1
|
Zhang CH, Guo YJ, Tan SJ, Wang YH, Guo JC, Tian YF, Zhang XS, Liu BZ, Xin S, Zhang J, Wan LJ, Guo YG. An ultralight, pulverization-free integrated anode toward lithium-less lithium metal batteries. SCIENCE ADVANCES 2024; 10:eadl4842. [PMID: 38552028 PMCID: PMC10980265 DOI: 10.1126/sciadv.adl4842] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 10/20/2023] [Accepted: 02/23/2024] [Indexed: 04/01/2024]
Abstract
The high-capacity advantage of lithium metal anode was compromised by common use of copper as the collector. Furthermore, lithium pulverization associated with "dead" Li accumulation and electrode cracking deteriorates the long-term cyclability of lithium metal batteries, especially under realistic test conditions. Here, we report an ultralight, integrated anode of polyimide-Ag/Li with dual anti-pulverization functionality. The silver layer was initially chemically bonded to the polyimide surface and then spontaneously diffused in Li solid solution and self-evolved into a fully lithiophilic Li-Ag phase, mitigating dendrites growth or dead Li. Further, the strong van der Waals interaction between the bottommost Li-Ag and polyimide affords electrode structural integrity and electrical continuity, thus circumventing electrode pulverization. Compared to the cutting-edge anode-free cells, the batteries pairing LiNi0.8Mn0.1Co0.1O2 with polyimide-Ag/Li afford a nearly 10% increase in specific energy, with safer characteristics and better cycling stability under realistic conditions of 1× excess Li and high areal-loading cathode (4 milliampere hour per square centimeter).
Collapse
Affiliation(s)
- Chao-Hui Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Jie Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Shuang-Jie Tan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
| | - Yu-Hao Wang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Jun-Chen Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yi-Fan Tian
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Xu-Sheng Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Bo-Zheng Liu
- Tianjin Lishen Battery Joint-Stock Co. Ltd., Tianjin 300384, P. R. China
| | - Sen Xin
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Juan Zhang
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Li-Jun Wan
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| | - Yu-Guo Guo
- CAS Key Laboratory of Molecular Nanostructure and Nanotechnology, CAS Research/Education Center for Excellence in Molecular Sciences, Beijing National Laboratory for Molecular Sciences (BNLMS), Institute of Chemistry, Chinese Academy of Sciences (CAS), Beijing 100190, P. R. China
- School of Chemical Sciences, University of Chinese Academy of Sciences, Beijing 100049, P. R. China
| |
Collapse
|
2
|
Zhu Y, Liu Y, Liu X, Wang H. Carbon mitigation and health effects of fleet electrification in China's Yangtze River Delta. ENVIRONMENT INTERNATIONAL 2023; 180:108203. [PMID: 37717521 DOI: 10.1016/j.envint.2023.108203] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/30/2023] [Revised: 09/07/2023] [Accepted: 09/11/2023] [Indexed: 09/19/2023]
Abstract
Fleet electrification is one of the most promising strategies to mitigate carbon emissions and improve air quality. This study provides a comprehensive analysis of the currently unclear CO2 mitigation and human health benefits from electric vehicle (EV) adoption and energy decarbonization in the Yangtze River Delta (YRD) region by integrating fleet modeling, emission projection, air quality modeling and health risk assessment. Based on future socioeconomic trajectories, we project that the total vehicle stock in the YRD region will peak at 107-117 million around 2045-2050. The transition to EVs combined with largely renewable energy in the YRD region can potentially reduce CO2 emissions by 870 Tg in 2060 and brings along substantial health co-benefits with ∼360 avoided premature deaths per million from reduced PM2.5 and O3 concentrations. This study further explores the NO2-attributable burden from road transportation and reveals that fleet electrification could yield greater NO2-attributable health benefits than those from reduced PM2.5 and O3, especially in traffic-dense urban areas. Those findings indicate that China's near-term energy development plans (35% renewable energy) have created the conditions for large-scale EV adoption. Our results imply that the benefits of EVs exhibit substantial spatial heterogeneity, underscoring the importance of region-specific EV incentive policies, and hint that policymakers should prioritize densely populated megacities to maximize the potential for public health gains.
Collapse
Affiliation(s)
- Yijing Zhu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Yifan Liu
- State Key Laboratory of Pollution Control and Resource Reuse, School of the Environment, Nanjing University, Nanjing 210023, China
| | - Xiang Liu
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China
| | - Haikun Wang
- Joint International Research Laboratory of Atmospheric and Earth System Sciences, School of Atmospheric Sciences, Nanjing University, Nanjing 210023, China; Collaborative Innovation Center of Climate Change, Nanjing 210023, China; Frontiers Science Center for Critical Earth Material Cycling, Nanjing University, Nanjing 210023, China.
| |
Collapse
|