1
|
Yi L, Liu Y, Wan C, Li S, Zhou M, Qi F, Xie H, Wang X, Su Y, Du W, Feng X, Li Y, Liu BF, Chen P. Programmable Manually Powered Microfluidics for Rapid Point-of-Care Diagnosis of Urinary Tract Infection. Anal Chem 2025; 97:9480-9491. [PMID: 40268684 DOI: 10.1021/acs.analchem.5c00847] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Point-of-care testing (POCT) for urinary tract infection (UTI) holds significant importance in the field of disease prevention and control, as well as the advancement of personalized precision medicine. However, conventional methods for detecting UTIs continue to face challenges such as time-consuming and labor-intensive detection processes, and reliance on specialized equipment and personnel rendering them unsuitable for point-of-care applications, especially in resource-limited areas. Here, we propose a novel flexible programmable manually powered microfluidic (FPM) for rapid point-of-care diagnosis of UTIs. For the first time, the proposed FPMs was achieved through a combined strategy of laser printing, cutting, and laminating, with the entire process completed in under 15 min at a cost of less than $0.5, which effectively circumvent the traditionally time-consuming and labor-intensive soft lithography techniques. By incorporating a modular structure-based design concept, we successfully developed various types of portable FPMs with functionalities including parallel pumping, simultaneous releasing, quantitative dispensing, sequential releasing, cyclic motion of multiple liquids and concentration gradient generating. As a proof-of-concept demonstration, we initially employed a high-throughput parallel dispensing design to analyze six urinary biochemical markers within 1 min, presenting potential applicability for future at-home testing. We then integrated a manually powered concentration gradient generator with spatial confinement signal enhancement to enable rapid phenotypic antimicrobial susceptibility testing (AST) within three to 5 h, while achieving clinical diagnostic accuracy rates of up to 95.56%. Therefore, our proposed FPMs eliminate the need for external pumps or actuators and could serve as an affordable hand-held POCT tool for UTI diagnosis. Moreover, in resource-poor areas, they have potential utility as robust POCT devices addressing diverse rapid detection needs.
Collapse
Affiliation(s)
- Longyu Yi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yuqi Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Chao Wan
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Shunji Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Mengfan Zhou
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Fukang Qi
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Han Xie
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xin Wang
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yixiao Su
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Wei Du
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Xiaojun Feng
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Yiwei Li
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Bi-Feng Liu
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Peng Chen
- The Key Laboratory for Biomedical Photonics of MOE at Wuhan National Laboratory for Optoelectronics-Hubei Bioinformatics & Molecular Imaging Key Laboratory, Systems Biology Theme, Department of Biomedical Engineering, College of Life Science and Technology, Huazhong University of Science and Technology, Wuhan 430074, China
| |
Collapse
|
2
|
Mak D, Meffan C, Menges J, Marchant-Ludlow R, Hashemi A, Moore CP, Dobson RCJ, Nock V. The reversible capillary field effect transistor: a capillaric element for autonomous flow switching. LAB ON A CHIP 2025; 25:1993-2003. [PMID: 39820164 DOI: 10.1039/d4lc00706a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/19/2025]
Abstract
New flow control elements in capillaric circuits are key to achieving ever more complex lab-on-a-chip functionality while maintaining their autonomous and easy-to-use nature. Capillary field effect transistors valves allow for flow in channels to be restricted and cut off utilising a high pressure triggering channel and occluding air bubble. The reversible capillary field effect transistor presented here provides a new element that can restore fluid flow in closed microchannels via autonomous circuit feedback. This allows new flow switching functionality without the need for direct user input. The valve design utilises new circuitry that draws on competing capillary pressures to withdraw liquid from a reservoir connected to the valve, creating a suction pressure that removes the occluding bubble from the channel to allow flow past the valve. The resulting reopening restores flow to the closed channel and allows for enhanced autonomous control over fluid flows. This new functionality is flexible and has the potential to be applied in a wide variety of situations, as shown here by use in several extended proof of concept arrangements. Firstly, we demonstrate how to reopen one valve while closing another using the same trigger to achieve simultaneous flow switching. We then show how a single trigger can be used for the parallel reopening of multiple valves for simultaneous release of liquids. Finally, we show the reversible capillary field effect transistor used to achieve autonomous transient mixing ratios between multiple liquids utilising a series of triggering events to determine which liquid channels are open or closed as flow progresses. The functionality this valve adds to the capillaric toolbox opens up new possibilities for applications in the creation of fully automatic diagnostic capillaric devices.
Collapse
Affiliation(s)
- Daniel Mak
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Claude Meffan
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Chemical and Physical Sciences, Victoria University of Wellington, Wellington, New Zealand
| | - Julian Menges
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Rhys Marchant-Ludlow
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Azadeh Hashemi
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| | - Ciaran P Moore
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
| | - Renwick C J Dobson
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
- School of Biological Sciences, University of Canterbury, Christchurch, New Zealand
| | - Volker Nock
- Electrical and Computer Engineering, University of Canterbury, 20 Kirkwood Avenue, Ilam, Christchurch, New Zealand.
- Biomolecular Interaction Centre, University of Canterbury, Christchurch, New Zealand.
- MacDiarmid Institute for Advanced Materials and Nanotechnology, New Zealand
| |
Collapse
|
3
|
Hoang S, Shehada M, Karydis K, Brisk P, Grover WH. Controlling Biomedical Devices Using Pneumatic Logic. Ann Biomed Eng 2025; 53:207-216. [PMID: 39377956 DOI: 10.1007/s10439-024-03628-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 09/20/2024] [Indexed: 10/09/2024]
Abstract
Many biomedical devices are powered and controlled by electrical components. These electronics add to the cost of a device (possibly making the device too expensive for use in resource-limited or point-of-care settings) and can also render the device unsuitable for use in some environments (for example, high-humidity areas such as incubators where condensation could cause electrical short circuits, ovens where electronic components may overheat, or explosive or flammable environments where electric sparks could cause serious accidents). In this work, we show that pneumatic logic can be used to power and control biomedical devices without the need for electricity or electric components. Originally developed for controlling microfluidic "lab-on-a-chip" devices, these circuits use microfluidic valves like transistors in air-powered logic "circuits." We show that a modification to the basic valve design-adding additional air channels in parallel through the valve-creates a "high-flow" valve that is suitable for controlling a broad range of bioinstruments, not just microfluidics. As a proof-of-concept, we developed a high-flow pneumatic oscillator that uses five high-flow Boolean NOT gates arranged in a loop. Powered by a single constant vacuum source, the oscillator provides five out-of-phase pneumatic outputs that switch between vacuum and atmospheric pressure every 1.3 s. Additionally, a user can adjust the frequency of the oscillator by squeezing a bellows attached to one of the pneumatic outputs. We then used the pneumatic oscillator to power a low-cost 3D-printed laboratory rocker/shaker commonly used to keep blood products, cell cultures, and other heterogeneous samples in suspension. Our air-powered rocker costs around $12 USD to build and performs as well as conventional electronic rockers that cost $1000 USD or more. This is the first of many biomedical devices that can be made cheaper and safer using pneumatic logic.
Collapse
Affiliation(s)
- Shane Hoang
- Department of Bioengineering, University of California, Riverside, CA, USA
| | - Mabel Shehada
- Department of Bioengineering, University of California, Riverside, CA, USA
| | - Konstantinos Karydis
- Department of Electrical and Computer Engineering, University of California, Riverside, CA, USA
| | - Philip Brisk
- Department of Computer Science and Engineering, University of California, Riverside, CA, USA
| | - William H Grover
- Department of Bioengineering, University of California, Riverside, CA, USA.
| |
Collapse
|
4
|
Picella S, van Riet CM, Overvelde JTB. Pneumatic coding blocks enable programmability of electronics-free fluidic soft robots. SCIENCE ADVANCES 2024; 10:eadr2433. [PMID: 39705364 DOI: 10.1126/sciadv.adr2433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/21/2024] [Accepted: 11/15/2024] [Indexed: 12/22/2024]
Abstract
Decision-making based on environmental cues is a crucial feature of autonomous systems. Embodying this feature in soft robots poses nontrivial challenges on both hardware and software that can undermine the simplicity and autonomy of such devices. Existing pneumatic electronics-free soft robots have so far mostly been approached by using system fluidic circuit architectures analogous to digital electronics. Instead, here we design dedicated pneumatic coding blocks equivalent to If, If...break, and For software control statements, which are based on the analog nature of nonlinear mechanical components. We demonstrate that we can combine these coding blocks into programs to implement sequences and to control an electronics-free autonomous soft gripper that switches between behaviors based on interactions with the environment. As such, our strategy provides an alternative approach to designing complex behavior in soft robotics that is more reminiscent of how functionalities are also encoded in the body of living systems.
Collapse
Affiliation(s)
- Sergio Picella
- Autonomous Matter Department, AMOLF, Amsterdam 1098 XG, Netherlands
- Institute for Complex Molecular Systems and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Catharina M van Riet
- Autonomous Matter Department, AMOLF, Amsterdam 1098 XG, Netherlands
- Department of Industrial Design, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| | - Johannes T B Overvelde
- Autonomous Matter Department, AMOLF, Amsterdam 1098 XG, Netherlands
- Institute for Complex Molecular Systems and Department of Mechanical Engineering, Eindhoven University of Technology, Eindhoven 5600 MB, Netherlands
| |
Collapse
|
5
|
Lesher-Pérez SC, Vasani V, So J, Takayama S. Forced air oscillations - pneumatic capacitance in microfluidic oscillators produces non-linear responses and emergent behaviors. LAB ON A CHIP 2024; 24:4798-4807. [PMID: 39291593 PMCID: PMC11409223 DOI: 10.1039/d4lc00455h] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/26/2024] [Accepted: 08/23/2024] [Indexed: 09/19/2024]
Abstract
Pneumatic control mechanisms have long been integral to microfluidic systems, primarily using solenoid valves, pressurized gases, and vacuums to direct liquid flow. Despite advancements in liquid-driven self-regulated microfluidic circuits, gas-driven systems leveraging fluid compressibility remain underexplored. This study presents a mathematical and experimental investigation of gas-driven microfluidic circuits, focusing on forced-air oscillators. We derive and validate a first-principles model of microfluidic circuit elements operated under positive pressurization, using a 'molecular packets' analogy to elucidate compressibility effects. Our findings reveal that gas compressibility impacts circuit behavior, by acting similar to a large capacitor in the system, which inherently results in longer oscillation periods. As the syringe evacuates, the capacitance decreases, which in turn reduces the oscillation period. Experimental validation of our system demonstrates persistent behavior when using forced air to drive the microfluidic oscillators, this includes assessing devices with various PDMS membrane thicknesses, as well as evaluating device performance under different flow rates and syringe sizes. The forced air oscillators exhibited decreasing periods and capacitance over time, aligning with our theoretical predictions.
Collapse
Affiliation(s)
- Sasha Cai Lesher-Pérez
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
- Department of Biomedical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Vishwa Vasani
- George W. Woodruff School of Mechanical Engineering, Georgia Institute of Technology, Atlanta, GA, USA
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
| | - Jihye So
- Department of Chemical Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Shuichi Takayama
- The Parker H. Petit Institute for Bioengineering and Bioscience, Georgia Institute of Technology, Atlanta, GA, USA
- Wallace H. Coulter Department of Biomedical Engineering, Georgia Institute of Technology and Emory School of Medicine, Atlanta, GA, USA.
| |
Collapse
|
6
|
Song Y, Zhou Y, Zhang K, Fan Z, Zhang F, Wei M. Microfluidic programmable strategies for channels and flow. LAB ON A CHIP 2024; 24:4483-4513. [PMID: 39120605 DOI: 10.1039/d4lc00423j] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 08/10/2024]
Abstract
This review summarizes programmable microfluidics, an advanced method for precise fluid control in microfluidic technology through microchannel design or liquid properties, referring to microvalves, micropumps, digital microfluidics, multiplexers, micromixers, slip-, and block-based configurations. Different microvalve types, including electrokinetic, hydraulic/pneumatic, pinch, phase-change and check valves, cater to diverse experimental needs. Programmable micropumps, such as passive and active micropumps, play a crucial role in achieving precise fluid control and automation. Due to their small size and high integration, microvalves and micropumps are widely used in medical devices and biological analysis. In addition, this review provides an in-depth exploration of the applications of digital microfluidics, multiplexed microfluidics, and mixer-based microfluidics in the manipulation of liquid movement, mixing, and splitting. These methodologies leverage the physical properties of liquids, such as capillary forces and dielectric forces, to achieve precise control over fluid dynamics. SlipChip technology, which branches into rotational SlipChip and translational SlipChip, controls fluid through sliding motion of the microchannel. On the other hand, innovative designs in microfluidic systems pursue better modularity, reconfigurability and ease of assembly. Different assembly strategies, from one-dimensional assembly blocks and two-dimensional Lego®-style blocks to three-dimensional reconfigurable modules, aim to enhance flexibility and accessibility. These technologies enhance user-friendliness and accessibility by offering integrated control systems, making them potentially usable outside of specialized technical labs. Microfluidic programmable strategies for channels and flow hold promising applications in biomedical research, chemical analysis and drug screening, providing theoretical and practical guidance for broader utilization in scientific research and practical applications.
Collapse
Affiliation(s)
- Yongxian Song
- School of Electronic Engineering, Nanjing Xiaozhuang University, Nanjing, Jiangsu 211171, China.
| | - Yijiang Zhou
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Kai Zhang
- School of Automation, Huaiyin Institute of Technology, Huaian, 223003, China.
| | - Zhaoxuan Fan
- Research Institute of Chemical Defence, Beijing 102205, China.
| | - Fei Zhang
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| | - Mingji Wei
- School of Electrical and Information Engineering, Jiangsu University, Zhenjiang, Jiangsu 212013, China.
| |
Collapse
|
7
|
Mei T, Zhou Y, Chen CQ. Mechanical Neural Networks with Explicit and Robust Neurons. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2310241. [PMID: 38898738 PMCID: PMC11434013 DOI: 10.1002/advs.202310241] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/27/2023] [Revised: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Mechanical computing provides an information processing method to realize sensing-analyzing-actuation integrated mechanical intelligence and, when combined with neural networks, can be more efficient for data-rich cognitive tasks. The requirement of solving implicit and usually nonlinear equilibrium equations of motion in training mechanical neural networks makes computation challenging and costly. Here, an explicit mechanical neuron is developed of which the response can be directly determined without the need of solving equilibrium equations. A training method is proposed to ensure the robustness of the neuron, i.e., insensitivity to defects and perturbations. The explicitness and robustness of the neurons facilitate the assembly of various network structures. Two exemplified networks, a robust mechanical convolutional neural network and a mechanical recurrent neural network with long short-term memory capabilities for associative learning, are experimentally demonstrated. The introduction of the explicit and robust mechanical neuron streamlines the design of mechanical neural networks fulfilling robotic matter with a level of intelligence.
Collapse
Affiliation(s)
- Tie Mei
- Department of Engineering MechanicsCNMM and AMLTsinghua UniversityBeijing100084P. R. China
| | - Yuan Zhou
- Department of Engineering MechanicsCNMM and AMLTsinghua UniversityBeijing100084P. R. China
| | - Chang Qing Chen
- Department of Engineering MechanicsCNMM and AMLTsinghua UniversityBeijing100084P. R. China
| |
Collapse
|
8
|
El Helou C, Hyatt LP, Buskohl PR, Harne RL. Intelligent electroactive material systems with self-adaptive mechanical memory and sequential logic. Proc Natl Acad Sci U S A 2024; 121:e2317340121. [PMID: 38527196 PMCID: PMC10998560 DOI: 10.1073/pnas.2317340121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 02/09/2024] [Indexed: 03/27/2024] Open
Abstract
By synthesizing the requisite functionalities of intelligence in an integrated material system, it may become possible to animate otherwise inanimate matter. A significant challenge in this vision is to continually sense, process, and memorize information in a decentralized way. Here, we introduce an approach that enables all such functionalities in a soft mechanical material system. By integrating nonvolatile memory with continuous processing, we develop a sequential logic-based material design framework. Soft, conductive networks interconnect with embedded electroactive actuators to enable self-adaptive behavior that facilitates autonomous toggling and counting. The design principles are scaled in processing complexity and memory capacity to develop a model 8-bit mechanical material that can solve linear algebraic equations based on analog mechanical inputs. The resulting material system operates continually to monitor the current mechanical configuration and to autonomously search for solutions within a desired error. The methods created in this work are a foundation for future synthetic general intelligence that can empower materials to autonomously react to diverse stimuli in their environment.
Collapse
Affiliation(s)
- Charles El Helou
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Lance P. Hyatt
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| | - Philip R. Buskohl
- Functional Materials Division, Materials and Manufacturing Directorate, Air Force Research Laboratory, Wright-Patterson AFB, OH45433
| | - Ryan L. Harne
- Department of Mechanical Engineering, The Pennsylvania State University, University Park, PA16802
| |
Collapse
|