1
|
Søgaard AB, Løvschall KB, Montasell MC, Cramer CB, Marcet PM, Pedersen AB, Jakobsen JH, Zelikin AN. Artificial Receptor in Synthetic Cells Performs Transmembrane Activation of Proteolysis. Adv Biol (Weinh) 2025; 9:e2400053. [PMID: 38767247 PMCID: PMC12078879 DOI: 10.1002/adbi.202400053] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/29/2024] [Revised: 04/11/2024] [Indexed: 05/22/2024]
Abstract
The design of artificial, synthetic cells is a fundamentally important and fast-developing field of science. Of the diverse attributes of cellular life, artificial transmembrane signaling across the biomolecular barriers remains a high challenge with only a few documented successes. Herein, the study achieves signaling across lipid bilayers and connects an exofacial enzymatic receptor activation to an intracellular biochemical catalytic response using an artificial receptor. The mechanism of signal transduction for the artificial receptor relies on the triggered decomposition of a self-immolative linker. Receptor activation ensues its head-to-tail decomposition and the release of a secondary messenger molecule into the internal volume of the synthetic cell. Transmembrane signaling is demonstrated in synthetic cells based on liposomes and mammalian cell-sized giant unilamellar vesicles and illustrates receptor performance in cell mimics with a diverse size and composition of the lipid bilayer. In giant unilamellar vesicles, transmembrane signaling connects exofacial receptor activation with intracellular activation of proteolysis. Taken together, the results of this study take a step toward engineering receptor-mediated, responsive behavior in synthetic cells.
Collapse
Affiliation(s)
| | | | | | | | | | | | | | - Alexander N. Zelikin
- iNano Interdisciplinary Nanoscience CenterAarhus UniversityAarhus8000Denmark
- Department of ChemistryAarhus UniversityAarhus8000Denmark
| |
Collapse
|
2
|
Song P, Chen J, Zhao D, Shi K, Xu R, Zhu M, Zhao L, Pashuck ET, Ouyang L, Jiao F, Lin Y. Evolving Emulsion Microcompartments via Enzyme-Mimicking Amyloid-Mediated Interfacial Catalysis. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025; 21:e2409601. [PMID: 39670696 DOI: 10.1002/smll.202409601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/17/2024] [Revised: 11/27/2024] [Indexed: 12/14/2024]
Abstract
Living organisms take in matter and energy from their surroundings, transforming these inputs into forms that cells can use to sustain metabolism and power various functions. A significant advancement in the development of protocells and life-like materials has been the creation of cell-like microcompartments capable of evolving into higher-order structures characterized by hierarchy and complexity. In this study, a smart emulsion system is designed to digests chemical substrates and generates organic or inorganic products, driving the self-organization and structuration of microcompartments. Central to this system is a lipase-derived peptide that undergoes amyloid fibrillation, exhibiting hydrolase-like activity and stabilizing Pickering emulsions. Through catalytic hydrolysis or silicatein-inspired mineralization, these emulsion microcompartments generate self-organized surfactant layers from organic substrates or silica scaffolds from inorganic substrates at the oil-water interface, respectively, helping to prevent coalescence. This process further facilitates a structural evolution into high-internal phase emulsion gels that are suitable for direct-ink-writing 3D printing. The findings underscore the potential for designing self-evolving soft materials that replicate the structures and functions of living organisms.
Collapse
Affiliation(s)
- Peiyong Song
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Dan Zhao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Runze Xu
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Mengyue Zhu
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Li Zhao
- School of Light Industry, Beijing Technology & Business University (BTBU), Beijing, 100048, China
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA, 18015, USA
| | - Liliang Ouyang
- Department of Mechanical Engineering, Tsinghua University, Beijing, 100084, China
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Key Lab of Biomedical Materials of Natural Macromolecules (Beijing University of Chemical Technology, Ministry of Education), Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
3
|
Lin P, Zhang S, Komatsubara F, Konishi H, Nakata E, Morii T. Artificial Compartments Encapsulating Enzymatic Reactions: Towards the Construction of Artificial Organelles. Chempluschem 2025; 90:e202400483. [PMID: 39351818 DOI: 10.1002/cplu.202400483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2024] [Revised: 09/30/2024] [Indexed: 11/08/2024]
Abstract
Cells have used compartmentalization to implement complex biological processes involving thousands of enzyme cascade reactions. Enzymes are spatially organized into the cellular compartments to carry out specific and efficient reactions in a spatiotemporally controlled manner. These compartments are divided into membrane-bound and membraneless organelles. Mimicking such cellular compartment systems has been a challenge for years. A variety of artificial scaffolds, including liposomes, polymersomes, proteins, nucleic acids, or hybrid materials have been used to construct artificial membrane-bound or membraneless compartments. These artificial compartments may have great potential for applications in biosynthesis, drug delivery, diagnosis and therapeutics, among others. This review first summarizes the typical examples of cellular compartments. In particular, the recent studies on cellular membraneless organelles (biomolecular condensates) are reviewed. We then summarize the recent advances in the construction of artificial compartments using engineered platforms. Finally, we provide our insights into the construction of biomimetic systems and the applications of these systems. This review article provides a timely summary of the relevant perspectives for the future development of artificial compartments, the building blocks for the construction of artificial organelles or cells.
Collapse
Affiliation(s)
- Peng Lin
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Shiwei Zhang
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Futa Komatsubara
- Graduate School of Energy Science, Kyoto University, Yoshida-hommachi, Sakyo-ku, Kyoto, 606-8501, Japan
| | - Hiroaki Konishi
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Eiji Nakata
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
| | - Takashi Morii
- Institute of Advanced Energy, Kyoto University, Uji-shi, Kyoto, 611-0011, Japan
- Department of Health and Nutrition, Kyoto Koka Women's University, Ukyo-ku, Kyoto, 615-0882, Japan
| |
Collapse
|
4
|
Koball A, Obst F, Gaitzsch J, Voit B, Appelhans D. Boosting Microfluidic Enzymatic Cascade Reactions with pH-Responsive Polymersomes by Spatio-Chemical Activity Control. SMALL METHODS 2024; 8:e2400282. [PMID: 38989686 PMCID: PMC11671858 DOI: 10.1002/smtd.202400282] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/26/2024] [Revised: 06/26/2024] [Indexed: 07/12/2024]
Abstract
Microfluidic flow reactors permit the implementation of sensitive biocatalysts in polymeric environments (e.g., hydrogel dots), mimicking nature through the use of diverse microstructures within defined confinements. However, establishing complex hybrid structures to mimic biological processes and functions under continuous flow with optimal utilization of all components involved in the reaction process represents a significant scientific challenge. To achieve spatial, chemical, and temporal control for any microfluidic application, compartmentalization is required, as well as the unification of different sensitive compartments in the reaction chamber for the microfluidic flow design. This study presents a self-regulating microfluidic system fabricated by a sequential photostructuring process with an intermediate chemical process step to realize pH-sensitive hybrid structures for the fabrication of a microfluidic double chamber reactor for controlled enzymatic cascade reaction (ECR). The key point is the adaptation and retention of the function of pH-responsive horseradish peroxidase-loaded polymersomes in a microfluidic chip under continuous flow. ECR is successfully triggered and controlled by an interplay between glucose oxidase-converted glucose, the membrane state of pH-responsive polymersomes, and other parameters (e.g., flow rate and fluid composition). This study establishes a promising noninvasive regulatory platform for extended spatio-chemical control of current and future ECR and other cascade reaction systems.
Collapse
Affiliation(s)
- Andrea Koball
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieOrganische Chemie der PolymereD‐01062DresdenGermany
| | - Franziska Obst
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenInstitut für Halbleiter‐ und MikrosystemtechnikNöthnitzer Straße 64D‐01187DresdenGermany
| | - Jens Gaitzsch
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| | - Brigitte Voit
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
- Technische Universität DresdenFakultät Chemie und LebensmittelchemieOrganische Chemie der PolymereD‐01062DresdenGermany
| | - Dietmar Appelhans
- Leibniz‐Institut für Polymerforschung Dresden e.V.Hohe Straße 6D‐01069DresdenGermany
| |
Collapse
|
5
|
Chen H, Zhou S, Ngocho K, Zheng J, He X, Huang J, Wang K, Shi H, Liu J. Oriented triplex DNA as a synthetic receptor for transmembrane signal transduction. Nat Commun 2024; 15:9789. [PMID: 39532841 PMCID: PMC11557920 DOI: 10.1038/s41467-024-53960-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2024] [Accepted: 10/29/2024] [Indexed: 11/16/2024] Open
Abstract
Signal transduction across biological membranes enables cells to detect and respond to diverse chemical or physical signals, and replicating these complex biological processes through synthetic methods is of significant interest in synthetic biology. Here we present an artificial signal transduction system using oriented cholesterol-tagged triplex DNA (TD) as synthetic receptors to transmit and amplify signals across lipid bilayer membranes through H+-mediated TD conformational transitions from duplex to triplex. An auxiliary sequence, complementary to the third strand of the TD, ensures a controlled and preferred outward orientation of cholesterol-tagged TD on membranes. Upon external H+ stimuli, the conformational change triggers the translocation of the third strand from the outer to the inner membrane leaflet, resulting in effective transmembrane signal transduction. This mechanism enables fluorescence resonance energy transfer (FRET), selective photocleavage, catalytic signal amplification, and logic gate modulation within vesicles. Our findings demonstrate that these TD-based receptors mimic the functional dynamics of natural G protein-coupled receptors (GPCRs), providing a foundation for advanced applications in biosensing, cell signaling modulation, and targeted drug delivery systems.
Collapse
Affiliation(s)
- Hui Chen
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Shaohong Zhou
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Kleins Ngocho
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Jing Zheng
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Xiaoxiao He
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Jin Huang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Kemin Wang
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Hui Shi
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China
| | - Jianbo Liu
- State Key Laboratory of Chemo/Biosensing and Chemometrics, College of Chemistry and Chemical Engineering, Key Laboratory for Bio-Nanotechnology and Molecular Engineering of Hunan Province, Hunan University, Changsha, People's Republic of China.
| |
Collapse
|
6
|
Saha R, Choi JA, Chen IA. Protocell Effects on RNA Folding, Function, and Evolution. Acc Chem Res 2024; 57:2058-2066. [PMID: 39005057 PMCID: PMC11308369 DOI: 10.1021/acs.accounts.4c00174] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/14/2024] [Revised: 06/03/2024] [Accepted: 07/03/2024] [Indexed: 07/16/2024]
Abstract
Creating a living system from nonliving matter is a great challenge in chemistry and biophysics. The early history of life can provide inspiration from the idea of the prebiotic "RNA World" established by ribozymes, in which all genetic and catalytic activities were executed by RNA. Such a system could be much simpler than the interdependent central dogma characterizing life today. At the same time, cooperative systems require a mechanism such as cellular compartmentalization in order to survive and evolve. Minimal cells might therefore consist of simple vesicles enclosing a prebiotic RNA metabolism. The internal volume of a vesicle is a distinctive environment due to its closed boundary, which alters diffusion and available volume for macromolecules and changes effective molecular concentrations, among other considerations. These physical effects are mechanistically distinct from chemical interactions, such as electrostatic repulsion, that might also occur between the membrane boundary and encapsulated contents. Both indirect and direct interactions between the membrane and RNA can give rise to nonintuitive, "emergent" behaviors in the model protocell system. We have been examining how encapsulation inside membrane vesicles would affect the folding and activity of entrapped RNA. Using biophysical techniques such as FRET, we characterized ribozyme folding and activity inside vesicles. Encapsulation inside model protocells generally promoted RNA folding, consistent with an excluded volume effect, independently of chemical interactions. This energetic stabilization translated into increased ribozyme activity in two different systems that were studied (hairpin ribozyme and self-aminoacylating RNAs). A particularly intriguing finding was that encapsulation could rescue the activity of mutant ribozymes, suggesting that encapsulation could affect not only folding and activity but also evolution. To study this further, we developed a high-throughput sequencing assay to measure the aminoacylation kinetics of many thousands of ribozyme variants in parallel. The results revealed an unexpected tendency for encapsulation to improve the better ribozyme variants more than worse variants. During evolution, this effect would create a tilted playing field, so to speak, that would give additional fitness gains to already-high-activity variants. According to Fisher's Fundamental Theorem of Natural Selection, the increased variance in fitness should manifest as faster evolutionary adaptation. This prediction was borne out experimentally during in vitro evolution, where we observed that the initially diverse ribozyme population converged more quickly to the most active sequences when they were encapsulated inside vesicles. The studies in this Account have expanded our understanding of emergent protocell behavior, by showing how simply entrapping an RNA inside a vesicle, which could occur spontaneously during vesicle formation, might profoundly affect the evolutionary landscape of the RNA. Because of the exponential dynamics of replication and selection, even small changes to activity and function could lead to major evolutionary consequences. By closely studying the details of minimal yet surprisingly complex protocells, we might one day trace a pathway from encapsulated RNA to a living system.
Collapse
Affiliation(s)
- Ranajay Saha
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Jongseok A. Choi
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| | - Irene A. Chen
- Department of Chemical and Biomolecular
Engineering, Department of Chemistry and Biochemistry, University of California Los Angeles, Los Angeles, California 90095-1592, United States
| |
Collapse
|
7
|
Chen J, Shi K, Chen R, Zhai Z, Song P, Chow LW, Chandrawati R, Pashuck ET, Jiao F, Lin Y. Supramolecular Hydrolase Mimics in Equilibrium and Kinetically Trapped States. Angew Chem Int Ed Engl 2024; 63:e202317887. [PMID: 38161176 DOI: 10.1002/anie.202317887] [Citation(s) in RCA: 6] [Impact Index Per Article: 6.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/23/2023] [Revised: 12/22/2023] [Accepted: 12/28/2023] [Indexed: 01/03/2024]
Abstract
The folding of proteins into intricate three-dimensional structures to achieve biological functions, such as catalysis, is governed by both kinetic and thermodynamic controls. The quest to design artificial enzymes using minimalist peptides seeks to emulate supramolecular structures existing in a catalytically active state. Drawing inspiration from the nuanced process of protein folding, our study explores the enzyme-like activity of amphiphilic peptide nanosystems in both equilibrium and non-equilibrium states, featuring the formation of supramolecular nanofibrils and nanosheets. In contrast to thermodynamically stable nanosheets, the kinetically trapped nanofibrils exhibit dynamic characteristics (e.g., rapid molecular exchange and relatively weak intermolecular packing), resulting in a higher hydrolase-mimicking activity. We emphasize that a supramolecular microenvironment characterized by an optimal local polarity, microviscosity, and β-sheet hydrogen bonding is conducive to both substrate binding and ester bond hydrolysis. Our work underscores the pivotal role of both thermodynamic and kinetic control in impacting biomimetic catalysis and sheds a light on the development of artificial enzymes.
Collapse
Affiliation(s)
- Jing Chen
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Ke Shi
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Rongjing Chen
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhaoyi Zhai
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Peiyong Song
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| | - Lesley W Chow
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
- Department of Materials Science and Engineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Rona Chandrawati
- School of Chemical Engineering, Australian Centre for Nanomedicine (ACN), The University of New South Wales (UNSW Sydney), Sydney, NSW 2052, Australia
| | - E Thomas Pashuck
- Department of Bioengineering, Lehigh University, Bethlehem, PA 18015, USA
| | - Fang Jiao
- Laboratory of Soft Matter Physics, Institute of Physics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Physical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yiyang Lin
- State Key Laboratory of Chemical Resource Engineering, Beijing Laboratory of Biomedical Materials, Beijing University of Chemical Technology, Beijing, 100029, China
| |
Collapse
|
8
|
Andersen DG, Pedersen AB, Jørgensen MH, Montasell MC, Søgaard AB, Chen G, Schroeder A, Andersen GR, Zelikin AN. Chemical Zymogens and Transmembrane Activation of Transcription in Synthetic Cells. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2309385. [PMID: 38009384 DOI: 10.1002/adma.202309385] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 09/12/2023] [Revised: 11/17/2023] [Indexed: 11/28/2023]
Abstract
In this work, synthetic cells equipped with an artificial signaling pathway that connects an extracellular trigger event to the activation of intracellular transcription are engineered. Learning from nature, this is done via an engineering of responsive enzymes, such that activation of enzymatic activity can be triggered by an external biochemical stimulus. Reversibly deactivated creatine kinase to achieve triggered production of adenosine triphosphate, and a reversibly deactivated nucleic acid polymerase for on-demand synthesis of RNA are engineered. An extracellular, enzyme-activated production of a diffusible zymogen activator is also designed. The key achievement of this work is that the importance of cellularity is illustrated whereby the separation of biochemical partners is essential to resolve their incompatibility, to enable transcription within the confines of a synthetic cell. The herein designed biochemical pathway and the engineered synthetic cells are arguably primitive compared to their natural counterpart. Nevertheless, the results present a significant step toward the design of synthetic cells with responsive behavior, en route from abiotic to life-like cell mimics.
Collapse
Affiliation(s)
| | | | | | | | | | - Gal Chen
- Department of Chemical Engineering, Technion, Haifa, 32000, Israel
| | - Avi Schroeder
- Department of Chemical Engineering, Technion, Haifa, 32000, Israel
| | - Gregers Rom Andersen
- Department of Molecular Biology and Genetics, Aarhus University, Aarhus, 8000, Denmark
| | - Alexander N Zelikin
- iNano Interdisciplinary Nanoscience Center, Aarhus University, Aarhus, 8000, Denmark
- Department of Chemistry, Aarhus University, Aarhus, 8000, Denmark
| |
Collapse
|
9
|
Lin Z, Beneyton T, Baret JC, Martin N. Coacervate Droplets for Synthetic Cells. SMALL METHODS 2023; 7:e2300496. [PMID: 37462244 DOI: 10.1002/smtd.202300496] [Citation(s) in RCA: 36] [Impact Index Per Article: 18.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/14/2023] [Revised: 06/15/2023] [Indexed: 12/24/2023]
Abstract
The design and construction of synthetic cells - human-made microcompartments that mimic features of living cells - have experienced a real boom in the past decade. While many efforts have been geared toward assembling membrane-bounded compartments, coacervate droplets produced by liquid-liquid phase separation have emerged as an alternative membrane-free compartmentalization paradigm. Here, the dual role of coacervate droplets in synthetic cell research is discussed: encapsulated within membrane-enclosed compartments, coacervates act as surrogates of membraneless organelles ubiquitously found in living cells; alternatively, they can be viewed as crowded cytosol-like chassis for constructing integrated synthetic cells. After introducing key concepts of coacervation and illustrating the chemical diversity of coacervate systems, their physicochemical properties and resulting bioinspired functions are emphasized. Moving from suspensions of free floating coacervates, the two nascent roles of these droplets in synthetic cell research are highlighted: organelle-like modules and cytosol-like templates. Building the discussion on recent studies from the literature, the potential of coacervate droplets to assemble integrated synthetic cells capable of multiple life-inspired functions is showcased. Future challenges that are still to be tackled in the field are finally discussed.
Collapse
Affiliation(s)
- Zi Lin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Thomas Beneyton
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Jean-Christophe Baret
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| | - Nicolas Martin
- Université de Bordeaux, CNRS, Centre de Recherche Paul Pascal, UMR5031, 115 avenue du Dr. Schweitzer, 33600, Pessac, France
| |
Collapse
|
10
|
O'Callaghan JA, Lee D, Hammer DA. Asymmetry-Enhanced Motion of Urease-Powered Micromotors from Double Emulsion-Templated Microcapsules. ACS APPLIED MATERIALS & INTERFACES 2023. [PMID: 37902731 DOI: 10.1021/acsami.3c10222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 10/31/2023]
Abstract
Autonomous motion of enzyme-powered motors has important implications for drug delivery, cell-cell communication, and protocell engineering. Although many of these systems are inspired by the motion of biological cells, most of them lack key structural features, like micrometer-sized boundaries and aqueous compartments, and rely on bubble propulsion to generation motion. In this study, we use droplet microfluidics to generate large populations of cell-sized microcapsules with poly(lactic-co-glycolic acid) shells and functionalize their surfaces with the enzyme urease to drive their motion. We adjust the number of surface functional groups for urease conjugation by preparing microcapsules with two different surfactants, poly(vinyl alcohol) (PVA) and poly(ethylene-alt-maleic anhydride) (PEMA). We also tune the surface roughness of the microcapsules by varying the concentration of silica nanoparticles in the droplet middle phase. We find that PEMA plays a crucial role in increasing the grafting density of urease on the surface of smooth microcapsules, leading to active motion in the presence of urea. In addition, rough microcapsules prepared with PEMA and loaded with comparable amounts of urease move up to three times faster than their smooth counterparts, which we believe is due to an asymmetric distribution of urease on the surface, giving rise to a preferred direction of motion. Taken together, these results provide new insights into the role that various stabilizing agents play in the induction of motion by enzymatic motors prepared from microfluidics, which is a potentially powerful tool for future preparation of motile protocells in biomedicine.
Collapse
Affiliation(s)
- Jessica Ann O'Callaghan
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daeyeon Lee
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Daniel A Hammer
- Department of Chemical and Biomolecular Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
- Department of Bioengineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| |
Collapse
|
11
|
Tinao B, Aragones JL, Arriaga LR. Aqueous Two-Phase Systems within Selectively Permeable Vesicles. ACS Macro Lett 2023; 12:1132-1137. [PMID: 37498640 PMCID: PMC10433528 DOI: 10.1021/acsmacrolett.3c00341] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/31/2023] [Accepted: 07/21/2023] [Indexed: 07/28/2023]
Abstract
An aqueous two-phase system (ATPS) encapsulated within a vesicle organizes the vesicle core as two coexisting phases that partition encapsulated solutes. Here, we use microfluidic technologies to produce vesicles that efficiently encapsulate mixtures of macromolecules, providing a versatile platform to determine the phase behavior of ATPSs. Moreover, we use compartmentalized vesicles to investigate how membrane permeability affects the dynamics of the encapsulated ATPS. Designing a membrane selectively permeable to one of the components of the ATPS, we show that out-of-equilibrium phase separations formed by a rapid outflow of water can be spontaneously reversed by a slower outflow of the permeating component across the vesicle membrane. This dynamics may be exploited advantageously by cells to separate and connect metabolic and signaling routes within their nucleoplasm or cytoplasm depending on external conditions.
Collapse
Affiliation(s)
- Berta Tinao
- Department of Theoretical Condensed
Matter Physics, Condensed Matter Physics Center (IFIMAC) and Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Juan L. Aragones
- Department of Theoretical Condensed
Matter Physics, Condensed Matter Physics Center (IFIMAC) and Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| | - Laura R. Arriaga
- Department of Theoretical Condensed
Matter Physics, Condensed Matter Physics Center (IFIMAC) and Instituto
Nicolás Cabrera, Universidad Autónoma
de Madrid, 28049 Madrid, Spain
| |
Collapse
|