1
|
Xu X, Xu C, Zhang W, Liu Z, Wei Y, Yang K, Yuan B. Single-Lipid Diffusion Behaviors in Cell Membranes Modulated by Cholesterol-Based Heterogeneity. J Phys Chem B 2025. [PMID: 40418728 DOI: 10.1021/acs.jpcb.5c01625] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/28/2025]
Abstract
Over a century after the proposal of Fluid Mosaic Model, the relationship between functionally related multiple-scale spatial heterogeneity of the cell membrane and mobility of component molecules, both inherent features of cell membrane, remains elusive. Single-lipid tracking enables the analysis of structural heterogeneity at different spatial scales within the cell membrane from a lipid diffusion perspective. Herein, specifically designed cholesterol (Chol)-based membrane systems were utilized to investigate the distinct impacts of molecular-level interactions between diverse membrane components and micrometer-scale spatial confinement on lipid diffusion. The results demonstrate that the incorporation of Chol into 1,2-dioleoyl-sn-glycero-3-phosphocholine (DOPC) membranes decelerates lipid diffusion, with a positive correlation observed between the degree of deceleration and the mole ratio of Chol molecules. Across all these systems, lipid diffusion consistently adheres to the continuous time random walk (CTRW) model, indicating lipid entrapment resulting from specific molecular interactions. Conversely, micrometer-scale spatial confinement induced by phase separation not only reduces the diffusion rate of DOPC molecules but also triggers a transition from CTRW to fractional Brownian motion (fBM) or random walk on a fractal (RWF) mode within a confinement width range of 6.3-5.4 μm, suggesting a crowded microenvironment. In living cell membranes, this transformation in lipid diffusion is observed following Chol depletion, implying that lipid raft disruption leads to increased crowding within the lipid microenvironment. This study enhances our understanding of the relationship between lipid diffusion and membrane microenvironment across different spatial scales while providing insights into characterizing spatially heterogeneous structures within cell membranes from the perspective of lipid diffusion.
Collapse
Affiliation(s)
- Xiao Xu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing, Jiangsu 210093, China
| | - Zhiheng Liu
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou, Jiangsu 215006, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan, Guangdong 523808, China
| |
Collapse
|
2
|
Ou X, Zhou J, Xie HY, Nie W. Fusogenic Lipid Nanovesicles as Multifunctional Immunomodulatory Platforms for Precision Solid Tumor Therapy. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2503134. [PMID: 40351077 DOI: 10.1002/smll.202503134] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/10/2025] [Revised: 04/23/2025] [Indexed: 05/14/2025]
Abstract
Although immunotherapy demonstrates considerable prospect in overcoming solid tumors, its clinical efficacy is limited by several factors, such as poor tumor immunogenicity, inadequate immune activation, and immunosuppressive tumor microenvironment (TME). To overcome these challenges, a versatile and universal immune modulation platform should be developed, and lipid nanovesicles with membrane fusion capabilities (LNV-Fs) have attracted great attention for this purpose. By mimicking natural membrane fusion processes, LNV-Fs enable the precise presentation of immunogenic components on tumor cell membranes, effectively activating anti-tumor immune surveillance. Similarly, LNV-Fs can equip multiple functionalities on autologous and adoptive effector cells for enhanced cell therapies. Additionally, LNV-Fs function as vaccines that elicit robust autologous anti-tumor immunity while promoting long-term immune memory. Furthermore, different LNV-Fs with powerful ability in reprogramming TME have been reported. Given the recent advancements and the absence of comprehensive reviews on this topic, a comprehensive analysis of LNV-F systems, including their structural classifications, membrane fusion mechanisms, and recent applications in cancer immunotherapy is provided. Furthermore, the future prospects of LNV-Fs, with particular emphasis on artificial intelligence-assisted design are explored. This review is intended to engage researchers from diverse interdisciplinary fields and provide valuable insights for advancing precision immunotherapy.
Collapse
Affiliation(s)
- Xu Ou
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Jiaxin Zhou
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| | - Hai-Yan Xie
- Chemical Biology Center Peking University State Key Laboratory of Natural and Biomimetic Drugs, School of Pharmaceutical Sciences, Beijing, 100191, P. R. China
| | - Weidong Nie
- School of Life Science, Beijing Institute of Technology, Beijing, 100081, P. R. China
| |
Collapse
|
3
|
Wu T, Fei Y, Deng Y, Chen X, Duan Y, Liu Y, Bai Y. Creation of Artificial Subcellular Organelles Using Compartmentalized Escherichia coli Bodies for Artificial Metalloenzyme-Mediated Abiotic Catalysis in Eukaryotic Cells. J Am Chem Soc 2025; 147:15229-15241. [PMID: 40269669 DOI: 10.1021/jacs.5c00473] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 04/25/2025]
Abstract
Artificial metalloenzymes (ArMs) stand out as excellent tools mediating intracellular abiotic transformations due to their multifaceted advantages, including their adaptability through directed evolution and availability as whole-cell catalysts. However, the applications of ArMs as exogenous agents in eukaryotic systems remain challenging due to issues with protein purification and delivery, metalloenzyme stability, and complex catalyst preparation. In this article, we present a method inspired by nature's endosymbiotic process, enabling the direct use of ArMs residing within the bacterial cells that express them as whole-cell-based catalytic platforms in eukaryotic cells. This approach utilizes HaloTag-SNAPTag fusion protein as the ArM scaffold, which undergoes liquid-liquid phase separation to form sanctuaries in Escherichia coli for different ArMs created from the same fusion protein. Such compartmentalized E. coli are then sterilized and granted cell permeability with polymer decoration so that they may enter eukaryotic cells and work as artificial subcellular organelles, mediating abiotic transformations using those well-protected ArMs residing within. We further demonstrate the potential of this strategy in therapeutic applications in proof-of-concept demonstrations, by showing that these encapsulated ArMs can be viable options for intracellular bacterial pathogen elimination and cancer therapy through prodrug activation in live cells and animals. Likely, this strategy will suggest a different pathway for expanding ArM applications in chemical biology and biomedicine.
Collapse
Affiliation(s)
- Tong Wu
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yating Fei
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yingjiao Deng
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Xianhui Chen
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yuli Duan
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Ying Liu
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| | - Yugang Bai
- State Key Laboratory of Chemo- and Bio-Sensing, College of Chemistry and Chemical Engineering, Hunan University, Changsha 410082, China
| |
Collapse
|
4
|
Xie W, Kong Y, Ren C, Wen Y, Ying M, Xing H. Chemistries on the inner leaflet of the cell membrane. Chem Commun (Camb) 2025; 61:2387-2402. [PMID: 39810742 DOI: 10.1039/d4cc05186f] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/16/2025]
Abstract
The cell membrane, characterized by its inherent asymmetry, functions as a dynamic barrier that regulates numerous cellular activities. This Highlight aims to provide the chemistry community with a comprehensive overview of the intriguing and underexplored inner leaflet, encompassing both fundamental biology and emerging synthetic modification strategies. We begin by describing the asymmetric nature of the plasma membrane, with a focus on the distinct roles of lipids, proteins, and glycan chains, highlighting the composition and biofunctions of the inner leaflet and the biological mechanisms that sustain membrane asymmetry. Next, we explore chemical biological strategies for engineering the inner leaflet, including genetic engineering, transmembrane peptides, and liposome fusion-based transport. In the perspective section, we discuss the challenges in developing chemistries for the inner leaflet of the cell membrane, aiming to inspire researchers and collaborators to explore this field and address its unanswered biological questions.
Collapse
Affiliation(s)
- Wenxue Xie
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yuhan Kong
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Cong Ren
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | - Yujian Wen
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
| | | | - Hang Xing
- Institute of Chemical Biology and Nanomedicine, State Key Laboratory of Chemo/Biosensing and Chemometrics, Hunan Provincial Key Laboratory of Biomacromolecular Chemical Biology, College of Chemistry and Chemical Engineering, Hunan University, Changsha, 410082, China.
- Research Institute of Hunan University in Chongqing, Chongqing, 401100, China
| |
Collapse
|
5
|
Zhang Q, Kuang G, Chen K, Zhao M, Shang L. Bioorthogonal Janus microparticles for photothermal and chemo-therapy. SMART MEDICINE 2024; 3:e20240038. [PMID: 39776589 PMCID: PMC11669771 DOI: 10.1002/smmd.20240038] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Accepted: 10/10/2024] [Indexed: 01/11/2025]
Abstract
Bioorthogonal chemistry, recognized as a highly efficient tool in chemical biology, has shown significant value in cancer treatment. The primary objective is to develop efficient delivery strategies to achieve enhanced bioorthogonal drug treatment for tumors. Here, Janus microparticles (JMs) loaded with cyclooctene-modified doxorubicin prodrug (TCO-DOX) and tetrazine-modified indocyanine green (Tz-ICG) triggers are reported. Besides activating TCO-DOX, Tz-ICG is also a photothermal agent used in photothermal therapy (PTT), enabling the simultaneous use of biorthogonal chemotherapy and PTT. Additionally, the DOX could be significantly reduced in systemic toxicity with the modification of cyclooctene. Thus, the developed drug-carrying JMs system exhibits effective tumor cell killing in vitro and effectively inhibits tumor local progress and distant lung metastasis after postoperative treatment with good safety. These results demonstrate that the prepared JMs provide a paradigm for bioorthogonal prodrug activation and localized delivery, and hold great promise for cancer therapy as well as other related applications.
Collapse
Affiliation(s)
- Qingfei Zhang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Gaizhen Kuang
- Wenzhou InstituteUniversity of Chinese Academy of SciencesWenzhouChina
| | - Kai Chen
- Department of OrthopedicsShanghai Changhai HospitalNaval Medical UniversityShanghaiChina
| | - Miaoqing Zhao
- Department of PathologyShandong Cancer Hospital and InstituteShandong First Medical University and Shandong Academy of Medical SciencesJinanChina
| | - Luoran Shang
- Shanghai Xuhui Central HospitalZhongshan‐Xuhui Hospital, and the Shanghai Key Laboratory of Medical EpigeneticsInternational Co‐laboratory of Medical Epigenetics and Metabolism (Ministry of Science and Technology)Institutes of Biomedical SciencesFudan UniversityShanghaiChina
| |
Collapse
|
6
|
Xu C, Ma C, Zhang W, Wei Y, Yang K, Yuan B. Membrane Fusion Mediated by Cationic Helical Peptide L-MMBen through Phosphatidylglycerol Recruitment. J Phys Chem Lett 2024; 15:11027-11034. [PMID: 39466831 DOI: 10.1021/acs.jpclett.4c02558] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/30/2024]
Abstract
Membrane fusion is the basis for many biological processes, which holds promise in biomedical applications including the creation of engineered hybrid cells and cell membrane functionalization. Extensive research efforts, including investigations into DNA zippers and carbon nanotubes, have been dedicated to the development of membrane fusion strategies inspired by natural SNARE proteins; nevertheless, achieving a delicate balance between membrane selectivity and high fusion efficiency through precise molecular engineering remains unclear. In our recent study, we successfully designed L-MMBen, a cationic helical antimicrobial peptide that exhibits remarkable antimicrobial efficacy while demonstrating moderate cytotoxicity. In this work, we demonstrate the effective and selective induction of fusion between phosphatidylglycerol (PG)-containing membranes by L-MMBen. By combining biophysical assays at the single-vesicle level with computer simulations at the molecular level, we discovered that L-MMBen can stably adsorb onto the surface of PG-containing membranes, leading to the formation of stalk structures between vesicles and ultimately resulting in membrane fusion. Furthermore, the occurrence of fusion is attributed to the unique ability of L-MMBen to recruit PG lipids and bridge adjacent vesicles. In contrast, its nonhelical counterpart DL-MMBen was found to lack this capability despite possessing an identical positive charge. These findings present an alternative molecule for achieving selective membrane fusion and provide insights for designing helical peptides with diverse applications.
Collapse
Affiliation(s)
- Cheng Xu
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Chiyun Ma
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Wanting Zhang
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
- National Laboratory of Solid State Microstructures and Department of Physics, Collaborative Innovation Center of Advanced Microstructures, Nanjing University, Nanjing 210093, Jiangsu, China
| | - Yushuang Wei
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| | - Kai Yang
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Bing Yuan
- Songshan Lake Materials Laboratory, Dongguan 523808, Guangdong, China
| |
Collapse
|
7
|
Zhu C, Liu Y, Ji X, Si Y, Tao X, Zhang X, Yin L. Enhanced Antitumor Efficacy of Cytarabine and Idarubicin in Acute Myeloid Leukemia Using Liposomal Formulation: In Vitro and In Vivo Studies. Pharmaceutics 2024; 16:1220. [PMID: 39339256 PMCID: PMC11434936 DOI: 10.3390/pharmaceutics16091220] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 09/05/2024] [Accepted: 09/13/2024] [Indexed: 09/30/2024] Open
Abstract
Background: Acute myeloid leukemia (AML) is the most common type of acute leukemia among adults with the recommend therapy of combination of cytarabine and idarubicin in the induction phase. The uncoordinated pharmacokinetics prevent adequate control of drug ratio following systemic administration. Therefore, the dual-loaded liposomes containing cytarabine and idarubicin for synergistic effects were proposed and investigated. Methods: The molar ratio of cytarabine and idarubicin for synergistic effects was investigated. The dual-loaded liposomes were prepared and characterized by particle size, zeta potential, encapsulation efficiency, cryo-Transmission electron microscopy (cryo-TEM), and in vitro stability. The in vitro cytotoxicity and cell uptake of liposomes were determined within CCRF-CEM cells. The PK experiments was carried out in male SD rats. The in vivo antitumor effect was carried out within CD-1 nude female mice. The antitumor mechanism of liposomes was investigated. Results: The synergistic molar ratios were found to be in the range of 20:1~40:1. The size distribution of the dual-loaded liposomes was approximately 100 nm with PDI ≤ 0.1, a zeta potential of approximately -30 mV, an entrapment efficiency of cytarabine and idarubicin of >95% with spherical structure and uniform distribution, and in vitro stability for 21 d. The drugs in the liposomes can be quickly uptaken by the leukemia cells. The PK experiments showed that the molar ratio of cytarabine to idarubicin in plasma was maintained at 30:1 within 4 h. The efficacy of liposomes was significantly enhanced. Conclusions: The dual-loaded liposomes containing cytarabine and idarubicin showed enhanced antitumor efficacy.
Collapse
Affiliation(s)
- Chunxia Zhu
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Yang Liu
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Xiaojun Ji
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Yaxuan Si
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Xianhao Tao
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Xiaohua Zhang
- Department of Pharmaceutics, Nanjing Chia-Tai Tianqing Pharmaceutical Co., Ltd., Nanjing 210046, China
| | - Lifang Yin
- Department of Pharmaceutics, China Pharmaceutical University, Nanjing 210009, China
- Key Laboratory of Drug Quality Control and Pharmacovigilance, China Pharmaceutical University, Nanjing 210009, China
- State Key Laboratory of Natural Medicine, China Pharmaceutical University, Nanjing 210009, China
- NMPA Key Laboratory for Research and Evaluation of Pharmaceutical Preparations and Excipients, China Pharmaceutical University, Nanjing 210009, China
| |
Collapse
|
8
|
Feng J, Gong Y, Li Q, Yang C, An Y, Wu L. In Situ Detection of Nucleic Acids in Extracellular Vesicles via Membrane Fusion. Chemistry 2024; 30:e202304111. [PMID: 38486422 DOI: 10.1002/chem.202304111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2023] [Indexed: 04/19/2024]
Abstract
Extracellular vesicles (EVs) carry diverse biomolecules (e. g., nucleic acids, proteins) for intercellular communication, serving as important markers for diseases. Analyzing nucleic acids derived from EVs enables non-invasive disease diagnosis and prognosis evaluation. Membrane fusion, a fundamental cellular process wherein two lipid membranes merge, facilitates cell communication and cargo transport. Building on this natural phenomenon, recent years have witnessed the emergence of membrane fusion-based strategies for the detection of nucleic acids within EVs. These strategies entail the encapsulation of detection probes within either artificial or natural vesicles, followed by the induction of membrane fusion with EVs to deliver probes. This innovative approach not only enables in situ detection of nucleic acids within EVs but also ensures the maintenance of structural integrity of EVs, thus preventing nucleic acid degradation and minimizing the interference from free nucleic acids. This concept categorizes approaches into universal and targeted membrane fusion strategies, and discusses their application potential, and challenges and future prospects.
Collapse
Affiliation(s)
- Jianzhou Feng
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Yanli Gong
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Qianqian Li
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
| | - Chaoyong Yang
- College of Chemistry and Materials Science, Shanghai Normal University, Shanghai, 200234, P. R. China
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
- The MOE Key Laboratory of Spectrochemical Analysis and Instrumentation, State Key Laboratory of Physical Chemistry of Solid Surfaces, Department of Chemical Biology, College of Chemistry and Chemical Engineering, Xiamen University, Xiamen, 361005, Fujian, P. R. China
| | - Yu An
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| | - Lingling Wu
- Institute of Molecular Medicine, Renji Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai, 200127, P. R. China
| |
Collapse
|
9
|
Li S, Wang Q, Ren Y, Zhong P, Bao P, Guan S, Qiu X, Qu X. Oxygen and pH responsive theragnostic liposomes for early-stage diagnosis and photothermal therapy of solid tumours. Biomater Sci 2024; 12:748-762. [PMID: 38131275 DOI: 10.1039/d3bm01514a] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/23/2023]
Abstract
The development of cancer treatment is of great importance, especially in the early stage. In this work, we synthesized a pH-sensitive amphiphilic ruthenium complex containing two alkyl chains and two PEG chains, which was utilized as an oxygen sensitive fluorescent probe for co-assembly with lipids to harvest a liposomal delivery system (RuPC) for the encapsulation of a photothermal agent indocyanine green (ICG). The resultant ICG encapsulated liposome (RuPC@ICG) enabled the delivery of ICG into cells via a membrane fusion pathway, by which the ruthenium complex was localized in the cell membrane for better detection of the extracellular oxygen concentration. Such characteristics allowed ratiometric imaging to distinguish the tumour location from normal tissues just 3 days after cancer cells were implanted, by monitoring the hypoxia condition and tracing the metabolism. Moreover, the pH sensitivity of the liposomes favoured cell uptake, and improved the anti-tumour efficiency of the formulation in vivo under NIR irradiation. Assuming liposomal systems have fewer safety issues, our work not only provides a facile method for the construction of a theragnostic system by combining phototherapy with photoluminescence imaging, but hopefully paves the way for clinical translation from bench to bedside.
Collapse
Affiliation(s)
- Siyi Li
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Qinglin Wang
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Yingying Ren
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
| | - Pengfei Zhong
- Hebei North University, Hebei 075000, China
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100094, China
| | - Pengtao Bao
- The Eighth Medical Center, Chinese PLA General Hospital, Beijing 100094, China
| | - Shanyue Guan
- Key Laboratory of Photochemical Conversion and Optoelectronic Materials, Technical Institute of Physics and Chemistry, Chinese Academy of Sciences, Beijing 100190, China.
| | - Xiaochen Qiu
- Department of General Surgery, the First Medical Center of Chinese PLA General Hospital, Beijing 100853, China.
| | - Xiaozhong Qu
- Center of Materials Science and Optoelectronics Engineering, College of Materials Science and Opto-Electronic Technology, University of Chinese Academy of Sciences, Beijing 101408, China.
- Binzhou Institute of Technology, Weiqiao-UCAS Science and Technology Park, Shandong 256606, China
| |
Collapse
|
10
|
Wu S, Wei Y, Wang Y, Zhang Z, Liu D, Qin S, Shi J, Shen J. Liposomal Antibiotic Booster Potentiates Carbapenems for Combating NDMs-Producing Escherichia coli. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2024; 11:e2304397. [PMID: 37933983 PMCID: PMC10787095 DOI: 10.1002/advs.202304397] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/01/2023] [Revised: 08/19/2023] [Indexed: 11/08/2023]
Abstract
Infections caused by Enterobacterales producing New Delhi Metallo-β-lactamases (NDMs), Zn(II)-dependent enzymes hydrolyzing carbapenems, are difficult to treat. Depriving Zn(II) to inactivate NDMs is an effective solution to reverse carbapenems resistance in NDMs-producing bacteria. However, specific Zn(II) deprivation and better bacterial outer membrane penetrability in vivo are challenges. Herein, authors present a pathogen-primed liposomal antibiotic booster (M-MFL@MB), facilitating drugs transportation into bacteria and removing Zn(II) from NDMs. M-MFL@MB introduces bismuth nanoclusters (BiNCs) as a storage tank of Bi(III) for achieving ROS-initiated Zn(II) removal. Inspired by bacteria-specific maltodextrin transport pathway, meropenem-loaded BiNCs are camouflaged by maltodextrin-cloaked membrane fusion liposome to cross the bacterial envelope barrier via selectively targeting bacteria and directly outer membrane fusion. This fusion disturbs bacterial membrane homeostasis, then triggers intracellular ROS amplification, which activates Bi(III)-mediated Zn(II) replacement and meropenem release, realizing more precise and efficient NDMs producer treatment. Benefiting from specific bacteria-targeting, adequate drugs intracellular accumulation and self-activation Zn(II) replacement, M-MFL@MB rescues all mice infected by NDM producer without systemic side effects. Additionally, M-MFL@MB decreases the bacterial outer membrane vesicles secretion, slowing down NDMs producer's transmission by over 35 times. Taken together, liposomal antibiotic booster as an efficient and safe tool provides new strategy for tackling NDMs producer-induced infections.
Collapse
Affiliation(s)
- Sixuan Wu
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- School of Life ScienceZhengzhou UniversityZhengzhou450001China
| | - Yongbin Wei
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
| | - Yang Wang
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Zhenzhong Zhang
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Dejun Liu
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| | - Shangshang Qin
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jinjin Shi
- School of Pharmaceutical SciencesZhengzhou UniversityZhengzhou450001China
- Henan Key Laboratory of Targeting Therapy and Diagnosis for Critical DiseasesZhengzhou UniversityZhengzhou450001China
- Key Laboratory of Advanced Drug Preparation TechnologiesMinistry of EducationZhengzhou UniversityZhengzhou450001China
- State Key Laboratory of Esophageal Cancer Prevention & TreatmentZhengzhou450001China
| | - Jianzhong Shen
- Engineering Research Center for Animal Innovative Drugs and Safety Evaluation, Ministry of Education, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
- National Key Laboratory of Veterinary Public Health and Safety, College of Veterinary MedicineChina Agricultural UniversityBeijing100094China
| |
Collapse
|
11
|
Šlachtová V, Chovanec M, Rahm M, Vrabel M. Bioorthogonal Chemistry in Cellular Organelles. Top Curr Chem (Cham) 2023; 382:2. [PMID: 38103067 PMCID: PMC10725395 DOI: 10.1007/s41061-023-00446-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/06/2023] [Accepted: 11/12/2023] [Indexed: 12/17/2023]
Abstract
While bioorthogonal reactions are routinely employed in living cells and organisms, their application within individual organelles remains limited. In this review, we highlight diverse examples of bioorthogonal reactions used to investigate the roles of biomolecules and biological processes as well as advanced imaging techniques within cellular organelles. These innovations hold great promise for therapeutic interventions in personalized medicine and precision therapies. We also address existing challenges related to the selectivity and trafficking of subcellular dynamics. Organelle-targeted bioorthogonal reactions have the potential to significantly advance our understanding of cellular organization and function, provide new pathways for basic research and clinical applications, and shape the direction of cell biology and medical research.
Collapse
Affiliation(s)
- Veronika Šlachtová
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
| | - Marek Chovanec
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Michal Rahm
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic
- University of Chemistry and Technology, Technická 5, 166 28, Prague 6, Czech Republic
| | - Milan Vrabel
- Department of Bioorganic and Medicinal Chemistry, Institute of Organic Chemistry and Biochemistry of the Czech Academy of Sciences, Flemingovo náměstí 2, 166 10, Prague 6, Czech Republic.
| |
Collapse
|
12
|
Wang G, Li Q, Guo Y, Chen L, Yao Y, Zhong Y, Sun J, Yan X, Wang H, Wang X, Ding L, Ju H. Interception Proximity Labeling for Interrogating Cell Efflux Microenvironment. Anal Chem 2023; 95:17798-17807. [PMID: 37976298 DOI: 10.1021/acs.analchem.3c03879] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
The difficulty in elucidating the microenvironment of extracellular H2O2 efflux has led to the lack of a critical extracellular link in studies of the mechanisms of redox signaling pathways. Herein, we mounted horseradish peroxidase (HRP) to glycans expressed globally on the living cell surface and constructed an interception proximity labeling (IPL) platform for H2O2 efflux. The release of endogenous H2O2 is used as a "physiological switch" for HRP to enable proximity labeling. Using this platform, we visualize the oxidative stress state of tumor cells under the condition of nutrient withdrawal, as well as that of macrophages exposed to nonparticulate stimuli. Furthermore, in combination with a proteomics technique, we identify candidate proteins at the invasion interface between fungal mimics (zymosan) and macrophages by interception labeling of locally accumulated H2O2 and confirm that Toll-like receptor 2 binds zymosan in a glycan-dependent manner. The IPL platform has great potential to elucidate the mechanisms underlying biological processes involving redox pathways.
Collapse
Affiliation(s)
- Guyu Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Qiang Li
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yuna Guo
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Liusheng Chen
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yunyan Yao
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Yihong Zhong
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Jiahui Sun
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Xiaomin Yan
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| | - Hongwei Wang
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Jiangsu Key Laboratory of Molecular Medicine, Medical School, Nanjing University, Nanjing 210093, China
| | - Xiaojian Wang
- Institute of Advanced Synthesis, School of Chemistry and Molecular Engineering, Nanjing Tech University, Nanjing 211816, China
| | - Lin Ding
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
- Chemistry and Biomedicine Innovation Center (ChemBIC), Nanjing University, Nanjing 210023, China
| | - Huangxian Ju
- State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, China
| |
Collapse
|
13
|
Yang H, Yao L, Wang Y, Chen G, Chen H. Advancing cell surface modification in mammalian cells with synthetic molecules. Chem Sci 2023; 14:13325-13345. [PMID: 38033886 PMCID: PMC10685406 DOI: 10.1039/d3sc04597h] [Citation(s) in RCA: 8] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/31/2023] [Accepted: 10/30/2023] [Indexed: 12/02/2023] Open
Abstract
Biological cells, being the fundamental entities of life, are widely acknowledged as intricate living machines. The manipulation of cell surfaces has emerged as a progressively significant domain of investigation and advancement in recent times. Particularly, the alteration of cell surfaces using meticulously crafted and thoroughly characterized synthesized molecules has proven to be an efficacious means of introducing innovative functionalities or manipulating cells. Within this realm, a diverse array of elegant and robust strategies have been recently devised, including the bioorthogonal strategy, which enables selective modification. This review offers a comprehensive survey of recent advancements in the modification of mammalian cell surfaces through the use of synthetic molecules. It explores a range of strategies, encompassing chemical covalent modifications, physical alterations, and bioorthogonal approaches. The review concludes by addressing the present challenges and potential future opportunities in this rapidly expanding field.
Collapse
Affiliation(s)
- He Yang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Lihua Yao
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Yichen Wang
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| | - Gaojian Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
- Center for Soft Condensed Matter Physics and Interdisciplinary Research, Soochow University Suzhou 215006 Jiangsu P. R. China
| | - Hong Chen
- College of Chemistry, Chemical Engineering and Materials Science, Soochow University 199 Ren'ai Road Suzhou 215123 Jiangsu P. R. China
| |
Collapse
|
14
|
Liu X, Huang T, Chen Z, Yang H. Progress in controllable bioorthogonal catalysis for prodrug activation. Chem Commun (Camb) 2023; 59:12548-12559. [PMID: 37791560 DOI: 10.1039/d3cc04286c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/05/2023]
Abstract
Bioorthogonal catalysis, a class of catalytic reactions that are mediated by abiotic metals and proceed in biological environments without interfering with native biochemical reactions, has gained ever-increasing momentum in prodrug delivery over the past few decades. Albeit great progress has been attained in developing new bioorthogonal catalytic reactions and optimizing the catalytic performance of transition metal catalysts (TMCs), the use of TMCs to activate chemotherapeutics at the site of interest in vivo remains a challenging endeavor. To translate the bioorthogonal catalysis-mediated prodrug activation paradigm from flasks to animals, TMCs with targeting capability and stimulus-responsive behavior have been well-designed to perform chemical transformations in a controlled manner within highly complex biochemical systems, rendering on-demand drug activation to mitigate off-target toxicity. Here, we review the recent advances in the development of controllable bioorthogonal catalysis systems, with an emphasis on different strategies for engineering TMCs to achieve precise control over prodrug activation. Furthermore, we outline the envisaged challenges and discuss future directions of controllable bioorthogonal catalysis for disease therapy.
Collapse
Affiliation(s)
- Xia Liu
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Tingjing Huang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| | - Zhaowei Chen
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
- College of Pharmaceutical Sciences, Zhejiang University, Hangzhou 310058, P. R. China.
| | - Huanghao Yang
- MOE Key Laboratory for Analytical Science of Food Safety and Biology, and Fujian Provincial Key Laboratory of Analysis and Detection Technology for Food Safety, College of Chemistry, Fuzhou University, Fuzhou 350108, P. R. China.
| |
Collapse
|