen A, Thapa A, Huelse JM, Graham DK, Earp HS. MERTK Inhibition as a Targeted Novel Cancer Therapy. Int J Mol Sci 2024; 25:7660. [PMID: 39062902 PMCID: PMC11277220 DOI: 10.3390/ijms25147660] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/04/2024] [Revised: 07/06/2024] [Accepted: 07/07/2024] [Indexed: 07/28/2024] Open
Abstract
In this issue honoring the contributions of Greg Lemke, the Earp and Graham lab teams discuss several threads in the discovery, action, signaling, and translational/clinical potential of MERTK, originally called c-mer, a member of the TYRO3, AXL, and MERTK (TAM) family of receptor tyrosine kinases. The 30-year history of the TAM RTK family began slowly as all three members were orphan RTKs without known ligands and/or functions when discovered by three distinct alternate molecular cloning strategies in the pre-genome sequencing era. The pace of understanding their physiologic and pathophysiologic roles has accelerated over the last decade. The activation of ligands bridging externalized phosphatidylserine (PtdSer) has placed these RTKs in a myriad of processes including neurodevelopment, cancer, and autoimmunity. The field is ripe for further advancement and this article hopefully sets the stage for further understanding and therapeutic intervention. Our review will focus on progress made through the collaborations of the Earp and Graham labs over the past 30 years.
Collapse
Affiliation(s)
- K.M. Tanim
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Alisha Holtzhausen
- Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
| | - Aashis Thapa
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Justus M. Huelse
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - Douglas K. Graham
- Aflac Cancer and Blood Disorders Center, Children’s Healthcare of Atlanta, Atlanta, GA 30322, USA; (K.M.T.); (A.T.); (J.M.H.)
- Department of Pediatrics, Emory University School of Medicine, Atlanta, GA 30322, USA
| | - H. Shelton Earp
- Lineburger Comprehensive Cancer Center, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA;
- Department of Pharmacology, School of Medicine, University of North Carolina at Chapel Hill, Chapel Hill, NC 27599, USA
| |
Collapse
|
8
|
Wu M, Guan G, Yin H, Niu Q. A Review of the Bromodomain and Extraterminal Domain Epigenetic Reader Proteins: Function on Virus Infection and Cancer. Viruses 2024; 16:1096. [PMID: 39066258 PMCID: PMC11281655 DOI: 10.3390/v16071096] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/21/2024] [Revised: 06/28/2024] [Accepted: 07/03/2024] [Indexed: 07/28/2024] Open
Abstract
The BET (bromodomain and extraterminal domain) family of proteins, particularly BRD4 (bromodomain-containing protein 4), plays a crucial role in transcription regulation and epigenetic mechanisms, impacting key cellular processes such as proliferation, differentiation, and the DNA damage response. BRD4, the most studied member of this family, binds to acetylated lysines on both histones and non-histone proteins, thereby regulating gene expression and influencing diverse cellular functions such as the cell cycle, tumorigenesis, and immune responses to viral infections. Given BRD4's involvement in these fundamental processes, it is implicated in various diseases, including cancer and inflammation, making it a promising target for therapeutic development. This review comprehensively explores the roles of the BET family in gene transcription, DNA damage response, and viral infection, discussing the potential of targeted small-molecule compounds and highlighting BET proteins as promising candidates for anticancer therapy.
Collapse
Affiliation(s)
- Mengli Wu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Guiquan Guan
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| | - Hong Yin
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
- Jiangsu Co-Innovation Center for the Prevention and Control of Important Animal Infectious Disease and Zoonosis, Yangzhou University, Yangzhou 225009, China
| | - Qingli Niu
- State Key Laboratory for Animal Disease Control and Prevention, College of Veterinary Medicine, Lanzhou University, Lanzhou Veterinary Research Institute, Chinese Academy of Agricultural Sciences, Lanzhou 730000, China; (M.W.); (G.G.); (H.Y.)
- African Swine Fever Regional Laboratory of China (Lanzhou), Gansu Province Research Center for Basic Disciplines of Pathogen Biology, Lanzhou 730046, China
| |
Collapse
|
9
|
Yu J, Yuan Z, Liu J, Deng L, Zhao Y, Wang S, Tang E, Yang X, Li N, An J, Wu L. CCZ1 Accelerates the Progression of Cervical Squamous Cell Carcinoma by Promoting MMP2/MMP17 Expression. Biomedicines 2024; 12:1468. [PMID: 39062041 PMCID: PMC11274717 DOI: 10.3390/biomedicines12071468] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/15/2024] [Revised: 06/25/2024] [Accepted: 06/27/2024] [Indexed: 07/28/2024] Open
Abstract
Cervical squamous cell carcinoma (CSCC) represents a significant global health concern among females. Identifying new biomarkers and therapeutic targets is pivotal for improving the prognosis of CSCC. This study investigates the prognostic relevance of CCZ1 in CSCC and elucidates its downstream pathways and targets using a combination of bioinformatics analysis and experimental validation. Transcriptomic analysis of 239 CSCC and 3 normal cervical samples from The Cancer Genome Atlas database reveals a marked upregulation of CCZ1 mRNA levels in CSCC, and elevated CCZ1 mRNA levels were associated with poor prognosis. Immunohistochemical analysis of clinical samples also confirmed these findings. Furthermore, functional assays, including Cell Counting Kit-8, colony formation, Transwell, and flow cytometry, elucidated the influence of CCZ1 on CSCC cell proliferation, migration, invasion, and cell cycle progression. Remarkably, CCZ1 knockdown suppressed CSCC progression both in vitro and in vivo. Mechanistically, CCZ1 knockdown downregulated MMP2 and MMP17 expression. Restoring MMP2 or MMP17 expression rescued phenotypic alterations induced by CCZ1 knockdown. Hence, CCZ1 promotes CSCC progression by upregulating MMP2 and MMP17 expression, emerging as a novel biomarker in CSCC and presenting potential as a therapeutic target in CSCC.
Collapse
Affiliation(s)
- Jing Yu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
- State Key Laboratory of Molecular Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China
| | - Zhenlong Yuan
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Jing Liu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Lu Deng
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Yuting Zhao
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Shengnan Wang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Enyu Tang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Xi Yang
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Ning Li
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Jusheng An
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| | - Lingying Wu
- Department of Gynecology Oncology, National Cancer Center/National Clinical Research Center for Cancer/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing 100021, China; (J.Y.); (Z.Y.); (J.L.); (L.D.); (Y.Z.); (S.W.); (E.T.); (X.Y.); (N.L.)
| |
Collapse
|
10
|
Liu Y, Wang D, Luan Y, Tao B, Li Q, Feng Q, Zhou H, Mu J, Yu J. The application of organoids in colorectal diseases. Front Pharmacol 2024; 15:1412489. [PMID: 38983913 PMCID: PMC11231380 DOI: 10.3389/fphar.2024.1412489] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2024] [Accepted: 06/07/2024] [Indexed: 07/11/2024] Open
Abstract
Intestinal organoids are a three-dimensional cell culture model derived from colon or pluripotent stem cells. Intestinal organoids constructed in vitro strongly mimic the colon epithelium in cell composition, tissue architecture, and specific functions, replicating the colon epithelium in an in vitro culture environment. As an emerging biomedical technology, organoid technology has unique advantages over traditional two-dimensional culture in preserving parental gene expression and mutation, cell function, and biological characteristics. It has shown great potential in the research and treatment of colorectal diseases. Organoid technology has been widely applied in research on colorectal topics, including intestinal tumors, inflammatory bowel disease, infectious diarrhea, and intestinal injury regeneration. This review focuses on the application of organoid technology in colorectal diseases, including the basic principles and preparation methods of organoids, and explores the pathogenesis of and personalized treatment plans for various colorectal diseases to provide a valuable reference for organoid technology development and application.
Collapse
Affiliation(s)
- Yanxin Liu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Dongxu Wang
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Yanhong Luan
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Boqiang Tao
- Department of Oral and Maxillofacial Surgery, Hospital of Stomatology, Jilin University, Changchun, China
| | - Qirong Li
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Qiang Feng
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Hengzong Zhou
- Laboratory Animal Center, College of Animal Science, Jilin University, Changchun, China
| | - Jianfeng Mu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| | - Jinhai Yu
- Department of Gastric and Colorectal Surgery, General Surgery Center, The First Hospital of Jilin University, Changchun, China
| |
Collapse
|
11
|
Zhang Y, Luo R, Peng J, He Z, Tan D, Liu X, Wang H, Wang H. Differential clinical outcomes after 3 versus 5 years in a comparison of preoperative chemotherapy with and without radiotherapy in locally advanced rectal cancer: A national cohort propensity score-matched study. Heliyon 2024; 10:e27684. [PMID: 38524592 PMCID: PMC10958347 DOI: 10.1016/j.heliyon.2024.e27684] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/28/2023] [Revised: 03/01/2024] [Accepted: 03/05/2024] [Indexed: 03/26/2024] Open
Abstract
Background Preoperative chemotherapy alone might be a good alternative to preoperative chemoradiotherapy for patients with locally advanced rectal cancer, yet long-term real-world data from the same cohort are lacking. Methods Patients diagnosed with stage II-III rectal adenocarcinoma from 2011 to 2015 were randomly sampled from the SEER-Plus database to evaluate the superiority of preoperative chemoradiotherapy versus preoperative chemotherapy alone. Findings A total of 1314 eligible patients were enrolled, with a median follow-up of 74.0 months. At 3-year follow-up, neither overall survival (OS) nor cancer-specific survival (CSS) was significantly different between the two treatment groups. At 5-year follow-up, CSS was similar across groups (HR 0.768, 95% CI 0.532-1.108; P = 0.156), but the 5-year OS was significantly better in the preoperative chemoradiotherapy group than in the preoperative chemotherapy group (HR 0.682, 95% CI 0.538-0.866; P = 0.002). Besides, the landmark analysis indicated a direct contrast in the CSS within 3 years (HR 1.101, 95% CI 0.598-2.029; P = 0.756) versus that at 3-5 years (HR 0.597, 95% CI 0.377-0.948; P = 0.027). The landmark analysis also showed directly contrasting OS outcomes within 3 years (HR 0.761, 95% CI 0.533-1.086; P = 0.130) versus those at 3-5 years (HR 0.621, 95% CI 0.451-0.857; P = 0.003). Interpretation In patients with locally advanced rectal cancer under real-world treatment practices, the addition of preoperative radiotherapy to chemotherapy improves survival outcomes at 3-5 years' follow-up but not at 3-year follow-up.
Collapse
Affiliation(s)
- Yuanxin Zhang
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Rui Luo
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Jingqi Peng
- Academy of Traditional Chinese Medicine, Xinjiang Uygur Autonomous Region, Xinjiang, China
| | - Zichuan He
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Delin Tan
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Xueping Liu
- Office of Gastrointestinal and Anal Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Hui Wang
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| | - Huaiming Wang
- Department of Colorectal Surgery, Department of General Surgery, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Guangdong Provincial Key Laboratory of Colorectal and Pelvic Floor Diseases, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
- Biomedical Innovation Center, The Sixth Affiliated Hospital, Sun Yat-sen University, Guangzhou, China
| |
Collapse
|
12
|
Wang BR, Wang J, Tian T, Zhang SX, Zhao YQ, Meng SY, Wu ZY, Huang F, Zeng J, Ni J. Genetic correlation, shared loci, but no causality between bipolar disorder and inflammatory bowel disease: A genome-wide pleiotropic analysis. J Affect Disord 2024; 348:167-174. [PMID: 38154582 DOI: 10.1016/j.jad.2023.12.042] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/24/2023] [Revised: 11/21/2023] [Accepted: 12/20/2023] [Indexed: 12/30/2023]
Abstract
BACKGROUND AND AIMS The comorbidity between bipolar disorder (BD) and inflammatory bowel disease (IBD) has been widely reported in observational studies. However, unclear whether this comorbidity reflects a shared genetic architecture. METHODS Leveraging large-scale genome-wide association study (GWAS) summary statistics of BD, IBD and its subtypes, ulcerative colitis (UC) and Crohn's disease (CD), we performed a genome-wide pleiotropic analysis to estimate heritability and genetic correlation, identify pleiotropy loci/genes, and explore the shared biological pathway. Mendelian randomization (MR) studies were subsequently employed to infer whether the potential causal relationship is present. RESULTS We found a positive significant genetic correlation between BD and IBD (rg = 0.10, P = 7.00 × 10-4), UC (rg = 0.09, P = 2.90 × 10-3), CD (rg = 0.08, P = 6.10 × 10-3). In cross-trait meta-analysis, a total of 29, 24, and 23 independent SNPs passed the threshold for significant association between BD and IBD, UC, and CD, respectively. We identified five novel pleiotropy genes including ZDHHC2, SCRN1, INPP4B, C1orf123, and BRD3 in both BD and IBD, as well as in its subtypes UC and CD. Pathway enrichment analyses revealed that those pleiotropy genes were mainly enriched in several immune-related signal transduction pathways and cerebral disease-related pathways. MR analyses provided no evidence for a causal relationship between BD and IBD. CONCLUSION Our findings corroborated that shared genetic basis and common biological pathways may explain the comorbidity of BD and IBD. These findings further our understanding of shared genetic mechanisms underlying BD and IBD, and potentially provide points of intervention that may allow the development of new therapies for these co-occurrent disorders.
Collapse
Affiliation(s)
- Bing-Ran Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China; Department of Clinical Medicine, the Second School of Clinical Medical, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jing Wang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Tian Tian
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Shang-Xin Zhang
- Department of Gastrointestinal Surgery, Department of General Surgery, First Affiliated Hospital of Anhui Medical University, Hefei, Anhui 230032, China
| | - Yu-Qiang Zhao
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Shi-Ying Meng
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Zhuo-Yi Wu
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China
| | - Fen Huang
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China
| | - Jing Zeng
- Department of Gastroenterology, Xinhua Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai 200092, China.
| | - Jing Ni
- Department of Epidemiology and Biostatistics, School of Public Health, Anhui Medical University, Hefei, Anhui 230032, China; Inflammation and Immune Mediated Diseases Laboratory of Anhui Province, Hefei, Anhui 230032, China.
| |
Collapse
|
13
|
Kwantwi LB. Genetic alterations shape innate immune cells to foster immunosuppression and cancer immunotherapy resistance. Clin Exp Med 2023; 23:4289-4296. [PMID: 37910258 DOI: 10.1007/s10238-023-01240-9] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/01/2023] [Accepted: 10/26/2023] [Indexed: 11/03/2023]
Abstract
Cancer immunotherapy, particularly immune checkpoint inhibitors, has opened a new avenue for cancer treatment following the durable clinical benefits. Despite the clinical successes across several cancer types, primary or acquired resistance might eventually lead to cancer progression in patients with clinical responses. Hence, to broaden the clinical applicability of these treatments, a detailed understanding of the mechanisms limiting the efficacy of cancer immunotherapy is needed. Evidence provided thus far has implicated immunosuppressive innate immune cells infiltrating the tumor microenvironment as key players in immunotherapy resistance. According to the available data, genetic alterations can shape the innate immune response to promote immunotherapy resistance and tumor progression. Herein, this review has discussed the current understanding of the underlying mechanisms where genetic alterations modulate the innate immune milieu to drive immunosuppression and immunotherapy resistance.
Collapse
Affiliation(s)
- Louis Boafo Kwantwi
- Department of Pathology, Beckman Research Institute, City of Hope National Medical Center, Duarte, California, USA.
| |
Collapse
|
14
|
Nikdouz A, Orso F. Emerging roles of 3D-culture systems in tackling tumor drug resistance. CANCER DRUG RESISTANCE (ALHAMBRA, CALIF.) 2023; 6:788-804. [PMID: 38263982 PMCID: PMC10804388 DOI: 10.20517/cdr.2023.93] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/11/2023] [Revised: 11/01/2023] [Accepted: 11/14/2023] [Indexed: 01/25/2024]
Abstract
Drug resistance that affects patients universally is a major challenge in cancer therapy. The development of drug resistance in cancer cells is a multifactor event, and its process involves numerous mechanisms that allow these cells to evade the effect of treatments. As a result, the need to understand the molecular mechanisms underlying cancer drug sensitivity is imperative. Traditional 2D cell culture systems have been utilized to study drug resistance, but they often fail to mimic the 3D milieu and the architecture of real tissues and cell-cell interactions. As a result of this, 3D cell culture systems are now considered a comprehensive model to study drug resistance in vitro. Cancer cells exhibit an in vivo behavior when grown in a three-dimensional environment and react to therapy more physiologically. In this review, we discuss the relevance of main 3D culture systems in the study of potential approaches to overcome drug resistance and in the identification of personalized drug targets with the aim of developing patient-specific treatment strategies that can be put in place when resistance emerges.
Collapse
Affiliation(s)
| | - Francesca Orso
- Department of Translational Medicine, University of Eastern Piedmont, Novara 28100, Italy
| |
Collapse
|
15
|
Patnaik E, Madu C, Lu Y. Epigenetic Modulators as Therapeutic Agents in Cancer. Int J Mol Sci 2023; 24:14964. [PMID: 37834411 PMCID: PMC10573652 DOI: 10.3390/ijms241914964] [Citation(s) in RCA: 22] [Impact Index Per Article: 11.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/01/2023] [Revised: 10/04/2023] [Accepted: 10/04/2023] [Indexed: 10/15/2023] Open
Abstract
Epigenetics play a crucial role in gene regulation and cellular processes. Most importantly, its dysregulation can contribute to the development of tumors. Epigenetic modifications, such as DNA methylation and histone acetylation, are reversible processes that can be utilized as targets for therapeutic intervention. DNA methylation inhibitors disrupt DNA methylation patterns by inhibiting DNA methyltransferases. Such inhibitors can restore normal gene expression patterns, and they can be effective against various forms of cancer. Histone deacetylase inhibitors increase histone acetylation levels, leading to altered gene expressions. Like DNA methylation inhibitors, histone methyltransferase inhibitors target molecules involved in histone methylation. Bromodomain and extra-terminal domain inhibitors target proteins involved in gene expression. They can be effective by inhibiting oncogene expression and inducing anti-proliferative effects seen in cancer. Understanding epigenetic modifications and utilizing epigenetic inhibitors will offer new possibilities for cancer research.
Collapse
Affiliation(s)
- Eshaan Patnaik
- Department of Biology, Memphis University School, Memphis, TN 38119, USA;
| | - Chikezie Madu
- Departments of Biological Sciences, University of Memphis, Memphis, TN 38152, USA;
| | - Yi Lu
- Department of Pathology and Laboratory Medicine, University of Tennessee Health Science Center, Memphis, TN 38163, USA
| |
Collapse
|
16
|
Neto Í, Rocha J, Gaspar MM, Reis CP. Experimental Murine Models for Colorectal Cancer Research. Cancers (Basel) 2023; 15:2570. [PMID: 37174036 PMCID: PMC10177088 DOI: 10.3390/cancers15092570] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/15/2023] Open
Abstract
Colorectal cancer (CRC) is the third most prevalent malignancy worldwide and in both sexes. Numerous animal models for CRC have been established to study its biology, namely carcinogen-induced models (CIMs) and genetically engineered mouse models (GEMMs). CIMs are valuable for assessing colitis-related carcinogenesis and studying chemoprevention. On the other hand, CRC GEMMs have proven to be useful for evaluating the tumor microenvironment and systemic immune responses, which have contributed to the discovery of novel therapeutic approaches. Although metastatic disease can be induced by orthotopic injection of CRC cell lines, the resulting models are not representative of the full genetic diversity of the disease due to the limited number of cell lines suitable for this purpose. On the other hand, patient-derived xenografts (PDX) are the most reliable for preclinical drug development due to their ability to retain pathological and molecular characteristics. In this review, the authors discuss the various murine CRC models with a focus on their clinical relevance, benefits, and drawbacks. From all models discussed, murine CRC models will continue to be an important tool in advancing our understanding and treatment of this disease, but additional research is required to find a model that can correctly reflect the pathophysiology of CRC.
Collapse
Affiliation(s)
- Íris Neto
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - João Rocha
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Maria Manuela Gaspar
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
| | - Catarina P. Reis
- Research Institute for Medicines (iMed.ULisboa), Faculdade de Farmácia, Universidade de Lisboa, Av. Prof. Gama Pinto, 1649-003 Lisboa, Portugal; (Í.N.); (J.R.)
- Instituto de Biofísica e Engenharia Biomédica (IBEB), Faculdade de Ciências, Universidade de Lisboa, Campo Grande, 1749-016 Lisboa, Portugal
| |
Collapse
|