1
|
Wei Y, Li Z, Yu T, Chen Y, Yang Q, Wen K, Liao J, Li L. Ultrasound-activated piezoelectric biomaterials for cartilage regeneration. ULTRASONICS SONOCHEMISTRY 2025; 117:107353. [PMID: 40250302 DOI: 10.1016/j.ultsonch.2025.107353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/14/2025] [Revised: 03/26/2025] [Accepted: 04/11/2025] [Indexed: 04/20/2025]
Abstract
Due to the low density of chondrocytes and limited ability to repair damaged extracellular matrix (ECM) in cartilage, many patients with congenital or acquired craniofacial trauma require filler graft materials to support facial structure, restore function, improve self-confidence, and regain socialization. Ultrasound has the capacity to stimulate piezoelectric materials, converting mechanical energy into electrical signals that can regulate the metabolism, proliferation, and differentiation of chondrocytes. This unique property has sparked growing interest in using piezoelectric biomaterials in regenerative medicine. In this review, we first explain the principle behind ultrasound-activated piezoelectric materials and how they generate piezopotential. We then review studies demonstrating how this bioelectricity promotes chondrocyte regeneration, stimulates the secretion of key extracellular components and supports cartilage regeneration by activating relevant signaling pathways. Next, we discuss the properties, synthesis, and modification strategies of various piezoelectric biomaterials. We further discuss recent progresses in the development of ultrasound-activated piezoelectric biomaterials specifically designed for cartilage regeneration. Lastly, we discuss future research challenges facing this technology, ultrasound-activated piezoelectric materials for cartilage regeneration engineering. While the technology holds great promise, certain obstacles remain, including issues related to material stability, precise control over ultrasound parameters, and the integration of these systems into clinical settings. The combination of ultrasound-activated piezoelectric technology with other emerging fields, such as Artificial Intelligence (AI) and cartilage organoid chips, may open new frontiers in regenerative medicine. We hope this review encourages further exploration of ultrasound-activated strategies for piezoelectric materials and their future applications in regenerative medicines.
Collapse
Affiliation(s)
- Yangchen Wei
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Zhengyang Li
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China; Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China
| | - Tianjing Yu
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Yan Chen
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Qinglai Yang
- Center for Molecular Imaging Probe, Hunan Province Key Laboratory of Tumor Cellular and Molecular Pathology, Cancer Research Institute, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China
| | - Kaikai Wen
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| | - Junlin Liao
- The First Affiliated Hospital, Center of Burn & Plastic and Wound Repair, Hengyang Medical School, University of South China, Hengyang, Hunan 421001, PR China.
| | - Linlin Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing 101400, PR China; School of Nanoscience and Engineering, University of Chinese Academy of Sciences, Beijing 100049, PR China.
| |
Collapse
|
2
|
Wang Z, Wang Y, Yang C, Zheng T, Luo R, Wang Y. Applications of Piezoelectric Materials in Biomedical Engineering. Macromol Biosci 2025:e2500033. [PMID: 40293193 DOI: 10.1002/mabi.202500033] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2025] [Revised: 03/28/2025] [Indexed: 04/30/2025]
Abstract
Piezoelectric materials are unique biomedical materials whose asymmetric crystal structures enable them to convert various forms of mechanical energy from the environment, including ultrasound, into electrical or chemical energy. These materials have wide applications in the biomedical field and are gradually becoming a research hotspot in applications such as energy harvesters, biosensors, and tissue engineering. This article first provides a systematic review of the research progress on piezoelectric materials, then outlines frontier strategies for achieving high-performance electrical materials and devices. This article discusses the highly oriented nature of piezoelectric materials mediated by intermolecular forces and explores the applications of piezoelectric implants in biomedicine, including biosensing, energy harvesting, tissue engineering, and disease treatment. Finally, the challenges faced by piezoelectric devices in future research are elaborated.
Collapse
Affiliation(s)
- Zian Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yanan Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Chenglin Yang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Tiantian Zheng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Rifang Luo
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
| | - Yunbing Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu, 610064, China
- Research Unit of Minimally lnvasive Treatment of Structural Heart Disease, Chinese Academy of Medical Sciences (No:2021RU013), Beijing, 100730, China
| |
Collapse
|
3
|
Zhu M, Liu Q, Wong WY, Xu L. Advancements in Carbon-Based Piezoelectric Materials: Mechanism, Classification, and Applications in Energy Science. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025:e2419970. [PMID: 40277183 DOI: 10.1002/adma.202419970] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/18/2024] [Revised: 04/06/2025] [Indexed: 04/26/2025]
Abstract
The piezoelectric phenomenon has garnered considerable interest due to its distinctive physical properties associated with the materials involved. Piezoelectric materials, which are inherently non-centrosymmetric, can generate an internal electric field under mechanical stress, enhancing carrier separation and transfer due to electric dipole moments. While inorganic piezoelectric materials are often investigated for their high piezoelectric coefficients, they come with potential drawbacks such as toxicity and high production cost, which hinder their practical applications. Consequently, carbon-based piezoelectric materials have emerged as an alternative to inorganic materials, boasting advantages such as a large specific surface area, high conductivity, flexibility, and eco-friendliness. Research into the applications of carbon-based piezoelectric materials spans environmental remediation, energy conversion, and biomedical treatments, indicating a promising future. This review marks the first comprehensive attempt to discuss and summarize the various types of carbon-based piezoelectric materials. It delves into the underlying mechanisms by which piezoelectricity influences catalysis, biomedical applications, nanogenerators, and sensors. Additionally, various potential techniques are presented to enhance the piezoelectric performance. The design principles of representative fabrication strategies for carbon-based piezoelectric materials are analyzed, emphasizing their current limitations and potential improvements for future development. It is believed that recent advances in carbon-based piezoelectric materials will make a significant impact.
Collapse
Affiliation(s)
- Mude Zhu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Qingyou Liu
- School of Materials and Environmental Engineering, Shenzhen Polytechnic University, Shenzhen, 518055, P. R. China
| | - Wai-Yeung Wong
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| | - Linli Xu
- Department of Applied Biology and Chemical Technology and Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hung Hom, Kowloon, Hong Kong, 999077, P. R. China
| |
Collapse
|
4
|
Han C, Jin M, Dong F, Xu P, Jiang X, Cai ST, Jiang Y, Zhang Y, Fang Y, Niu S. Interpretable Machine Learning for Evaluating Nanogenerators' Structural Design. ACS NANO 2025; 19:14456-14466. [PMID: 40189909 DOI: 10.1021/acsnano.5c02525] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2025]
Abstract
The limited battery life in modern mobile, wearable, and implantable electronics critically constrains their operational longevity and continuous use. Consequently, as a self-powered technology, triboelectric nanogenerators (TENGs) have emerged as a promising solution to this. Traditional approaches for evaluating TENG structural design typically require manual, repetitive, time-consuming, and high-cost finite element modeling or experiments. To overcome this bottleneck, we developed a fully automated platform that leverages machine learning (ML) techniques. Our framework contains an artificial neuron network-based surrogate model that can provide accurate and reliable performance predictions for any structural parameters and a TreeSHAP interpretable ML model that can generate precise global and local insights for TENG structural parameters. Our platform shows broad adaptability to multiple TENG structures. In summary, our platform is an integrated platform that utilizes interpretable ML techniques to solve the complex multidimensional TENG structural evaluation problem, marking a significant advancement in TENG design and supporting sustainable energy solutions in mobile electronics.
Collapse
Affiliation(s)
- Chi Han
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Mingyu Jin
- Department of Computer Science, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Fuying Dong
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Pengchong Xu
- Department of Electrical and Computer Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Xinnian Jiang
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Sheling T Cai
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
- Department of Electrical and Computer Engineering, University of Illinois Urbana-Champaign, Urbana, Illinois 61801, United States
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, Pennsylvania 19104, United States
| | - Yongfeng Zhang
- Department of Computer Science, Rutgers University, Piscataway, New Jersey 08854, United States
| | - Yin Fang
- School of Chemical and Biomedical Engineering, Nanyang Technological University, Singapore 637459, Singapore
| | - Simiao Niu
- Department of Biomedical Engineering, Rutgers University, Piscataway, New Jersey 08854, United States
| |
Collapse
|
5
|
Andonegi M, Diez AG, Costa CM, Romanyuk KN, Kholkin AL, de la Caba K, Guerrero P, Lanceros-Mendez S. Piezoelectric properties of collagen films: Insights into their potential for electroactive biomedical applications. Int J Biol Macromol 2025; 309:142799. [PMID: 40188926 DOI: 10.1016/j.ijbiomac.2025.142799] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Revised: 03/28/2025] [Accepted: 04/01/2025] [Indexed: 04/10/2025]
Abstract
Electroactive biomaterials and, in particular, piezoelectric ones are gaining insight into tissue engineering and biomedical applications. Collagen is one of the most available biomaterials found in nature, and the present study focus on the evaluation of its piezoelectric response. Collagen extracted from bovine skin was used and the piezoelectric response was correlated to the physicochemical, thermal, morphological and mechanical properties. A dense fibrillar microstructure was observed and the mechanical properties, which depend on the specific amino acids composition, showed tensile strength and maximum strain values of 34 MPa and 18 %, respectively. Collagen films exhibited approximately 25 % weight loss after 1 day in PBS solution, increasing to about 30 % and 100 % at day 2 and 4, respectively. A piezoelectric response of 0.44 pm/V was obtained, demonstrating the collagen film suitability for electroactive materials in biomedical applications.
Collapse
Affiliation(s)
- Mireia Andonegi
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal.
| | - Ander G Diez
- BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain
| | - Carlos M Costa
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; Institute of Science and Innovation for Bio-Sustainability (IB-S), University of Minho, 4710-053 Braga, Portugal
| | - Konstantin N Romanyuk
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Andrei L Kholkin
- Department of Physics & CICECO-Aveiro Institute of Materials, University of Aveiro, 3810-193 Aveiro, Portugal
| | - Koro de la Caba
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain.
| | - Pedro Guerrero
- BIOMAT Research Group, University of the Basque Country (UPV/EHU), Escuela de Ingeniería de Gipuzkoa, Plaza de Europa 1, 20018 Donostia-San Sebastián, Spain; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Proteinmat Materials SL, Avenida de Tolosa 72, 20018 Donostia-San Sebastián, Spain
| | - Senentxu Lanceros-Mendez
- Physics Centre of Minho and Porto Universities (CF-UM-UP) and Laboratory of Physics for Materials and Emergent Technologies, LapMET, University of Minho, 4710-057 Braga, Portugal; BCMaterials, Basque Center for Materials, Applications and Nanostructures, UPV/EHU Science Park, 48940 Leioa, Spain; Ikerbasque, Basque Foundation for Science, 48009 Bilbao, Spain
| |
Collapse
|
6
|
Sun W, Zhang HY, Liu X, Xiong RG. Cholesterol Cocrystal Ferroelectrics Modulated by Solvent Effect. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2417073. [PMID: 39995346 DOI: 10.1002/adma.202417073] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/06/2024] [Revised: 02/12/2025] [Indexed: 02/26/2025]
Abstract
Cholesterol (CHOL) is an inherently biodegradable material with multiple chiral centers, being an essential component for cell membranes. Considering the close relationship between chirality and ferroelectric feature, this compound with chiral-polar structure is an intrinsic polar material. However, the ferroelectricity of CHOL crystals has never been found to date. Herein, a series of ferroelectric cocrystals of CHOL methanol (CHOL-MeOH) and CHOL ethanol (CHOL-EtOH) have been constructed through the solvent effect. It is found that the introduction of some solvent molecules containing hydroxyls such as methanol and ethanol can reduce the acceptor···donor length and thus form a 1D electroactive channel and further induce ferroelectricity in CHOL. Based on the density functional theory (DFT) calculation analyses represented by CHOL-EtOH, the largely decreased maximum energy barrier for the polarization reversal of ≈50% suggests that the electric polarization of the cocrystal is much easier to be reoriented under the external electric field through the solvent effect. These ferroelectric materials show good biocompatibility and biodegradability through in vitro and in vivo evaluation. These attributes make these CHOL cocrystals good candidates for the application of next-generation smart implantable electronic devices. This work sheds light on the chemical design of biodegradable ferroelectrics in biomaterials.
Collapse
Affiliation(s)
- Wenbo Sun
- Department of Thoracic Surgery, The First Affiliated Hospital with Nanjing Medical University, Nanjing, 210029, P. R. China
| | - Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Xiaomeng Liu
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing, 210009, P. R. China
| | - Ren-Gen Xiong
- Ordered Matter Science Research Center, Nanchang University, Nanchang, 330031, P. R. China
| |
Collapse
|
7
|
Sabu S, Mondal S, Rahman A, Thomas SP. From Flexible Crystals to Piezoelectrics: The Advent of a New Class of Flexible Functional Molecular Materials. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2025:e2412561. [PMID: 40159775 DOI: 10.1002/smll.202412561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 12/23/2024] [Revised: 03/16/2025] [Indexed: 04/02/2025]
Abstract
The recent discoveries of mechanically flexible molecular crystals have fuelled a resurgence of research interest in molecular piezoelectrics. This has raised the quest to explore structure-property relations in molecular piezoelectric crystals, which remain largely obscure. Here, the fundamental structural features associated with organic molecular piezoelectric crystals are explored in relation to their mechanical and supramolecular flexibility. Along with the electrostatic properties such as molecular dipole moments and spontaneous crystal polarization, possible correlations of piezoelectric coefficients with intermolecular interaction topologies and their anisotropy point toward their link with mechanical flexibility in molecular crystals. In addition, the possible roles of crystal packing efficiency, lattice cohesive energies, Young's moduli, and its anisotropy from elastic tensors have been examined. This quantitative overview suggests that piezoelectric response in molecular materials is a complex interplay of several structural and electrostatic factors. Based on these analyses and the fundamental aspects of electromechanical coupling, it becomes apparent that combining mechanical flexibility and supramolecular chirality/polarity can be a promising approach to discovering soft molecular piezoelectrics for novel actuators and energy-harvesting materials.
Collapse
Affiliation(s)
- Soyal Sabu
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Srijan Mondal
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| | - Atiqur Rahman
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
- The University of Queensland - Indian Institute of Technology Delhi Research Academy, IIT Delhi, New Delhi, 110016, India
| | - Sajesh P Thomas
- Department of Chemistry, Indian Institute of Technology Delhi, New Delhi, 110016, India
| |
Collapse
|
8
|
Das S, Paul S, Datta A. Exploring piezoelectric and piezophototronic properties of nanostructured LN-ZnSnS 3 for photoresponsive vibrational energy harvesting. NANOSCALE 2025; 17:7218-7228. [PMID: 40009054 DOI: 10.1039/d4nr05246c] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/27/2025]
Abstract
Piezoelectric energy harvesters have for some time been an advanced choice for self-powered electronics. While oxide-based piezoelectric nanomaterials are well studied for their quality mechanical energy harvesting potential, recent interest in developing multifunctional nanomaterials for harvesting simultaneous ferroelectric/piezoelectric and light energy for photodetectors, photovoltaics and piezophototronics has impelled the search for newer semiconducting dipolar materials. In this respect, LiNbO3 type-ZnSnS3 (LN-ZTS) is predicted to have low optical band gap energy and to possess a considerably expanded hexagonal R3c lattice with high ferroelectricity. Although it has been stabilised in thin-film form, the exclusive synthesis of LN-ZTS nanocrystals has not been reported. In this article, we report a one-step synthesis for R3c hexagonal LN-type ZnSnS3 (ZTS) nanoflakes and show that they could be highly desirable candidates for light-responsive mechanical energy harvesting via an impressive piezophototronic effect. A piezoelectric coefficient (d33) of ∼19 pm V-1 was measured using piezoresponse force microscopy and a considerable zero-bias photoconduction current was observed, which was utilized to harvest an output power of ∼0.13 μW cm-2 from an induced light intensity of 100 mW cm-2 under a mechanical impact of 17 N and 3 Hz. These findings establish a previously unreported ternary sulfide piezoelectric nanostructured material as potential candidate for designing piezophototronic devices by coupling optical functionalities and piezoelectric responses.
Collapse
Affiliation(s)
- Surajit Das
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Swadesh Paul
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
| | - Anuja Datta
- School of Applied and Interdisciplinary Sciences, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India.
- Technical Research Centre, Indian Association for the Cultivation of Science, 2A and 2B Raja S. C. Mullick Road, Kolkata, 700032, India
| |
Collapse
|
9
|
Zhao X, Yao M, Wang Y, Feng C, Yang Y, Tian L, Bao C, Li X, Zhu X, Zhang X. Neuroregulation during Bone Formation and Regeneration: Mechanisms and Strategies. ACS APPLIED MATERIALS & INTERFACES 2025; 17:7223-7250. [PMID: 39869030 DOI: 10.1021/acsami.4c16786] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/28/2025]
Abstract
The skeleton is highly innervated by numerous nerve fibers. These nerve fibers, in addition to transmitting information within the bone and mediating bone sensations, play a crucial role in regulating bone tissue formation and regeneration. Traditional bone tissue engineering (BTE) often fails to achieve satisfactory outcomes when dealing with large-scale bone defects, which is frequently related to the lack of effective reconstruction of the neurovascular network. In recent years, increasing research has revealed the critical role of nerves in bone metabolism. Nerve fibers regulate bone cells through neurotransmitters, neuropeptides, and peripheral glial cells. Furthermore, nerves also coordinate with the vascular and immune systems to jointly construct a microenvironment favorable for bone regeneration. As a signaling driver of bone formation, neuroregulation spans the entire process of bone physiological activities from the embryonic formation to postmaturity remodeling and repair. However, there is currently a lack of comprehensive summaries of these regulatory mechanisms. Therefore, this review sketches out the function of nerves during bone formation and regeneration. Then, we elaborate on the mechanisms of neurovascular coupling and neuromodulation of bone immunity. Finally, we discuss several novel strategies for neuro-bone tissue engineering (NBTE) based on neuroregulation of bone, focusing on the coordinated regeneration of nerve and bone tissue.
Collapse
Affiliation(s)
- Xiangrong Zhao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Meilin Yao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Yuyi Wang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Cong Feng
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Yuhan Yang
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Luoqiang Tian
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Chongyun Bao
- State Key Laboratory of Oral Diseases & National Center for Stomatology & National Clinical Research Center for Oral Diseases, West China Hospital of Stomatology, Med-X Center for Materials, Sichuan University, Chengdu 610041, Sichuan, China
| | - Xiangfeng Li
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xiangdong Zhu
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| | - Xingdong Zhang
- National Engineering Research Center for Biomaterials, College of Biomedical Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
10
|
Lu Y, Ren Y, Gao J, Cai T, Liu L, Ding Y, Xie Q, Jia L. Fabrication of Hierarchical Nanostructures Featuring Amplified Asymmetry Through Co-Assembly of Liquid Crystalline Block Copolymer and Chiral Amphiphiles. Angew Chem Int Ed Engl 2025; 64:e202417573. [PMID: 39375155 DOI: 10.1002/anie.202417573] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/12/2024] [Revised: 10/06/2024] [Accepted: 10/07/2024] [Indexed: 10/09/2024]
Abstract
The widespread presence of hierarchical asymmetric structures in nature has sparked considerable interest because of their unique functionalities. These ingenious structures across multiple scales often emerge from the transfer and amplification of asymmetry from chiral molecules under various synergistic effects. However, constructing artificial chiral asymmetric structures, particularly in developing hierarchical multicomponent structures analogous to those formed in nature through synergistic non-covalent interactions, still presents tremendous challenges. Herein, we propose a co-assembly strategy to fabricate hierarchical chiral mesostructures by combining a liquid crystalline block copolymer (LC-BCP) with a small molecular amphiphile containing chiral alanine or phenylalanine as a linker. Through a classic solvent-exchange process, chiral amphiphiles embedded within LC-BCP finely regulate the LC ordering effect and facilitate transfer and amplification of asymmetry. Consequently, various co-assembled structures with significant hierarchical chirality features are obtained through synergetic effects. Remarkably, subtle alterations to the side groups of amino acids in the amphiphiles effectively adjust the hierarchical morphology transition. Moreover, the covalent bonding sequence of amino acids in the amphiphiles emerges as a critical factor governing the formation of hierarchical nanofibers and multilayered vesicles exhibiting a superhelical sense.
Collapse
Affiliation(s)
- Yue Lu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yangge Ren
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Juanjuan Gao
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Tiantian Cai
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Linyuan Liu
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Yi Ding
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Qingbin Xie
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| | - Lin Jia
- Department of Polymer Materials, School of Materials Science and Engineering, Shanghai University, Nanchen Street 333, Shanghai, 200444, China
| |
Collapse
|
11
|
Zhu C, Wang E, Li Z, Ouyang H. Advances in Symbiotic Bioabsorbable Devices. ADVANCED SCIENCE (WEINHEIM, BADEN-WURTTEMBERG, GERMANY) 2025:e2410289. [PMID: 39846424 DOI: 10.1002/advs.202410289] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/26/2024] [Revised: 12/03/2024] [Indexed: 01/24/2025]
Abstract
Symbiotic bioabsorbable devices are ideal for temporary treatment. This eliminates the boundaries between the device and organism and develops a symbiotic relationship by degrading nutrients that directly enter the cells, tissues, and body to avoid the hazards of device retention. Symbiotic bioresorbable electronics show great promise for sensing, diagnostics, therapy, and rehabilitation, as underpinned by innovations in materials, devices, and systems. This review focuses on recent advances in bioabsorbable devices. Innovation is focused on the material, device, and system levels. Significant advances in biomedical applications are reviewed, including integrated diagnostics, tissue repair, cardiac pacing, and neurostimulation. In addition to the material, device, and system issues, the challenges and trends in symbiotic bioresorbable electronics are discussed.
Collapse
Affiliation(s)
- Chang Zhu
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Engui Wang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Zhou Li
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| | - Han Ouyang
- School of Nanoscience and Engineering, School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing, 100049, China
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
| |
Collapse
|
12
|
Ghosh SK, Matino F, Favrin FL, Tonazzini I, D’Orsi R, de la Ossa JG, Camposeo A, Li J, Liu W, Hacker TA, Pisignano D, Operamolla A, Wang X, Persano L. Fully biodegradable hierarchically designed high-performance nanocellulose piezo-arrays. SCIENCE ADVANCES 2025; 11:eads0778. [PMID: 39813332 PMCID: PMC11734713 DOI: 10.1126/sciadv.ads0778] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 12/12/2024] [Indexed: 01/18/2025]
Abstract
While piezoelectric sensing and energy-harvesting devices still largely rely on inorganic components, biocompatible and biodegradable piezoelectric materials, such as cellulose nanocrystals, might constitute optimal and sustainable building blocks for a variety of applications in electronics and transient implants. To this aim, however, effective methods are needed to position cellulose nanocrystals in large and high-performance architectures. Here, we report on scalable assemblies of cellulose nanocrystals in multilayered piezoelectric systems with exceptional response, for various application scopes. The submicrometer patterning with effective-flow topography and multilayer stacking promote piezoelectric performance. Record output power and pressure sensitivity in the gentle touch range are obtained in flexible, fully biodegradable systems with stable piezoelectric properties and demonstrated compatibility with different cell lines and implanted devices. These architectures offer new design principles for piezoelectric sustainable materials and for realizing an innovative class of practical components for mechanical energy harvesting and biologically relevant wearables and implants.
Collapse
Affiliation(s)
- Sujoy Kumar Ghosh
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - Fabio Lineu Favrin
- Dipartimento di Fisica “E. Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
| | - Ilaria Tonazzini
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - Rosarita D’Orsi
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | | | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| | - Jun Li
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Wenjian Liu
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Timothy A. Hacker
- Cellular and Molecular Arrhythmia Research Program, Department of Medicine, University of Wisconsin, Madison, WI 53706, USA
| | - Dario Pisignano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
- Dipartimento di Fisica “E. Fermi,” Università di Pisa, Largo B. Pontecorvo 3, I-56127 Pisa, Italy
- CISUP, Centro per l’Integrazione della Strumentazione dell’Università di Pisa, I-56126 Pisa, Italy
| | - Alessandra Operamolla
- Dipartimento di Chimica e Chimica Industriale, Università di Pisa, via Giuseppe Moruzzi, 13, 56124 Pisa, Italy
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, I-56127 Pisa, Italy
| |
Collapse
|
13
|
Bai Y, Tang G, Xie L, Lian H, Wang S, Liu C, Yu Q, Ji J, Ren K, Cao X, Li C, Zhou L, Shan Y, Meng H, Li Z. Bonding Optimization Strategies for Flexibly Preparing Multi-Component Piezoelectric Crystals. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2025; 37:e2411589. [PMID: 39629531 DOI: 10.1002/adma.202411589] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/06/2024] [Revised: 10/31/2024] [Indexed: 01/30/2025]
Abstract
Flexible films with optimal piezoelectric performance and water-triggered dissolution behavior are fabricated using the co-dissolution-evaporation method by mixing trimethylchloromethyl ammonium chloride (TMCM-Cl), CdCl2, and polyethylene oxide (PEO, a water-soluble polymer). The resultant TMCM trichlorocadmium (TMCM-CdCl3) crystal/PEO film exhibited the highest piezoelectric coefficient (d33) compared to the films employing other polymers because PEO lacks electrophilic or nucleophilic side-chain groups and therefore exhibits relatively weaker and fewer bonding interactions with the crystal components. Furthermore, upon slightly increasing the amount of one precursor of TMCM-CdCl3 during co-dissolution, this component gained an advantage in the competition against PEO for bonding with the other precursor. This in turn improved the co-crystallization yield of TMCM-CdCl3 and further enhanced d33 to ≈71 pC/N, exceeding that of polyvinylidene fluoride (a commercial flexible piezoelectric) and most other molecular ferroelectric crystal-based flexible films. This study presents an important innovation and progress in the methodology and theory for maintaining a high piezoelectric performance during the preparation of flexible multi-component piezoelectric crystal films.
Collapse
Affiliation(s)
- Yuan Bai
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Gang Tang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Lei Xie
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - He Lian
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China
| | - Shihao Wang
- Advanced Research Institute of Multidisciplinary Science, Beijing Institute of Technology, Beijing, 100081, China
| | - Chaopeng Liu
- School of Minerals Processing and Bioengineering, Central South University, Changsha, 410083, China
| | - Qiao Yu
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Jianying Ji
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Kailiang Ren
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Xiaodan Cao
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Cong Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
| | - Lili Zhou
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Yizhu Shan
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Hongyu Meng
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Zhou Li
- Beijing Institute of Nanoenergy and Nanosystems, Chinese Academy of Sciences, Beijing, 101400, China
- Center on Nanoenergy Research, School of Physical Science and Technology, Guangxi University, Nanning, 530004, China
- Department of Biomedical Engineering, School of Medical Instrumentation, Shenyang Pharmaceutical University, Shenyang, 110016, China
- School of Nanoscience and Technology, University of Chinese Academy of Sciences, Beijing, 100049, China
| |
Collapse
|
14
|
Yan Z, Tran H, Ma D, Xie J. Emerging Piezoelectric Metamaterials for Biomedical Applications. MATERIALS AND INTERFACES 2024; 1:13-34. [PMID: 40046679 PMCID: PMC11882151 DOI: 10.53941/mi.2024.100004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 03/09/2025]
Abstract
Emerging piezoelectric metamaterials hold immense promise for biomedical applications by merging the intrinsic electrical properties of piezoelectricity with the precise architecture of metamaterials. This review provides a comprehensive overview of various piezoelectric materials- such as molecular crystals, ceramics, and polymers-known for their exceptional piezoelectric performance and biocompatibility. We explore the advanced engineering approaches, including molecular design, supramolecular packing, and 3D assembly, which enable the customization of piezoelectric properties for targeted biomedical applications. Particular attention is given to the pivotal role of metamaterial structuring in the development of 0D spheres, 1D fibers and tubes, 2D films, and 3D scaffolds. Key biomedical applications, including tissue engineering, drug delivery, wound healing, and biosensing, are discussed through illustrative examples. Finally, the article addresses critical challenges and future directions, aiming to drive further innovations in piezoelectric biomaterials for next-generation healthcare technologies.
Collapse
Affiliation(s)
- Zishuo Yan
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Huy Tran
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Dezun Ma
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
| | - Jingwei Xie
- Department of Surgery-Transplant and Mary & Dick Holland Regenerative Medicine Program, University of Nebraska Medical Center, Omaha, NE 68198, USA
- Department of Mechanical and Materials Engineering, University of Nebraska Lincoln, Lincoln, NE 68588, USA
| |
Collapse
|
15
|
Chen C, Yang X, Liu Y, Jia J, Li Y, Dai X, Liu O. Piezoelectric materials for anti-infective bioapplications. J Mater Chem B 2024; 12:11063-11075. [PMID: 39382208 DOI: 10.1039/d4tb01589d] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/10/2024]
Abstract
Bacterial infection severely limits the effectiveness of biomaterials for tissue repair, posing a major challenge to modern medicine. Despite advances in novel antibiotics and their application in treatment, challenges remain in clinical practice. To address this issue, biomaterials are engineered to achieve desirable anti-infective performance and compatibility via adjusting their surface physicochemical properties. Recently, numerous studies on piezoelectric materials have been performed for anti-infective and regenerative therapies, but a comprehensive review is still lacking. This article provides a brief overview of the different types of piezoelectric materials and their characteristics. Building on this understanding, this review highlights the antibacterial mechanisms including orchestrating electric field and optimizing piezoelectric catalysis, which promote infective tissue regeneration, as well as discusses the anti-infective bioapplication of piezoelectric materials. Furthermore, this review concludes with perspectives into the challenges and future research directions of piezoelectric biomaterials.
Collapse
Affiliation(s)
- Chen Chen
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha 410008, P. R. China
| | - Xin Yang
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
| | - Yi Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Pediatric Dentistry, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha 410008, P. R. China
| | - Jia Jia
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Orthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha 410008, P. R. China
| | - Yiping Li
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Prosthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha 410008, P. R. China
| | - Xiaohan Dai
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Pediatric Dentistry, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha 410008, P. R. China
| | - Ousheng Liu
- Hunan Key Laboratory of Oral Health Research & Hunan 3D Printing Engineering Research Center of Oral Care & Hunan Clinical Research Center of Oral Major Diseases and Oral Health & Xiangya Stomatological Hospital & Xiangya School of Stomatology, Central South University, Changsha 410008, P. R. China.
- Department of Orthodontics, Xiangya Stomatological Hospital & School of Stomatology, Central South University, Changsha 410008, P. R. China
| |
Collapse
|
16
|
Persano L, Camposeo A, Matino F, Wang R, Natarajan T, Li Q, Pan M, Su Y, Kar-Narayan S, Auricchio F, Scalet G, Bowen C, Wang X, Pisignano D. Advanced Materials for Energy Harvesting and Soft Robotics: Emerging Frontiers to Enhance Piezoelectric Performance and Functionality. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2405363. [PMID: 39291876 PMCID: PMC11543516 DOI: 10.1002/adma.202405363] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/15/2024] [Revised: 07/24/2024] [Indexed: 09/19/2024]
Abstract
Piezoelectric energy harvesting captures mechanical energy from a number of sources, such as vibrations, the movement of objects and bodies, impact events, and fluid flow to generate electric power. Such power can be employed to support wireless communication, electronic components, ocean monitoring, tissue engineering, and biomedical devices. A variety of self-powered piezoelectric sensors, transducers, and actuators have been produced for these applications, however approaches to enhance the piezoelectric properties of materials to increase device performance remain a challenging frontier of materials research. In this regard, the intrinsic polarization and properties of materials can be designed or deliberately engineered to enhance the piezo-generated power. This review provides insights into the mechanisms of piezoelectricity in advanced materials, including perovskites, active polymers, and natural biomaterials, with a focus on the chemical and physical strategies employed to enhance the piezo-response and facilitate their integration into complex electronic systems. Applications in energy harvesting and soft robotics are overviewed by highlighting the primary performance figures of merits, the actuation mechanisms, and relevant applications. Key breakthroughs and valuable strategies to further improve both materials and device performance are discussed, together with a critical assessment of the requirements of next-generation piezoelectric systems, and future scientific and technological solutions.
Collapse
Affiliation(s)
- Luana Persano
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Andrea Camposeo
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Francesca Matino
- NEST, Istituto Nanoscienze-CNR and Scuola Normale Superiore, Pisa, I-56127, Italy
| | - Ruoxing Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Thiyagarajan Natarajan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Qinlan Li
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Min Pan
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Yewang Su
- State Key Laboratory of Nonlinear Mechanics, Institute of Mechanics, Chinese Academy of Sciences, Beijing, 100190, China
- School of Engineering Science, University of Chinese Academy of Sciences, Beijing, 100049, China
| | - Sohini Kar-Narayan
- Department of Materials Science, University of Cambridge, 27 Charles Babbage Road, Cambridge, CB3 0FS, UK
| | - Ferdinando Auricchio
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Giulia Scalet
- Department of Civil Engineering and Architecture, University of Pavia, via Ferrata 3, Pavia, I-27100, Italy
| | - Chris Bowen
- Department of Mechanical Engineering, University of Bath, Bath, BA2 7AY, UK
| | - Xudong Wang
- Department of Materials Science and Engineering, University of Wisconsin-Madison, Madison, 53707, USA
| | - Dario Pisignano
- Dipartimento di Fisica "E. Fermi", Università di Pisa, Largo B. Pontecorvo 3, Pisa, I-56127, Italy
| |
Collapse
|
17
|
Sun S, Tan Y, Cheng Q, Cai Y, Zheng J, Wang W, Xu L, Li G, Wang D, Zhang L, Wang Y. Thermoplastic PHB-Reinforced Chitosan Piezoelectric Films for Biodegradable Pressure Sensors. ACS APPLIED BIO MATERIALS 2024; 7:6823-6831. [PMID: 39302705 DOI: 10.1021/acsabm.4c00966] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/22/2024]
Abstract
Flexible and wearable pressure sensors have attracted significant attention in the fields of smart medicine and human health monitoring. Nevertheless, the design and fabrication of degradable disposable pressure sensors still face urgent challenges. Herein, we fabricated poly(3-hydroxybutyrate) (PHB)-reinforced chitosan (CS) piezoelectric films for intelligent sensors through a simple, low-cost, and environmentally friendly roll-forming method. The results show that PHB doping successfully increased the effective piezoelectric coefficient of the chitosan-based film from 40.12 to 49.38 pm/V (a 23% increase). Simultaneously, the pressure sensor based on the CS/PHB film exhibited excellent response sensitivity (484 mV/kPa) and a wide linear response range (0-130 kPa), which could be used as haptic sensors and motion monitoring sensors for the fast response to human motion signals. Additionally, the CS/PHB film could be completely degraded within 18 days in a natural soil environment, demonstrating outstanding degradability. Therefore, chitosan-based piezoelectric films with excellent biodegradability and piezoelectric characteristics have been successfully fabricated in this work, which will promote the innovative development of green chitosan-based electronic devices and disposable pressure sensors.
Collapse
Affiliation(s)
- Shuang Sun
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yongyao Tan
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Qikuan Cheng
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yuchen Cai
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Jiaqi Zheng
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Wei Wang
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Lingjuan Xu
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Guigang Li
- Department of Ophthalmology, Tongji Hospital, Tongji Medical College, Huazhong University of Science and Technology, Wuhan 430074, China
| | - Dong Wang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Lu Zhang
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| | - Yunming Wang
- Hubei Longzhong Laboratory, Xiangyang 441000, China
- School of Materials Science and Engineering, State Key Laboratory of Material Processing and Die & Mould Technology, Huazhong University of Science & Technology, Wuhan 430074, China
| |
Collapse
|
18
|
Han K, Mao M, Fu L, Zhang Y, Kang Y, Li D, He J. Multimaterial Printing of Serpentine Microarchitectures with Synergistic Mechanical/Piezoelectric Stimulation for Enhanced Cardiac-Specific Functional Regeneration. SMALL (WEINHEIM AN DER BERGSTRASSE, GERMANY) 2024; 20:e2401561. [PMID: 38899348 DOI: 10.1002/smll.202401561] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2024] [Revised: 05/21/2024] [Indexed: 06/21/2024]
Abstract
Recreating the natural heart's mechanical and electrical environment is crucial for engineering functional cardiac tissue and repairing infarcted myocardium in vivo. In this study, multimaterial-printed serpentine microarchitectures are presented with synergistic mechanical/piezoelectric stimulation, incorporating polycaprolactone (PCL) microfibers for mechanical support, polyvinylidene fluoride (PVDF) microfibers for piezoelectric stimulation, and magnetic PCL/Fe3O4 for controlled deformation via an external magnet. Rat cardiomyocytes in piezoelectric constructs, subjected to dynamic mechanical stimulation, exhibit advanced maturation, featuring superior sarcomeric structures, improved calcium transients, and upregulated maturation genes compared to non-piezoelectric constructs. Furthermore, these engineered piezoelectric cardiac constructs demonstrate significant structural and functional repair of infarcted myocardium, as evidenced by enhanced ejection and shortening fraction, reduced fibrosis and inflammation, and increased angiogenesis. The findings underscore the therapeutic potential of piezoelectric cardiac constructs for myocardial infarction therapy.
Collapse
Affiliation(s)
- Kang Han
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Mao Mao
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Liyan Fu
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, P. R. China
| | - Yabo Zhang
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Yuming Kang
- Department of Physiology and Pathophysiology, Xi'an Jiaotong University School of Basic Medical Sciences, Shaanxi Engineering and Research Center of Vaccine, Key Laboratory of Environment and Genes Related to Diseases of Education Ministry of China, Xi'an, 710061, P. R. China
| | - Dichen Li
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| | - Jiankang He
- State Key Laboratory for Manufacturing Systems Engineering, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Medical Products Administration (NMPA) Key Laboratory for Research and Evaluation of Additive Manufacturing Medical Devices, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
- National Innovation Platform (Center) for Industry-Education Integration of Medical Technology, Xi'an Jiaotong University, Xi'an, 710049, P. R. China
| |
Collapse
|
19
|
Pensini E, Meszaros P, Kashlan N, Marangoni AG, Laredo T, Gregori S, Ghazani SM, van der Zalm J, Chen A. Ferroelectric hydrogels from amino acids and oleic acid. iScience 2024; 27:110601. [PMID: 39280610 PMCID: PMC11396064 DOI: 10.1016/j.isci.2024.110601] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 07/10/2024] [Accepted: 07/25/2024] [Indexed: 09/18/2024] Open
Abstract
Ferroelectric bio-based materials with a high water content (≈90 wt %) were not previously developed. Here, we develop hydrogels containing ≈90 wt % water, amino acids (lysine and arginine) and oleic acid. The NH and CH groups of lysine hydrogen bond water, as shown by attenuated total reflectance-Fourier transform infrared spectroscopy, yielding electrically conductive solutions. Lysine also interacts with oleic acid, yielding hard materials with a lamellar crystal structure, as revealed by synchrotron small angle X-ray scattering. Polarized light microscopy and shear rheology show that aqueous mixtures of amino acids and oleic acid are birefringent gels. These gels have a columnar, hexagonal crystal structure with 54-85 wt % water, and a bi-continuous sponge crystal structure with 89 wt % water. They are piezoelectric, as demonstrated by cyclic voltammetry. Thus, they deform and undergo crystalline phase transitions when exposed to electric fields. The piezoelectric materials developed can find use in medical applications and clean energy harvesting.
Collapse
Affiliation(s)
- Erica Pensini
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Biophysics Interdepartmental Group (BIG), University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Peter Meszaros
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Nour Kashlan
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Alejandro G Marangoni
- Biophysics Interdepartmental Group (BIG), University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Thamara Laredo
- Chemistry Department, Lakehead University, 500 University Avenue, Orillia, ON L3V 0B9, Canada
| | - Stefano Gregori
- School of Engineering, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Saeed Mirzaee Ghazani
- Food Science Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Joshua van der Zalm
- Chemistry Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| | - Aicheng Chen
- Chemistry Department, University of Guelph, 50 Stone Road East, Guelph, ON N1G 2W1, Canada
| |
Collapse
|
20
|
Li J, Li Z, Xie Y, Cai T, Shin D, Chen C, Mirkin C. Non-Centrosymmetric Single Crystalline Biomolecular Nano-Arrays for Responsive Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2408153. [PMID: 39128135 DOI: 10.1002/adma.202408153] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/07/2024] [Revised: 07/31/2024] [Indexed: 08/13/2024]
Abstract
Herein, a novel strategy is reported for synthesizing libraries of single crystalline amino acid (AA) nanocrystals with control over size, anisotropy, and polymorphism by leveraging dip-pen nanolithography (DPN) and recrystallization via solvent vapor annealing. The crystals are prepared by first depositing nanoreactors consisting of a solvent with AAs, followed by water vapor-induced recrystallization. This leads to isotropic structures that are non-centrosymmetric with strong piezoelectric (g33 coefficients >1000 mVm N-1), ferroelectric, and non-linear optical properties. However, recrystallizing arrays of isotropic DL-alanine nanodot features with a binary solvent (water and ethanol) leads to arrays of 1D piezoelectric nanorods with their long axis coincident with the polar axis. Moreover, positioning nanoreactors containing AAs (the nanodot features) between micro electrodes leads to capillary formation, making the reactors anisotropic and facilitating piezoelectric nanorod formation between the electrodes. This offers a facile route to device fabrication. These as-fabricated devices respond to ultrasonic stimulation in the form of a piezoelectric response. The technique described herein is significant as it provides a rapid way of investigating non-centrosymmetric nanoscale biocrystals, potentially pivotal for fabricating a new class of stimuli-responsive devices such as sensors, energy harvesters, and stimulators.
Collapse
Affiliation(s)
- Jun Li
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Zhiwei Li
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Yi Xie
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Tong Cai
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Donghoon Shin
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| | - Chaojian Chen
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
| | - Chad Mirkin
- Department of Chemistry, Northwestern University, Evanston, IL, 60208, USA
- International Institute for Nanotechnology, Northwestern University, Evanston, IL, 60208, USA
- Department of Materials Science and Engineering, Northwestern University, Evanston, IL, 60208, USA
| |
Collapse
|
21
|
Cao B, Huang Y, Chen L, Jia W, Li D, Jiang Y. Soft bioelectronics for diagnostic and therapeutic applications in neurological diseases. Biosens Bioelectron 2024; 259:116378. [PMID: 38759308 DOI: 10.1016/j.bios.2024.116378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2024] [Revised: 04/13/2024] [Accepted: 05/09/2024] [Indexed: 05/19/2024]
Abstract
Physical and chemical signals in the central nervous system yield crucial information that is clinically relevant under both physiological and pathological conditions. The emerging field of bioelectronics focuses on the monitoring and manipulation of neurophysiological signals with high spatiotemporal resolution and minimal invasiveness. Significant advances have been realized through innovations in materials and structural design, which have markedly enhanced mechanical and electrical properties, biocompatibility, and overall device performance. The diagnostic and therapeutic potential of soft bioelectronics has been corroborated across a diverse array of pre-clinical settings. This review summarizes recent studies that underscore the developments and applications of soft bioelectronics in neurological disorders, including neuromonitoring, neuromodulation, tumor treatment, and biosensing. Limitations and outlooks of soft devices are also discussed in terms of power supply, wireless control, biocompatibility, and the integration of artificial intelligence. This review highlights the potential of soft bioelectronics as a future platform to promote deciphering brain functions and clinical outcomes of neurological diseases.
Collapse
Affiliation(s)
- Bowen Cao
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Yewei Huang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States
| | - Liangpeng Chen
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China
| | - Wang Jia
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Deling Li
- Department of Neurosurgery, Beijing Tiantan Hospital, National Center for Neurological Disorders, Capital Medical University, Beijing, China; Beijing Neurosurgical Institute, Capital Medical University, Beijing, China; China National Clinical Research Center for Neurological Diseases (NCRC-ND), Beijing, China.
| | - Yuanwen Jiang
- Department of Materials Science and Engineering, University of Pennsylvania, Philadelphia, United States.
| |
Collapse
|
22
|
Chen S, Tong X, Huo Y, Liu S, Yin Y, Tan ML, Cai K, Ji W. Piezoelectric Biomaterials Inspired by Nature for Applications in Biomedicine and Nanotechnology. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2406192. [PMID: 39003609 DOI: 10.1002/adma.202406192] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/30/2024] [Revised: 06/10/2024] [Indexed: 07/15/2024]
Abstract
Bioelectricity provides electrostimulation to regulate cell/tissue behaviors and functions. In the human body, bioelectricity can be generated in electromechanically responsive tissues and organs, as well as biomolecular building blocks that exhibit piezoelectricity, with a phenomenon known as the piezoelectric effect. Inspired by natural bio-piezoelectric phenomenon, efforts have been devoted to exploiting high-performance synthetic piezoelectric biomaterials, including molecular materials, polymeric materials, ceramic materials, and composite materials. Notably, piezoelectric biomaterials polarize under mechanical strain and generate electrical potentials, which can be used to fabricate electronic devices. Herein, a review article is proposed to summarize the design and research progress of piezoelectric biomaterials and devices toward bionanotechnology. First, the functions of bioelectricity in regulating human electrophysiological activity from cellular to tissue level are introduced. Next, recent advances as well as structure-property relationship of various natural and synthetic piezoelectric biomaterials are provided in detail. In the following part, the applications of piezoelectric biomaterials in tissue engineering, drug delivery, biosensing, energy harvesting, and catalysis are systematically classified and discussed. Finally, the challenges and future prospects of piezoelectric biomaterials are presented. It is believed that this review will provide inspiration for the design and development of innovative piezoelectric biomaterials in the fields of biomedicine and nanotechnology.
Collapse
Affiliation(s)
- Siying Chen
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Xiaoyu Tong
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yehong Huo
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Shuaijie Liu
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing, 401147, China
| | - Mei-Ling Tan
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing, 400044, China
| |
Collapse
|
23
|
Zhang J, Wang J, Zhong C, Zhang Y, Qiu Y, Qin L. Flexible Electronics: Advancements and Applications of Flexible Piezoelectric Composites in Modern Sensing Technologies. MICROMACHINES 2024; 15:982. [PMID: 39203633 PMCID: PMC11356236 DOI: 10.3390/mi15080982] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 06/16/2024] [Revised: 07/14/2024] [Accepted: 07/18/2024] [Indexed: 09/03/2024]
Abstract
The piezoelectric effect refers to a physical phenomenon where piezoelectric materials generate an electric field when subjected to mechanical stress or undergo mechanical deformation when subjected to an external electric field. This principle underlies the operation of piezoelectric sensors. Piezoelectric sensors have garnered significant attention due to their excellent self-powering capability, rapid response speed, and high sensitivity. With the rapid development of sensor techniques achieving high precision, increased mechanical flexibility, and miniaturization, a range of flexible electronic products have emerged. As the core constituents of piezoelectric sensors, flexible piezoelectric composite materials are commonly used due to their unique advantages, including high conformability, sensitivity, and compatibility. They have found applications in diverse domains such as underwater detection, electronic skin sensing, wearable sensors, targeted therapy, and ultrasound diagnostics for deep tissue. The advent of flexible piezoelectric composite materials has revolutionized the design concepts and application scenarios of traditional piezoelectric materials, playing a crucial role in the development of next-generation flexible electronic products. This paper reviews the research progress on flexible piezoelectric composite materials, covering their types and typical fabrication techniques, as well as their applications across various fields. Finally, a summary and outlook on the existing issues and future development of these composite materials are provided.
Collapse
Affiliation(s)
- Jinying Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (J.W.); (Y.Z.)
- Yangtze Delta Region Academy of Beijing Institute of Technology, Jiaxing 314001, China
| | - Jiacheng Wang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (J.W.); (Y.Z.)
| | - Chao Zhong
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100101, China; (C.Z.); (Y.Q.)
| | - Yexiaotong Zhang
- Beijing Key Laboratory for Precision Optoelectronic Measurement Instrument and Technology, School of Optics and Photonics, Beijing Institute of Technology, Beijing 100081, China; (J.W.); (Y.Z.)
| | - Yajuan Qiu
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100101, China; (C.Z.); (Y.Q.)
| | - Lei Qin
- Beijing Key Laboratory for Sensors, Beijing Information Science & Technology University, Beijing 100101, China; (C.Z.); (Y.Q.)
| |
Collapse
|
24
|
Zheng Y, Zhang Z, Zhang Y, Pan Q, Yan X, Li X, Yang Z. Enhancing Ultrasound Power Transfer: Efficiency, Acoustics, and Future Directions. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024:e2407395. [PMID: 39044603 DOI: 10.1002/adma.202407395] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Revised: 07/01/2024] [Indexed: 07/25/2024]
Abstract
Implantable medical devices (IMDs), like pacemakers regulating heart rhythm or deep brain stimulators treating neurological disorders, revolutionize healthcare. However, limited battery life necessitates frequent surgeries for replacements. Ultrasound power transfer (UPT) emerges as a promising solution for sustainable IMD operation. Current research prioritizes implantable materials, with less emphasis on sound field analysis and maximizing energy transfer during wireless power delivery. This review addresses this gap. A comprehensive analysis of UPT technology, examining cutting-edge system designs, particularly in power supply and efficiency is provided. The review critically examines existing efficiency models, summarizing the key parameters influencing energy transmission in UPT systems. For the first time, an energy flow diagram of a general UPT system is proposed to offer insights into the overall functioning. Additionally, the review explores the development stages of UPT technology, showcasing representative designs and applications. The remaining challenges, future directions, and exciting opportunities associated with UPT are discussed. By highlighting the importance of sustainable IMDs with advanced functions like biosensing and closed-loop drug delivery, as well as UPT's potential, this review aims to inspire further research and advancements in this promising field.
Collapse
Affiliation(s)
- Yi Zheng
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Zhuomin Zhang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Yanhu Zhang
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
- School of Mechanical Engineering, Jiangsu University, Zhenjiang, 212013, China
| | - Qiqi Pan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
- Department of Mechanical Engineering, City University of Hong Kong, Hong Kong, SAR, 999077, China
| | - Xiaodong Yan
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| | - Xuemu Li
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| | - Zhengbao Yang
- Department of Mechanical and Aerospace Engineering, The Hong Kong University of Science and Technology, Hong Kong, SAR, 999077, China
| |
Collapse
|
25
|
Xue X, Wu H, Cai Q, Chen M, Moon S, Huang Z, Kim T, Peng C, Feng W, Sharma N, Jiang X. Flexible Ultrasonic Transducers for Wearable Biomedical Applications: A Review on Advanced Materials, Structural Designs, and Future Prospects. IEEE TRANSACTIONS ON ULTRASONICS, FERROELECTRICS, AND FREQUENCY CONTROL 2024; 71:786-810. [PMID: 37971905 PMCID: PMC11292608 DOI: 10.1109/tuffc.2023.3333318] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 11/19/2023]
Abstract
Due to the rapid developments in materials science and fabrication techniques, wearable devices have recently received increased attention for biomedical applications, particularly in medical ultrasound (US) imaging, sensing, and therapy. US is ubiquitous in biomedical applications because of its noninvasive nature, nonionic radiating, high precision, and real-time capabilities. While conventional US transducers are rigid and bulky, flexible transducers can be conformed to curved body areas for continuous sensing without restricting tissue movement or transducer shifting. This article comprehensively reviews the application of flexible US transducers in the field of biomedical imaging, sensing, and therapy. First, we review the background of flexible US transducers. Following that, we discuss advanced materials and fabrication techniques for flexible US transducers and their enabling technology status. Finally, we highlight and summarize some promising preliminary data with recent applications of flexible US transducers in biomedical imaging, sensing, and therapy. We also provide technical barriers, challenges, and future perspectives for further research and development.
Collapse
|
26
|
Chen L, Yang J, Cai Z, Huang Y, Xiao P, Wang J, Wang F, Huang W, Cui W, Hu N. Electroactive Biomaterials Regulate the Electrophysiological Microenvironment to Promote Bone and Cartilage Tissue Regeneration. ADVANCED FUNCTIONAL MATERIALS 2024; 34. [DOI: 10.1002/adfm.202314079] [Citation(s) in RCA: 4] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/09/2023] [Indexed: 01/06/2025]
Abstract
AbstractThe incidence of large bone and articular cartilage defects caused by traumatic injury is increasing worldwide; the tissue regeneration process for these injuries is lengthy due to limited self‐healing ability. Endogenous bioelectrical phenomenon has been well recognized to play an important role in bone and cartilage homeostasis and regeneration. Studies have reported that electrical stimulation (ES) can effectively regulate various biological processes and holds promise as an external intervention to enhance the synthesis of the extracellular matrix, thereby accelerating the process of bone and cartilage regeneration. Hence, electroactive biomaterials have been considered a biomimetic approach to ensure functional recovery by integrating various physiological signals, including electrical, biochemical, and mechanical signals. This review will discuss the role of endogenous bioelectricity in bone and cartilage tissue, as well as the effects of ES on cellular behaviors. Then, recent advances in electroactive materials and their applications in bone and cartilage tissue regeneration are systematically overviewed, with a focus on their advantages and disadvantages as tissue repair materials and performances in the modulation of cell fate. Finally, the significance of mimicking the electrophysiological microenvironment of target tissue is emphasized and future development challenges of electroactive biomaterials for bone and cartilage repair strategies are proposed.
Collapse
Affiliation(s)
- Li Chen
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Jianye Yang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Zhengwei Cai
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Yanran Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Pengcheng Xiao
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Juan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Fan Wang
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Wei Huang
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| | - Wenguo Cui
- Department of Orthopaedics Shanghai Key Laboratory for Prevention and Treatment of Bone and Joint Diseases Shanghai Institute of Traumatology and Orthopaedics Ruijin Hospital Shanghai Jiao Tong University School of Medicine 197 Ruijin 2nd Road Shanghai 200025 P. R. China
| | - Ning Hu
- Department of Orthopedics The First Affiliated Hospital of Chongqing Medical University Orthopaedic Research Laboratory, Chongqing Medical University Chongqing 400016 China
| |
Collapse
|
27
|
Zhi C, Shi S, Wu H, Si Y, Zhang S, Lei L, Hu J. Emerging Trends of Nanofibrous Piezoelectric and Triboelectric Applications: Mechanisms, Electroactive Materials, and Designed Architectures. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2401264. [PMID: 38545963 DOI: 10.1002/adma.202401264] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/24/2024] [Revised: 03/19/2024] [Indexed: 04/13/2024]
Abstract
Over the past few decades, significant progress in piezo-/triboelectric nanogenerators (PTEGs) has led to the development of cutting-edge wearable technologies. Nanofibers with good designability, controllable morphologies, large specific areas, and unique physicochemical properties provide a promising platform for PTEGs for various advanced applications. However, the further development of nanofiber-based PTEGs is limited by technical difficulties, ranging from materials design to device integration. Herein, the current developments in PTEGs based on electrospun nanofibers are systematically reviewed. This review begins with the mechanisms of PTEGs and the advantages of nanofibers and nanodevices, including high breathability, waterproofness, scalability, and thermal-moisture comfort. In terms of materials and structural design, novel electroactive nanofibers and structure assemblies based on 1D micro/nanostructures, 2D bionic structures, and 3D multilayered structures are discussed. Subsequently, nanofibrous PTEGs in applications such as energy harvesters, personalized medicine, personal protective equipment, and human-machine interactions are summarized. Nanofiber-based PTEGs still face many challenges such as energy efficiency, material durability, device stability, and device integration. Finally, the research gap between research and practical applications of PTEGs is discussed, and emerging trends are proposed, providing some ideas for the development of intelligent wearables.
Collapse
Affiliation(s)
- Chuanwei Zhi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuo Shi
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Hanbai Wu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Yifan Si
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Shuai Zhang
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Leqi Lei
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
| | - Jinlian Hu
- Department of Biomedical Engineering, City University of Hong Kong, Hong Kong, Hong Kong SAR, 999077, China
- City University of Hong Kong Shenzhen Research Institute, Shenzhen, 518057, P. R. China
| |
Collapse
|
28
|
Xue H, Jin J, Tan Z, Chen K, Lu G, Zeng Y, Hu X, Peng X, Jiang L, Wu J. Flexible, biodegradable ultrasonic wireless electrotherapy device based on highly self-aligned piezoelectric biofilms. SCIENCE ADVANCES 2024; 10:eadn0260. [PMID: 38820150 PMCID: PMC11141629 DOI: 10.1126/sciadv.adn0260] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/18/2023] [Accepted: 04/29/2024] [Indexed: 06/02/2024]
Abstract
Biodegradable piezoelectric devices hold great promise in on-demand transient bioelectronics. Existing piezoelectric biomaterials, however, remain obstacles to the development of such devices due to difficulties in large-scale crystal orientation alignment and weak piezoelectricity. Here, we present a strategy for the synthesis of optimally orientated, self-aligned piezoelectric γ-glycine/polyvinyl alcohol (γ-glycine/PVA) films via an ultrasound-assisted process, guided by density functional theory. The first-principles calculations reveal that the negative piezoelectric effect of γ-glycine originates from the stretching and compression of glycine molecules induced by hydrogen bonding interactions. The synthetic γ-glycine/PVA films exhibit a piezoelectricity of 10.4 picocoulombs per newton and an ultrahigh piezoelectric voltage coefficient of 324 × 10-3 volt meters per newton. The biofilms are further developed into flexible, bioresorbable, wireless piezo-ultrasound electrotherapy devices, which are demonstrated to shorten wound healing by ~40% and self-degrade in preclinical wound models. These encouraging results offer reliable approaches for engineering piezoelectric biofilms and developing transient bioelectronics.
Collapse
Affiliation(s)
- Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jing Jin
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Zhi Tan
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Keliang Chen
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, CA 90089, USA
| | - Xiaolin Hu
- West China School of Nursing, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Xingchen Peng
- Department of Biotherapy, Cancer Center, West China Hospital, Sichuan University, Chengdu 610041, China
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu 610064, China
| |
Collapse
|
29
|
Wang Q, Zhang Y, Xue H, Zeng Y, Lu G, Fan H, Jiang L, Wu J. Lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation. Nat Commun 2024; 15:4017. [PMID: 38740759 DOI: 10.1038/s41467-024-48250-z] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/16/2023] [Accepted: 04/25/2024] [Indexed: 05/16/2024] Open
Abstract
Ultrasound-driven bioelectronics could offer a wireless scheme with sustainable power supply; however, current ultrasound implantable systems present critical challenges in biocompatibility and harvesting performance related to lead/lead-free piezoelectric materials and devices. Here, we report a lead-free dual-frequency ultrasound implants for wireless, biphasic deep brain stimulation, which integrates two developed lead-free sandwich porous 1-3-type piezoelectric composite elements with enhanced harvesting performance in a flexible printed circuit board. The implant is ultrasonically powered through a portable external dual-frequency transducer and generates programmable biphasic stimulus pulses in clinically relevant frequencies. Furthermore, we demonstrate ultrasound-driven implants for long-term biosafety therapy in deep brain stimulation through an epileptic rodent model. With biocompatibility and improved electrical performance, the lead-free materials and devices presented here could provide a promising platform for developing implantable ultrasonic electronics in the future.
Collapse
Affiliation(s)
- Qian Wang
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Yusheng Zhang
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China
| | - Haoyue Xue
- College of Materials Science and Engineering, Sichuan University, Chengdu, China
| | - Yushun Zeng
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Gengxi Lu
- Alfred E. Mann Department of Biomedical Engineering, Viterbi School of Engineering, University of Southern California, Los Angeles, California, USA
| | - Hongsong Fan
- National Engineering Research Center for Biomaterials, Sichuan University, Chengdu, China.
| | - Laiming Jiang
- College of Materials Science and Engineering, Sichuan University, Chengdu, China.
| | - Jiagang Wu
- College of Materials Science and Engineering, Sichuan University, Chengdu, China.
| |
Collapse
|
30
|
Zhu P, Simon I, Kokalari I, Kohane DS, Rwei AY. Miniaturized therapeutic systems for ultrasound-modulated drug delivery to the central and peripheral nervous system. Adv Drug Deliv Rev 2024; 208:115275. [PMID: 38442747 PMCID: PMC11031353 DOI: 10.1016/j.addr.2024.115275] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/12/2023] [Revised: 02/19/2024] [Accepted: 03/01/2024] [Indexed: 03/07/2024]
Abstract
Ultrasound is a promising technology to address challenges in drug delivery, including limited drug penetration across physiological barriers and ineffective targeting. Here we provide an overview of the significant advances made in recent years in overcoming technical and pharmacological barriers using ultrasound-assisted drug delivery to the central and peripheral nervous system. We commence by exploring the fundamental principles of ultrasound physics and its interaction with tissue. The mechanisms of ultrasonic-enhanced drug delivery are examined, as well as the relevant tissue barriers. We highlight drug transport through such tissue barriers utilizing insonation alone, in combination with ultrasound contrast agents (e.g., microbubbles), and through innovative particulate drug delivery systems. Furthermore, we review advances in systems and devices for providing therapeutic ultrasound, as their practicality and accessibility are crucial for clinical application.
Collapse
Affiliation(s)
- Pancheng Zhu
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands; State Key Laboratory of Mechanics and Control of Aerospace Structures, Nanjing University of Aeronautics & Astronautics, 210016, Nanjing, China; Department of Biomedical Engineering, The Hong Kong Polytechnic University, Hong Kong, China
| | - Ignasi Simon
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Ida Kokalari
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands
| | - Daniel S Kohane
- Laboratory for Biomaterials and Drug Delivery, Department of Anesthesiology, Boston Children's Hospital, Harvard Medical School, Boston, MA 02115, USA.
| | - Alina Y Rwei
- Department of Chemical Engineering, Delft University of Technology, 2629 HZ, Delft, the Netherlands.
| |
Collapse
|
31
|
Zhang HY, Tang YY, Gu ZX, Wang P, Chen XG, Lv HP, Li PF, Jiang Q, Gu N, Ren S, Xiong RG. Biodegradable ferroelectric molecular crystal with large piezoelectric response. Science 2024; 383:1492-1498. [PMID: 38547269 DOI: 10.1126/science.adj1946] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/12/2023] [Accepted: 02/07/2024] [Indexed: 04/02/2024]
Abstract
Transient implantable piezoelectric materials are desirable for biosensing, drug delivery, tissue regeneration, and antimicrobial and tumor therapy. For use in the human body, they must show flexibility, biocompatibility, and biodegradability. These requirements are challenging for conventional inorganic piezoelectric oxides and piezoelectric polymers. We discovered high piezoelectricity in a molecular crystal HOCH2(CF2)3CH2OH [2,2,3,3,4,4-hexafluoropentane-1,5-diol (HFPD)] with a large piezoelectric coefficient d33 of ~138 picocoulombs per newton and piezoelectric voltage constant g33 of ~2450 × 10-3 volt-meters per newton under no poling conditions, which also exhibits good biocompatibility toward biological cells and desirable biodegradation and biosafety in physiological environments. HFPD can be composite with polyvinyl alcohol to form flexible piezoelectric films with a d33 of 34.3 picocoulombs per newton. Our material demonstrates the ability for molecular crystals to have attractive piezoelectric properties and should be of interest for applications in transient implantable electromechanical devices.
Collapse
Affiliation(s)
- Han-Yue Zhang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
| | - Yuan-Yuan Tang
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Zhu-Xiao Gu
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Peng Wang
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Xiao-Gang Chen
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Hui-Peng Lv
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Peng-Fei Li
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| | - Qing Jiang
- Division of Sports Medicine and Adult Reconstructive Surgery, Department of Orthopedic Surgery, Nanjing Drum Tower Hospital, Affiliated Hospital of Medical School, Nanjing University, Nanjing 210008, Jiangsu, P. R. China
| | - Ning Gu
- Medical School, Nanjing University, Nanjing 210093, Jiangsu, P. R. China
| | - Shenqiang Ren
- Department of Materials Science and Engineering, University of Maryland, College Park, MD 20742, USA
| | - Ren-Gen Xiong
- Jiangsu Key Laboratory for Biomaterials and Devices, School of Biological Science and Medical Engineering, Southeast University, Nanjing 210009, P. R. China
- Ordered Matter Science Research Center, Nanchang University, Nanchang 330031, P. R. China
| |
Collapse
|
32
|
Wan L, Lu L, Zhu H, Liang X, Liu Z, Huang X, Luo Q, Xu Q, Zhang Q, Jia X. Tough and Water-Resistant Bioelastomers with Active-Controllable Degradation Rates. ACS APPLIED MATERIALS & INTERFACES 2024; 16:6356-6366. [PMID: 38262045 DOI: 10.1021/acsami.3c16090] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/25/2024]
Abstract
Biodegradable electronic devices have gained significant traction in modern medical applications. These devices are generally desired to have a long enough working lifetime for stable operation and allow for active control over their degradation rates after usage. However, current biodegradable materials used as encapsulations or substrates for these devices are challenging to meet the two requirements due to the constraints of inadequate water resistance, poor mechanical properties, and passive degradation characteristics. Herein, we develop a novel biodegradable elastomer named POC-SS-Res by introducing disulfide linkage and resveratrol (Res) into poly(1,8-octanediol-co-citrate) (POC). Compared to POC, POC-SS-Res exhibits good water resistance and excellent mechanical properties in PBS, providing effective protection for devices. At the same time, POC-SS-Res offers the unique advantage of an active-controllable degradation rate, and its degradation products express low biotoxicity. Good biocompatibility of POC-SS-Res is also demonstrated. Bioelectronic components encapsulated with POC-SS-Res have an obvious prolongation of working lifetime in PBS compared to that encapsulated with POC, and its degradation rate can be actively controlled by the addition of glutathione (GSH).
Collapse
Affiliation(s)
- Lu Wan
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Liangliang Lu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Hongsen Zhu
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Xuejiao Liang
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Zhichang Liu
- Kuang Yaming Honors School, Nanjing University, Nanjing210023, P. R. China
| | - Xinxin Huang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
| | - Qiong Luo
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Qiang Xu
- State Key Laboratory of Pharmaceutical Biotechnology, Department of Biotechnology and Pharmaceutical Sciences, School of Life Sciences, Nanjing University, Nanjing210023, P R. China
| | - Qiuhong Zhang
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| | - Xudong Jia
- Key Laboratory of High Performance Polymer Material and Technology of MOE, Department of Polymer Science and Engineering, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210023, P. R. China
- State Key Laboratory of Coordination Chemistry, Nanjing University, Nanjing 210023, P. R. China
| |
Collapse
|
33
|
Zhang L, Du W, Kim JH, Yu CC, Dagdeviren C. An Emerging Era: Conformable Ultrasound Electronics. ADVANCED MATERIALS (DEERFIELD BEACH, FLA.) 2024; 36:e2307664. [PMID: 37792426 DOI: 10.1002/adma.202307664] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 07/31/2023] [Revised: 09/19/2023] [Indexed: 10/05/2023]
Abstract
Conformable electronics are regarded as the next generation of personal healthcare monitoring and remote diagnosis devices. In recent years, piezoelectric-based conformable ultrasound electronics (cUSE) have been intensively studied due to their unique capabilities, including nonradiative monitoring, soft tissue imaging, deep signal decoding, wireless power transfer, portability, and compatibility. This review provides a comprehensive understanding of cUSE for use in biomedical and healthcare monitoring systems and a summary of their recent advancements. Following an introduction to the fundamentals of piezoelectrics and ultrasound transducers, the critical parameters for transducer design are discussed. Next, five types of cUSE with their advantages and limitations are highlighted, and the fabrication of cUSE using advanced technologies is discussed. In addition, the working function, acoustic performance, and accomplishments in various applications are thoroughly summarized. It is noted that application considerations must be given to the tradeoffs between material selection, manufacturing processes, acoustic performance, mechanical integrity, and the entire integrated system. Finally, current challenges and directions for the development of cUSE are highlighted, and research flow is provided as the roadmap for future research. In conclusion, these advances in the fields of piezoelectric materials, ultrasound transducers, and conformable electronics spark an emerging era of biomedicine and personal healthcare.
Collapse
Affiliation(s)
- Lin Zhang
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Wenya Du
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Jin-Hoon Kim
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Chia-Chen Yu
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| | - Canan Dagdeviren
- Media Lab, Massachusetts Institute of Technology, Cambridge, MA, 02139, USA
| |
Collapse
|
34
|
Wang P, Ma X, Lin Z, Chen F, Chen Z, Hu H, Xu H, Zhang X, Shi Y, Huang Q, Lin Y, Zheng Z. Well-defined in-textile photolithography towards permeable textile electronics. Nat Commun 2024; 15:887. [PMID: 38291087 PMCID: PMC10828459 DOI: 10.1038/s41467-024-45287-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2023] [Accepted: 01/16/2024] [Indexed: 02/01/2024] Open
Abstract
Textile-based wearable electronics have attracted intensive research interest due to their excellent flexibility and breathability inherent in the unique three-dimensional porous structures. However, one of the challenges lies in achieving highly conductive patterns with high precision and robustness without sacrificing the wearing comfort. Herein, we developed a universal and robust in-textile photolithography strategy for precise and uniform metal patterning on porous textile architectures. The as-fabricated metal patterns realized a high precision of sub-100 µm with desirable mechanical stability, washability, and permeability. Moreover, such controllable coating permeated inside the textile scaffold contributes to the significant performance enhancement of miniaturized devices and electronics integration through both sides of the textiles. As a proof-of-concept, a fully integrated in-textiles system for multiplexed sweat sensing was demonstrated. The proposed method opens up new possibilities for constructing multifunctional textile-based flexible electronics with reliable performance and wearing comfort.
Collapse
Affiliation(s)
- Pengwei Wang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xiaohao Ma
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Zhiqiang Lin
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Fan Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Zijian Chen
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hong Hu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Hailong Xu
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
| | - Xinyi Zhang
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Yuqing Shi
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China
| | - Qiyao Huang
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| | - Yuanjing Lin
- School of Microelectronics, Southern University of Science and Technology, Shenzhen, 518055, China.
| | - Zijian Zheng
- School of Fashion and Textiles, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Department of Applied Biology and Chemical Technology, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Intelligent Wearable Systems, The Hong Kong Polytechnic University, Hong Kong SAR, China.
- Research Institute for Smart Energy, The Hong Kong Polytechnic University, Hong Kong SAR, China.
| |
Collapse
|
35
|
Wang Y, Rencus-Lazar S, Zhou H, Yin Y, Jiang X, Cai K, Gazit E, Ji W. Bioinspired Amino Acid Based Materials in Bionanotechnology: From Minimalistic Building Blocks and Assembly Mechanism to Applications. ACS NANO 2024; 18:1257-1288. [PMID: 38157317 DOI: 10.1021/acsnano.3c08183] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/03/2024]
Abstract
Inspired by natural hierarchical self-assembly of proteins and peptides, amino acids, as the basic building units, have been shown to self-assemble to form highly ordered structures through supramolecular interactions. The fabrication of functional biomaterials comprised of extremely simple biomolecules has gained increasing interest due to the advantages of biocompatibility, easy functionalization, and structural modularity. In particular, amino acid based assemblies have shown attractive physical characteristics for various bionanotechnology applications. Herein, we propose a review paper to summarize the design strategies as well as research advances of amino acid based supramolecular assemblies as smart functional materials. We first briefly introduce bioinspired reductionist design strategies and assembly mechanism for amino acid based molecular assembly materials through noncovalent interactions in condensed states, including self-assembly, metal ion mediated coordination assembly, and coassembly. In the following part, we provide an overview of the properties and functions of amino acid based materials toward applications in nanotechnology and biomedicine. Finally, we give an overview of the remaining challenges and future perspectives on the fabrication of amino acid based supramolecular biomaterials with desired properties. We believe that this review will promote the prosperous development of innovative bioinspired functional materials formed by minimalistic building blocks.
Collapse
Affiliation(s)
- Yuehui Wang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Sigal Rencus-Lazar
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Haoran Zhou
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Yuanyuan Yin
- Chongqing Key Laboratory of Oral Diseases and Biomedical Sciences, Chongqing Municipal Key Laboratory of Oral Biomedical Engineering of Higher Education, Stomatological Hospital of Chongqing Medical University, Chongqing 401147, People's Republic of China
| | - Xuemei Jiang
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Kaiyong Cai
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| | - Ehud Gazit
- School of Molecular Cell Biology and Biotechnology, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 6997801, Israel
| | - Wei Ji
- Key Laboratory of Biorheological Science and Technology, Ministry of Education, College of Bioengineering, Chongqing University, Chongqing 400044, People's Republic of China
| |
Collapse
|
36
|
Casal D, Casimiro MH, Ferreira LM, Leal JP, Rodrigues G, Lopes R, Moura DL, Gonçalves L, Lago JB, Pais D, Santos PMP. Review of Piezoelectrical Materials Potentially Useful for Peripheral Nerve Repair. Biomedicines 2023; 11:3195. [PMID: 38137416 PMCID: PMC10740581 DOI: 10.3390/biomedicines11123195] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2023] [Revised: 11/21/2023] [Accepted: 11/29/2023] [Indexed: 12/24/2023] Open
Abstract
It has increasingly been recognized that electrical currents play a pivotal role in cell migration and tissue repair, in a process named "galvanotaxis". In this review, we summarize the current evidence supporting the potential benefits of electric stimulation (ES) in the physiology of peripheral nerve repair (PNR). Moreover, we discuss the potential of piezoelectric materials in this context. The use of these materials has deserved great attention, as the movement of the body or of the external environment can be used to power internally the electrical properties of devices used for providing ES or acting as sensory receptors in artificial skin (e-skin). The fact that organic materials sustain spontaneous degradation inside the body means their piezoelectric effect is limited in duration. In the case of PNR, this is not necessarily problematic, as ES is only required during the regeneration period. Arguably, piezoelectric materials have the potential to revolutionize PNR with new biomedical devices that range from scaffolds and nerve-guiding conduits to sensory or efferent components of e-skin. However, much remains to be learned regarding piezoelectric materials, their use in manufacturing of biomedical devices, and their sterilization process, to fine-tune their safe, effective, and predictable in vivo application.
Collapse
Affiliation(s)
- Diogo Casal
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
- Plastic and Reconstructive Surgery Department and Burn Unit, Centro Hospitalar Universitário de Lisboa Central, Rua José António Serrano, 1169-045 Lisbon, Portugal
| | - Maria Helena Casimiro
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal; (M.H.C.); (P.M.P.S.)
| | - Luís M. Ferreira
- Departamento de Engenharia e Ciências Nucleares (DECN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal;
| | - João Paulo Leal
- Centro de Química Estrutural (CQE), Institute of Molecular Sciences (IMS), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal;
| | - Gabriela Rodrigues
- Centro de Ecologia, Evolução e Alterações Ambientais (cE3c) & CHANGE—Global Change and Sustainability Institute, Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa (FCUL), 1749-016 Lisboa, Portugal;
| | - Raquel Lopes
- Gynaecology and Obstetrics Department, Maternidade Alfredo da Costa, Centro Hospitalar Universitário de Lisboa Central, R. Viriato 1, 2890-495 Lisboa, Portugal;
| | - Diogo Lino Moura
- Anatomy Institute and Orthopedics Department, Faculty of Medicine, University of Coimbra, 3004-504 Coimbra, Portugal;
- Spine Unit, Orthopedics Department, Coimbra University Hospital, 3000-602 Coimbra, Portugal
| | - Luís Gonçalves
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
| | - João B. Lago
- Departamento de Biologia Animal, Faculdade de Ciências, Universidade de Lisboa (FCUL), 1749-016 Lisboa, Portugal;
| | - Diogo Pais
- Departamento de Anatomia, NOVA Medical School|Faculdade de Ciências Médicas (NMS|FCM), Universidade NOVA de Lisboa, 1169-056 Lisboa, Portugal; (L.G.); (D.P.)
| | - Pedro M. P. Santos
- Centro de Ciências e Tecnologias Nucleares (C2TN), Instituto Superior Técnico (IST), Universidade de Lisboa, 2695-066 Bobadela, Portugal; (M.H.C.); (P.M.P.S.)
| |
Collapse
|