1
|
Hiramatsu Y, Nishida T, Nugraha DK, Osada-Oka M, Nakane D, Imada K, Horiguchi Y. Retraction. SCIENCE ADVANCES 2025; 11:eadv4615. [PMID: 39742501 DOI: 10.1126/sciadv.adv4615] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2025]
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Dendi Krisna Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
| | - Mayuko Osada-Oka
- Food Hygiene and Environmental Health, Division of Applied Life Science, Graduate School of Life and Environmental Sciences, Kyoto Prefectural University, 1-5 Shimogamohangi-cho, Sakyo-ku, Kyoto 606-8522, Japan
| | - Daisuke Nakane
- Department of Engineering Science, Graduate School of Informatics and Engineering, The University of Electro-Communications, 1-5-1 Chofugaoka, Chofu, Tokyo 182-8585, Japan
| | - Katsumi Imada
- Department of Macromolecular Science, Graduate School of Science, Osaka University, 1-1 Machikaneyama-cho, Toyonaka, Osaka 560-0043, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamada-oka, Suita, Osaka 565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, 2-8 Yamada-oka, Suita, Osaka 565-0871, Japan
| |
Collapse
|
2
|
Sim M, Nguyen J, Škopová K, Yoo K, Tai CH, Knipling L, Chen Q, Kim D, Nolan S, Elaksher R, Majdalani N, Lorenzi H, Stibitz S, Moon K, Hinton DM. A highly conserved sRNA downregulates multiple genes, including a σ 54 transcriptional activator, in the virulence mode of Bordetella pertussis. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.19.624354. [PMID: 39803429 PMCID: PMC11722255 DOI: 10.1101/2024.11.19.624354] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 01/24/2025]
Abstract
Bacterial sRNAs together with the RNA chaperone Hfq post-transcriptionally regulate gene expression by affecting ribosome binding or mRNA stability. In the human pathogen Bordetella pertussis, the causative agent of whooping cough, hundreds of sRNAs have been identified, but their roles in B. pertussis biology are mostly unknown. Here we characterize a Hfq-dependent sRNA (S17), whose level is dramatically higher in the virulence (Bvg+) mode. We show that transcription from a σA-dependent promoter yields a long form of 190 nucleotides (nts) that is processed by RNase E to generate a shorter, more stable form (S17S) of 67 nts. Using RNA-seq and RT-qPCR, we identify 92 genes whose expression significantly increases in the absence of S17. Of these genes, 70 contain sequences at/near their ribosome binding sites (RBSs) that are complementary to single-stranded (ss) regions (Sites 1 or 2) of S17S. The identified genes include those encoding multiple transporters and 3 transcriptional regulators. Using a lacZ translational reporter system, we demonstrate that S17S directly represses one of these genes, BP2158, a σ54-dependent transcriptional regulator, suggesting the repression of a σ54 regulon in the Bvg+ mode. We find that the S17S region containing Sites 1 and 2 is 100% conserved throughout various Betaproteobacteria species, and the S17S target sites are often conserved in the homologs of the B. pertussis target genes. We speculate that S17S regulation represents a highly conserved process that fine-tunes gene expression in the Bvg+ mode of B. pertussis and perhaps under other conditions in related bacteria.
Collapse
Affiliation(s)
- Minji Sim
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Jeffers Nguyen
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Karolína Škopová
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Kyungyoon Yoo
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Chin-Hsien Tai
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Leslie Knipling
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Qing Chen
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - David Kim
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Summer Nolan
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Rawan Elaksher
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Nadim Majdalani
- Laboratory of Molecular Biology, Center for Cancer Research, National Cancer Institute, Bethesda, USA
| | - Hernan Lorenzi
- Tri-Lab Bioinformatics Core, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Scott Stibitz
- Division of Bacterial, Parasitic, and Allergenic Products, Center for Biologics Evaluation and Research, Food and Drug Administration, Silver Spring, MD, USA
| | - Kyung Moon
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| | - Deborah M Hinton
- Gene Expression and Regulation Section, Laboratory of Biochemistry and Genetics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD, USA
| |
Collapse
|
3
|
Debandi M, Carrica M, Hentschker C, Baroli C, Völker U, Rodriguez ME, Surmann K, Lamberti Y. Role of the Putative Histidine Kinase BP1092 in Bordetella pertussis Virulence Regulation and Intracellular Survival. J Proteome Res 2024; 23:1666-1678. [PMID: 38644792 DOI: 10.1021/acs.jproteome.3c00817] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/23/2024]
Abstract
Bordetella pertussis persists inside host cells, and virulence factors are crucial for intracellular adaptation. The regulation of B. pertussis virulence factor transcription primarily occurs through the modulation of the two-component system (TCS) known as BvgAS. However, additional regulatory systems have emerged as potential contributors to virulence regulation. Here, we investigate the impact of BP1092, a putative TCS histidine kinase that shows increased levels after bacterial internalization by macrophages, on B. pertussis proteome adaptation under nonmodulating (Bvg+) and modulating (Bvg-) conditions. Using mass spectrometry, we compare B. pertussis wild-type (wt), a BP1092-deficient mutant (ΔBP1092), and a ΔBP1092 trans-complemented strain under both conditions. We find an altered abundance of 10 proteins, including five virulence factors. Specifically, under nonmodulating conditions, the mutant strain showed decreased levels of FhaB, FhaS, and Cya compared to the wt. Conversely, under modulating conditions, the mutant strain exhibited reduced levels of BvgA and BvgS compared to those of the wt. Functional assays further revealed that the deletion of BP1092 gene impaired B. pertussis ability to survive within human macrophage THP-1 cells. Taken together, our findings allow us to propose BP1092 as a novel player involved in the intricate regulation of B. pertussis virulence factors and thus in adaptation to the intracellular environment. The data have been deposited to the ProteomeXchange Consortium via the PRIDE partner repository with the data set identifier PXD041940.
Collapse
Affiliation(s)
- Martina Debandi
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Mariela Carrica
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Christian Hentschker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Carlos Baroli
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Uwe Völker
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Maria Eugenia Rodriguez
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| | - Kristin Surmann
- Department of Functional Genomics, Interfaculty Institute for Genetics and Functional Genomics, University Medicine Greifswald, Greifswald 17475, Germany
| | - Yanina Lamberti
- CINDEFI (UNLP CONICET La Plata), Facultad de Ciencias Exactas, Universidad Nacional de La Plata, La Plata 1900, Argentina
| |
Collapse
|
4
|
Ma X, Nugraha DK, Hiramatsu Y, Horiguchi Y. RpoN (sigma factor 54) contributes to bacterial fitness during tracheal colonization of Bordetella bronchiseptica. Microbiol Immunol 2024; 68:36-46. [PMID: 38105571 DOI: 10.1111/1348-0421.13109] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/11/2023] [Revised: 12/02/2023] [Accepted: 12/03/2023] [Indexed: 12/19/2023]
Abstract
The Gram-negative pathogenic bacterium Bordetella bronchiseptica is a respiratory pathogen closely related to Bordetella pertussis, the causative agent of whooping cough. Despite sharing homologous virulence factors, B. bronchiseptica infects a broad range of mammalian hosts, including some experimental animals, whereas B. pertussis is strictly adapted to humans. Therefore, B. bronchiseptica is often used as a representative model to explore the pathogenicity of Bordetella in infection experiments with laboratory animals. Although Bordetella virulence factors, including toxins and adhesins have been studied well, our recent study implied that unknown virulence factors are involved in tracheal colonization and infection. Here, we investigated bacterial genes contributing to tracheal colonization by high-throughput transposon sequencing (Tn-seq). After the screening, we picked up 151 candidate genes of various functions and found that a rpoN-deficient mutant strain was defective in tracheal colonization when co-inoculated with the wild-type strain. rpoN encodes σ54 , a sigma factor that regulates the transcription of various genes, implying its contribution to various bacterial activities. In fact, we found RpoN of B. bronchiseptica is involved in bacterial motility and initial biofilm formation. From these results, we propose that RpoN supports bacterial colonization by regulating various bacteriological functions.
Collapse
Affiliation(s)
- Xingyan Ma
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Dendi K Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Osaka, Japan
- Center for Infectious Disease Education and Research, Osaka University, Osaka, Japan
| |
Collapse
|
5
|
Držmíšek J, Petráčková D, Dienstbier A, Čurnová I, Večerek B. T3SS chaperone of the CesT family is required for secretion of the anti-sigma factor BtrA in Bordetella pertussis. Emerg Microbes Infect 2023; 12:2272638. [PMID: 37850324 PMCID: PMC10732220 DOI: 10.1080/22221751.2023.2272638] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/30/2023] [Accepted: 10/15/2023] [Indexed: 10/19/2023]
Abstract
Bordetella pertussis is a Gram-negative, strictly human re-emerging respiratory pathogen and the causative agent of whooping cough. Similar to other Gram-negative pathogens, B. pertussis produces the type III secretion system, but its role in the pathogenesis of B. pertussis is enigmatic and yet to be elucidated. Here, we combined RNA-seq, LC-MS/MS, and co-immunoprecipitation techniques to identify and characterize the novel CesT family T3SS chaperone BP2265. We show that this chaperone specifically interacts with the secreted T3SS regulator BtrA and represents the first non-flagellar chaperone required for the secretion of an anti-sigma factor. In its absence, secretion but not production of BtrA and most T3SS substrates is severely impaired. It appears that the role of BtrA in regulating T3SS extends beyond its activity as an antagonist of the sigma factor BtrS. Predictions made by artificial intelligence system AlphaFold support the chaperone function of BP2265 towards BtrA and outline the structural basis for the interaction of BtrA with its target BtrS. We propose to rename BP2265 to BtcB for the Bordetella type III chaperone of BtrA.In addition, the absence of the BtcB chaperone results in increased expression of numerous flagellar genes and several virulence genes. While increased production of flagellar proteins and intimin BipA translated into increased biofilm formation by the mutant, enhanced production of virulence factors resulted in increased cytotoxicity towards human macrophages. We hypothesize that these phenotypic traits result indirectly from impaired secretion of BtrA and altered activity of the BtrA/BtrS regulatory node.
Collapse
Affiliation(s)
- Jakub Držmíšek
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Denisa Petráčková
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ana Dienstbier
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Ivana Čurnová
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| | - Branislav Večerek
- Laboratory of post-transcriptional control of gene expression, Institute of Microbiology of the Czech Academy of Sciences, Prague, Czech Republic
| |
Collapse
|
6
|
Hiramatsu Y, Nishida T, Ota N, Tamaki Y, Nugraha DK, Horiguchi Y. DAT, deacylating autotransporter toxin, from Bordetella parapertussis demyristoylates Gα i GTPases and contributes to cough. Proc Natl Acad Sci U S A 2023; 120:e2308260120. [PMID: 37748060 PMCID: PMC10556565 DOI: 10.1073/pnas.2308260120] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/19/2023] [Accepted: 08/28/2023] [Indexed: 09/27/2023] Open
Abstract
The pathogenic bacteria Bordetella pertussis and Bordetella parapertussis cause pertussis (whooping cough) and pertussis-like disease, respectively, both of which are characterized by paroxysmal coughing. We previously reported that pertussis toxin (PTx), which inactivates heterotrimeric GTPases of the Gi family through ADP-ribosylation of their α subunits, causes coughing in combination with Vag8 and lipid A in B. pertussis infection. In contrast, the mechanism of cough induced by B. parapertussis, which produces Vag8 and lipopolysaccharide (LPS) containing lipid A, but not PTx, remained to be elucidated. Here, we show that a toxin we named deacylating autotransporter toxin (DAT) of B. parapertussis inactivates heterotrimeric Gi GTPases through demyristoylation of their α subunits and contributes to cough production along with Vag8 and LPS. These results indicate that DAT plays a role in B. parapertussis infection in place of PTx.
Collapse
Affiliation(s)
- Yukihiro Hiramatsu
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Takashi Nishida
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Natsuko Ota
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Yuki Tamaki
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Dendi K. Nugraha
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
| | - Yasuhiko Horiguchi
- Department of Molecular Bacteriology, Research Institute for Microbial Diseases, Osaka University, Suita, Osaka565-0871, Japan
- Center for Infectious Disease Education and Research, Osaka University, Suita, Osaka565-0871, Japan
| |
Collapse
|
7
|
Trouillon J, Attrée I, Elsen S. The regulation of bacterial two-partner secretion systems. Mol Microbiol 2023; 120:159-177. [PMID: 37340956 DOI: 10.1111/mmi.15112] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2022] [Revised: 06/01/2023] [Accepted: 06/07/2023] [Indexed: 06/22/2023]
Abstract
Two-partner secretion (TPS) systems, also known as Type Vb secretion systems, allow the translocation of effector proteins across the outer membrane of Gram-negative bacteria. By secreting different classes of effectors, including cytolysins and adhesins, TPS systems play important roles in bacterial pathogenesis and host interactions. Here, we review the current knowledge on TPS systems regulation and highlight specific and common regulatory mechanisms across TPS functional classes. We discuss in detail the specific regulatory networks identified in various bacterial species and emphasize the importance of understanding the context-dependent regulation of TPS systems. Several regulatory cues reflecting host environment during infection, such as temperature and iron availability, are common determinants of expression for TPS systems, even across relatively distant species. These common regulatory pathways often affect TPS systems across subfamilies with different effector functions, representing conserved global infection-related regulatory mechanisms.
Collapse
Affiliation(s)
- Julian Trouillon
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Ina Attrée
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| | - Sylvie Elsen
- Université Grenoble Alpes, CNRS, CEA, IBS UMR 5075, Team Bacterial Pathogenesis and Cellular Responses, Grenoble, France
| |
Collapse
|