1
|
Morotomi-Yano K, Yano KI. Aclarubicin Reduces the Nuclear Mobility of Human DNA Topoisomerase IIβ. Int J Mol Sci 2024; 25:10681. [PMID: 39409010 PMCID: PMC11476477 DOI: 10.3390/ijms251910681] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/16/2024] [Revised: 09/29/2024] [Accepted: 10/01/2024] [Indexed: 10/20/2024] Open
Abstract
DNA topoisomerase II (TOP2) is an enzyme that resolves DNA topological problems arising in various nuclear processes, such as transcription. Aclarubicin, a member of the anthracyclines, is known to prevent the association of TOP2 with DNA, inhibiting the early step of TOP2 catalytic reactions. During our research on the subnuclear distribution of human TOP2B, we found that aclarubicin affects the mobility of TOP2B in the nucleus. FRAP analysis demonstrated that aclarubicin decreased the nuclear mobility of EGFP-tagged TOP2B in a concentration-dependent manner. Aclarubicin exerted its inhibitory effects independently of TOP2B enzymatic activities: TOP2B mutants defective for either ATPase or topoisomerase activity also exhibited reduced nuclear mobility in the presence of aclarubicin. Immunofluorescence analysis showed that aclarubicin antagonized the induction of DNA damage by etoposide. Although the prevention of the TOP2-DNA association is generally considered a primary action of aclarubicin in TOP2 inhibition, our findings highlight a previously unanticipated effect of aclarubicin on TOP2B in the cellular environment.
Collapse
Affiliation(s)
- Keiko Morotomi-Yano
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
| | - Ken-ichi Yano
- Institute of Industrial Nanomaterials, Kumamoto University, Kumamoto 860-8555, Japan
- Faculty of Advanced Science and Technology, Kumamoto University, Kumamoto 860-8555, Japan
| |
Collapse
|
2
|
Patel LA, Cao Y, Mendenhall EM, Benner C, Goren A. The Wild West of spike-in normalization. Nat Biotechnol 2024; 42:1343-1349. [PMID: 39271835 DOI: 10.1038/s41587-024-02377-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/15/2024]
Affiliation(s)
- Lauren A Patel
- Department of Bioengineering, Jacobs School of Engineering, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Division of Endocrinology & Metabolism, University of California San Diego, La Jolla, CA, USA
- Department of Medicine, Division of Genomics & Precision Medicine, University of California San Diego, La Jolla, CA, USA
| | - Yuwei Cao
- Department of Medicine, Division of Genomics & Precision Medicine, University of California San Diego, La Jolla, CA, USA
- Bioinformatics and Systems Biology Graduate Program, University of California San Diego, La Jolla, CA, USA
| | | | - Christopher Benner
- Department of Medicine, Division of Endocrinology & Metabolism, University of California San Diego, La Jolla, CA, USA.
| | - Alon Goren
- Department of Medicine, Division of Genomics & Precision Medicine, University of California San Diego, La Jolla, CA, USA.
| |
Collapse
|
3
|
Neefjes J, Gurova K, Sarthy J, Szabó G, Henikoff S. Chromatin as an old and new anticancer target. Trends Cancer 2024; 10:696-707. [PMID: 38825423 PMCID: PMC11479676 DOI: 10.1016/j.trecan.2024.05.005] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/13/2024] [Revised: 05/08/2024] [Accepted: 05/13/2024] [Indexed: 06/04/2024]
Abstract
Recent genome-wide analyses identified chromatin modifiers as one of the most frequently mutated classes of genes across all cancers. However, chemotherapies developed for cancers involving DNA damage remain the standard of care for chromatin-deranged malignancies. In this review we address this conundrum by establishing the concept of 'chromatin damage': the non-genetic damage to protein-DNA interactions induced by certain small molecules. We highlight anthracyclines, a class of chemotherapeutic agents ubiquitously applied in oncology, as an example of overlooked chromatin-targeting agents. We discuss our current understanding of this phenomenon and explore emerging chromatin-damaging agents as a basis for further studies to maximize their impact in modern cancer treatment.
Collapse
Affiliation(s)
- Jacques Neefjes
- Department of Cell and Chemical Biology and Oncode Institute, LUMC, Einthovenweg 20, 2333, ZC, Leiden, The Netherlands
| | - Katerina Gurova
- Department of Cell Stress Biology, Roswell Park Cancer Institute, Elm and Carlton Streets, Buffalo, NY, 14263, USA.
| | - Jay Sarthy
- Department of Pediatrics, University of Washington School of Medicine and Seattle Children's Research Institute, 1920 Terry Ave, Seattle, WA 98109, USA
| | - Gábor Szabó
- Faculty of Medicine, Department of Biophysics and Cell Biology, University of Debrecen, Debrecen, Egyetem tér 1, 4032, Hungary
| | - Steven Henikoff
- Basic Sciences Division, Fred Hutchinson Cancer Center, 1100 Fairview Ave N, Seattle, WA 98109, USA; Howard Hughes Medical Institute, Chevy Chase, MD 20815, USA
| |
Collapse
|
4
|
Qiao X, van der Zanden SY, Li X, Tan M, Zhang Y, Song JY, van Gelder MA, Hamoen FL, Janssen L, Zuur CL, Pang B, van Tellingen O, Li J, Neefjes J. Diversifying the anthracycline class of anti-cancer drugs identifies aclarubicin for superior survival of acute myeloid leukemia patients. Mol Cancer 2024; 23:120. [PMID: 38831402 PMCID: PMC11149191 DOI: 10.1186/s12943-024-02034-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2023] [Accepted: 05/28/2024] [Indexed: 06/05/2024] Open
Abstract
The efficacy of anthracycline-based chemotherapeutics, which include doxorubicin and its structural relatives daunorubicin and idarubicin, remains almost unmatched in oncology, despite a side effect profile including cumulative dose-dependent cardiotoxicity, therapy-related malignancies and infertility. Detoxifying anthracyclines while preserving their anti-neoplastic effects is arguably a major unmet need in modern oncology, as cardiovascular complications that limit anti-cancer treatment are a leading cause of morbidity and mortality among the 17 million cancer survivors in the U.S. In this study, we examined different clinically relevant anthracycline drugs for a series of features including mode of action (chromatin and DNA damage), bio-distribution, anti-tumor efficacy and cardiotoxicity in pre-clinical models and patients. The different anthracycline drugs have surprisingly individual efficacy and toxicity profiles. In particular, aclarubicin stands out in pre-clinical models and clinical studies, as it potently kills cancer cells, lacks cardiotoxicity, and can be safely administered even after the maximum cumulative dose of either doxorubicin or idarubicin has been reached. Retrospective analysis of aclarubicin used as second-line treatment for relapsed/refractory AML patients showed survival effects similar to its use in first line, leading to a notable 23% increase in 5-year overall survival compared to other intensive chemotherapies. Considering individual anthracyclines as distinct entities unveils new treatment options, such as the identification of aclarubicin, which significantly improves the survival outcomes of AML patients while mitigating the treatment-limiting side-effects. Building upon these findings, an international multicenter Phase III prospective study is prepared, to integrate aclarubicin into the treatment of relapsed/refractory AML patients.
Collapse
Affiliation(s)
- Xiaohang Qiao
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands.
| | - Sabina Y van der Zanden
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Xiaoyang Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Minkang Tan
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Yunxiang Zhang
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China
| | - Ji-Ying Song
- Division of Experimental Animal Pathology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Merle A van Gelder
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Feija L Hamoen
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Lennert Janssen
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Charlotte L Zuur
- Division of Tumor Biology and Immunology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
- Department of Head and Neck Oncology and Surgery, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Baoxu Pang
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands
| | - Olaf van Tellingen
- Division of Pharmacology, The Netherlands Cancer Institute, Amsterdam, The Netherlands
| | - Junmin Li
- Shanghai Institute of Hematology, State Key Laboratory of Medical Genomics, National Research Center for Translational Medicine, Ruijin Hospital Affiliated to Shanghai Jiao Tong University School of Medicine, Shanghai, China.
- Wuxi Branch of Ruijin Hospital, Ruijin Hospital, Shanghai Jiao Tong University School of Medicine, Shanghai , 200025, China.
| | - Jacques Neefjes
- Department of Cell and Chemical Biology, ONCODE Institute, Leiden University Medical Center, Leiden, The Netherlands.
| |
Collapse
|
5
|
Espinoza JA, Kanellis DC, Saproo S, Leal K, Martinez J, Bartek J, Lindström M. Chromatin damage generated by DNA intercalators leads to degradation of RNA Polymerase II. Nucleic Acids Res 2024; 52:4151-4166. [PMID: 38340348 PMCID: PMC11077059 DOI: 10.1093/nar/gkae069] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Revised: 01/16/2024] [Accepted: 01/23/2024] [Indexed: 02/12/2024] Open
Abstract
In cancer therapy, DNA intercalators are mainly known for their capacity to kill cells by inducing DNA damage. Recently, several DNA intercalators have attracted much interest given their ability to inhibit RNA Polymerase I transcription (BMH-21), evict histones (Aclarubicin) or induce chromatin trapping of FACT (Curaxin CBL0137). Interestingly, these DNA intercalators lack the capacity to induce DNA damage while still retaining cytotoxic effects and stabilize p53. Herein, we report that these DNA intercalators impact chromatin biology by interfering with the chromatin stability of RNA polymerases I, II and III. These three compounds have the capacity to induce degradation of RNA polymerase II and they simultaneously enable the trapping of Topoisomerases TOP2A and TOP2B on the chromatin. In addition, BMH-21 also acts as a catalytic inhibitor of Topoisomerase II, resembling Aclarubicin. Moreover, BMH-21 induces chromatin trapping of the histone chaperone FACT and propels accumulation of Z-DNA and histone eviction, similarly to Aclarubicin and CBL0137. These DNA intercalators have a cumulative impact on general transcription machinery by inducing accumulation of topological defects and impacting nuclear chromatin. Therefore, their cytotoxic capabilities may be the result of compounding deleterious effects on chromatin homeostasis.
Collapse
Affiliation(s)
- Jaime A Espinoza
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Dimitris C Kanellis
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Sheetanshu Saproo
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Karla Leal
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Johana Fernandez Martinez
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| | - Jiri Bartek
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
- Danish Cancer Society Research Center, DK-2100 Copenhagen, Denmark
| | - Mikael S Lindström
- Science for Life Laboratory, Division of Genome Biology, Department of Medical Biochemistry and Biophysics, Karolinska Institutet, S-171 21 Stockholm, Sweden
| |
Collapse
|
6
|
van Emmerik CL, Lobbia V, Neefjes J, Nelissen FHT, van Ingen H. Monitoring Anthracycline Cancer Drug-Nucleosome Interaction by NMR Using a Specific Isotope Labeling Approach for Nucleosomal DNA. Chembiochem 2024; 25:e202400111. [PMID: 38476018 DOI: 10.1002/cbic.202400111] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2024] [Revised: 03/03/2024] [Accepted: 03/12/2024] [Indexed: 03/14/2024]
Abstract
Chromatinized DNA is targeted by proteins and small molecules to regulate chromatin function. For example, anthracycline cancer drugs evict nucleosomes in a mechanism that is still poorly understood. We here developed a flexible method for specific isotope labeling of nucleosomal DNA enabling NMR studies of such nucleosome interactions. We describe the synthesis of segmental one-strand 13C-thymidine labeled 601-DNA, the assignment of the methyl signals, and demonstrate its use to observe site-specific binding to the nucleosome by aclarubicin, an anthracycline cancer drug that intercalates into the DNA minor grooves. Our results highlight intrinsic conformational heterogeneity in the 601 DNA sequence and show that aclarubicin binds an exposed AT-rich region near the DNA end. Overall, our data point to a model where the drug invades the nucleosome from the terminal ends inward, eventually resulting in histone eviction and nucleosome disruption.
Collapse
Affiliation(s)
- Clara L van Emmerik
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Vincenzo Lobbia
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| | - Jacques Neefjes
- Cell and Chemical Biology, Leiden University Medical Center, Einthovenweg 20, 2300 RC, Leiden, The Netherlands
| | - Frank H T Nelissen
- Biophysical Chemistry, Institute for Molecules and Materials, Radboud University, 6525 AJ, Nijmegen, The Netherlands
| | - Hugo van Ingen
- NMR Spectroscopy Research Group, Bijvoet Center for Biomolecular Research, Utrecht University, Padualaan 8, 3584 CH, Utrecht, The Netherlands
| |
Collapse
|
7
|
Kinyamu HK, Bennett BD, Ward JM, Archer TK. Proteasome Inhibition Reprograms Chromatin Landscape in Breast Cancer. CANCER RESEARCH COMMUNICATIONS 2024; 4:1082-1099. [PMID: 38625038 PMCID: PMC11019832 DOI: 10.1158/2767-9764.crc-23-0476] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/31/2023] [Revised: 02/26/2024] [Accepted: 03/22/2024] [Indexed: 04/17/2024]
Abstract
The 26S proteasome is the major protein degradation machinery in cells. Cancer cells use the proteasome to modulate gene expression networks that promote tumor growth. Proteasome inhibitors have emerged as effective cancer therapeutics, but how they work mechanistically remains unclear. Here, using integrative genomic analysis, we discovered unexpected reprogramming of the chromatin landscape and RNA polymerase II (RNAPII) transcription initiation in breast cancer cells treated with the proteasome inhibitor MG132. The cells acquired dynamic changes in chromatin accessibility at specific genomic loci termed differentially open chromatin regions (DOCR). DOCRs with decreased accessibility were promoter proximal and exhibited unique chromatin architecture associated with divergent RNAPII transcription. Conversely, DOCRs with increased accessibility were primarily distal to transcription start sites and enriched in oncogenic superenhancers predominantly accessible in non-basal breast tumor subtypes. These findings describe the mechanisms by which the proteasome modulates the expression of gene networks intrinsic to breast cancer biology. SIGNIFICANCE Our study provides a strong basis for understanding the mechanisms by which proteasome inhibitors exert anticancer effects. We find open chromatin regions that change during proteasome inhibition, are typically accessible in non-basal breast cancers.
Collapse
Affiliation(s)
- H. Karimi Kinyamu
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Brian D. Bennett
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - James M. Ward
- National Institute of Environmental Health Sciences, Durham, North Carolina
- Integrative Bioinformatics Group, National Institute of Environmental Health Sciences, Durham, North Carolina
- Biostatistics and Computational Biology Branch, National Institute of Environmental Health Sciences, Durham, North Carolina
| | - Trevor K. Archer
- Chromatin and Gene Expression Section, National Institute of Environmental Health Sciences, Durham, North Carolina
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, Durham, North Carolina
- National Institute of Environmental Health Sciences, Durham, North Carolina
| |
Collapse
|