1
|
Van Elzen R, Waumans Y, Nath S, Van der Veken P, Kerkhoff S, Van Dijk E, Morawski M, Roßner S, Engelborghs Y, De Meester I, Lambeir AM. The prolyl oligopeptidase and α-synuclein connection revisited. Biochimie 2025; 233:1-13. [PMID: 39984111 DOI: 10.1016/j.biochi.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2025] [Revised: 02/17/2025] [Accepted: 02/17/2025] [Indexed: 02/23/2025]
Abstract
The aim of this work was to revisit the connection between prolyl oligopeptidase (PREP) and α-synuclein (aSyn) by presenting novel data from cell free and cellular assays and to discuss the results in a contemporary context. The aSyn aggregation process was studied using fluorescence correlation spectroscopy and thioflavin-T fluorescence. Binding sites for PREP on the aSyn sequence were determined using peptide arrays. Subcellular localisation of PREP and stress markers were studied using double staining immunofluorescence microscopy in SH-SY5Y cells with and without overexpression of aSyn and PREP, before and after differentiation, and with or without proteolytic stress induced by proteasome inhibition. The interaction between PREP and aSyn was found to be weak and transient. It promotes the early phases of aggregation but does not affect the rate of β-fibril formation. Moreover, this interaction is not dependent upon the C-terminal prolines of aSyn, but is affected by PREP inhibitors and interferes with PREP substrate binding. Although present in the same cellular compartments, there is little evidence for a strong physical association of PREP with aggresomes and stress markers. Instead, there is colocalization with aSyn in the cell periphery and neurites. There is evidence for a binding site for peptides much longer than the usual PREP substrates. The modular assembly of molecular machines and the observation that PREP's protein-protein interactions are tuneable by active site inhibitors, lead to the hypothesis that this binding site features in the cross-talk between autophagy and neuron-specific pathways involving vesicle transport and protein secretion.
Collapse
Affiliation(s)
- Roos Van Elzen
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Yannick Waumans
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Sangeeta Nath
- Laboratory of Biomolecular Dynamics, KU Leuven, Celestijnenlaan 200G, Leuven, B-3001, Belgium.
| | - Pieter Van der Veken
- Laboratory of Medicinal Chemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Sonja Kerkhoff
- Biosynth B.V. (formerly Pepscan Therapeutics), Zuidersluisweg 2, 8243 RC, Lelystad, the Netherlands.
| | - Evert Van Dijk
- Biosynth B.V. (formerly Pepscan Therapeutics), Zuidersluisweg 2, 8243 RC, Lelystad, the Netherlands.
| | - Markus Morawski
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| | - Steffen Roßner
- Paul Flechsig Institute - Centre of Neuropathology and Brain Research, University of Leipzig, Liebigstraße 19, 04103, Leipzig, Germany.
| | - Yves Engelborghs
- Laboratory of Biomolecular Dynamics, KU Leuven, Celestijnenlaan 200G, Leuven, B-3001, Belgium.
| | - Ingrid De Meester
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| | - Anne-Marie Lambeir
- Laboratory of Medical Biochemistry, University of Antwerp, Universiteitsplein 1, B-2610, Wilrijk, Belgium.
| |
Collapse
|
2
|
Bali S, Singh R, Wydorski PM, Van Nuland NE, Wosztyl A, Perez VA, Chen D, Chen J, Rizo J, Joachimiak LA. Amyloid-motif-dependent tau self-assembly is modulated by isoform sequence context. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2025:2023.12.13.571598. [PMID: 38168322 PMCID: PMC10760154 DOI: 10.1101/2023.12.13.571598] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/05/2024]
Abstract
The microtubule-associated protein tau is implicated in neurodegenerative diseases characterized by amyloid formation. Mutations associated with frontotemporal dementia increase tau aggregation propensity and disrupt its endogenous microtubule-binding activity. However, the structural relationship between aggregation propensity and biological activity remains unclear. We employed a multi-disciplinary approach, including computational modeling, NMR, cross-linking mass spectrometry, and cell models to engineer tau sequences that modulate its structural ensemble. Our findings show that substitutions near the conserved 'PGGG' β-turn motif informed by tau isoform context reduce tau aggregation in vitro and cells and can even counteract aggregation induced by turn destabilizing disease-associated proline-to-serine mutations. Engineered tau sequences maintain microtubule binding and explain why 3R isoforms exhibit reduced pathogenesis compared to 4R. We propose a simple mechanism to reduce the formation of pathogenic species while preserving biological function, thus offering insights for therapeutic strategies aimed at reducing tau protein misfolding in neurodegenerative diseases. Abstract Figure
Collapse
|
3
|
Wiseman JA, Turner CP, Faull RLM, Halliday GM, Dieriks BV. Refining α-synuclein seed amplification assays to distinguish Parkinson's disease from multiple system atrophy. Transl Neurodegener 2025; 14:7. [PMID: 39920796 PMCID: PMC11804046 DOI: 10.1186/s40035-025-00469-6] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2024] [Accepted: 01/14/2025] [Indexed: 02/09/2025] Open
Abstract
BACKGROUND Parkinson's disease (PD) and multiple system atrophy (MSA) are two distinct α-synucleinopathies traditionally differentiated through clinical symptoms. Early diagnosis of MSA is problematic, and seed amplification assays (SAAs), such as real-time quaking-induced conversion (RT-QuIC), offer the potential to distinguish these diseases through their underlying α-synuclein (α-Syn) pathology and proteoforms. Currently, SAAs provide a binary result, signifying either the presence or absence of α-Syn seeds. To enhance the diagnostic potential and biological relevance of these assays, there is a pressing need to incorporate quantification and stratification of α-Syn proteoform-specific aggregation kinetics into current SAA pipelines. METHODS Optimal RT-QuIC assay conditions for α-Syn seeds extracted from PD and MSA patient brains were determined, and assay kinetics were assessed for α-Syn seeds from different pathologically relevant brain regions (medulla, substantia nigra, hippocampus, middle temporal gyrus, and cerebellum). The conformational profiles of disease- and region-specific α-Syn proteoforms were determined by subjecting the amplified reaction products to concentration-dependent proteolytic digestion with proteinase K. RESULTS Using our protocol, PD and MSA could be accurately delineated using proteoform-specific aggregation kinetics, including α-Syn aggregation rate, maximum relative fluorescence, the gradient of amplification, and core protofilament size. MSA cases yielded significantly higher values than PD cases across all four kinetic parameters in brain tissues, with the MSA-cerebellar phenotype having higher maximum relative fluorescence than the MSA-Parkinsonian phenotype. Statistical significance was maintained when the data were analysed regionally and when all regions were grouped. CONCLUSIONS Our RT-QuIC protocol and analysis pipeline can distinguish between PD and MSA, and between MSA phenotypes. MSA α-Syn seeds induce faster propagation and exhibit higher aggregation kinetics than PD α-Syn, mirroring the biological differences observed in brain tissue. With further validation of these quantitative parameters, we propose that SAAs could advance from a yes/no diagnostic to a theranostic biomarker that could be utilised in developing therapeutics.
Collapse
Affiliation(s)
- James A Wiseman
- Department of Anatomy and Medical Imaging, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
| | - Clinton P Turner
- LabPlus, Department of Anatomical Pathology, Te Whatu Ora, Auckland, New Zealand
| | - Richard L M Faull
- Department of Anatomy and Medical Imaging, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand
| | - Glenda M Halliday
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia
- Neuroscience Research Australia & Faculty of Medicine School of Medical Sciences, University of New South Wales, Sydney, NSW, 2052, Australia
| | - Birger Victor Dieriks
- Department of Anatomy and Medical Imaging, University of Auckland, 85 Park Road, Grafton, Auckland, 1142, New Zealand.
- Centre for Brain Research, University of Auckland, Auckland, 1023, New Zealand.
- Brain and Mind Centre & Faculty of Medicine and Health School of Medical Sciences, The University of Sydney, Sydney, NSW, 2050, Australia.
| |
Collapse
|
4
|
Sant V, Matthes D, Mazal H, Antonschmidt L, Wieser F, Movellan KT, Xue K, Nimerovsky E, Stampolaki M, Nathan M, Riedel D, Becker S, Sandoghdar V, de Groot BL, Griesinger C, Andreas LB. Lipidic folding pathway of α-Synuclein via a toxic oligomer. Nat Commun 2025; 16:760. [PMID: 39824800 PMCID: PMC11742675 DOI: 10.1038/s41467-025-55849-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/24/2024] [Accepted: 01/02/2025] [Indexed: 01/20/2025] Open
Abstract
Aggregation intermediates play a pivotal role in the assembly of amyloid fibrils, which are central to the pathogenesis of neurodegenerative diseases. The structures of filamentous intermediates and mature fibrils are now efficiently determined by single-particle cryo-electron microscopy. By contrast, smaller pre-fibrillar α-Synuclein (αS) oligomers, crucial for initiating amyloidogenesis, remain largely uncharacterized. We report an atomic-resolution structural characterization of a toxic pre-fibrillar aggregation intermediate (I1) on pathway to the formation of lipidic fibrils, which incorporate lipid molecules on protofilament surfaces during fibril growth on membranes. Super-resolution microscopy reveals a tetrameric state, providing insights into the early oligomeric assembly. Time resolved nuclear magnetic resonance (NMR) measurements uncover a structural reorganization essential for the transition of I1 to mature lipidic L2 fibrils. The reorganization involves the transformation of anti-parallel β-strands during the pre-fibrillar I1 state into a β-arc characteristic of amyloid fibrils. This structural reconfiguration occurs in a conserved structural kernel shared by a vast number of αS-fibril polymorphs including extracted fibrils from Parkinson's and Lewy Body Dementia patients. Consistent with reports of anti-parallel β-strands being a defining feature of toxic αS pre-fibrillar intermediates, I1 impacts viability of neuroblasts and disrupts cell membranes, resulting in an increased calcium influx. Our results integrate the occurrence of anti-parallel β-strands as salient features of toxic oligomers with their significant role in the amyloid fibril assembly pathway. These structural insights have implications for the development of therapies and biomarkers.
Collapse
Affiliation(s)
- Vrinda Sant
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dirk Matthes
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Hisham Mazal
- Max Planck Institute for Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
| | - Leif Antonschmidt
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Franz Wieser
- Max Planck Institute for Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Kumar T Movellan
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Brown Laboratory Department of Chemistry and Biochemistry, University of Delaware, Newark, DE, USA
| | - Kai Xue
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
- Center of High Field Imaging, Nanyang Technological University, Singapore, Singapore
| | - Evgeny Nimerovsky
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Marianna Stampolaki
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Magdeline Nathan
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Dietmar Riedel
- Facility for Electron Microscopy, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Stefan Becker
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Vahid Sandoghdar
- Max Planck Institute for Science of Light, Erlangen, Germany
- Max-Planck-Zentrum für Physik und Medizin, Erlangen, Germany
- Department of Physics, Friedrich-Alexander University of Erlangen-Nürnberg, Erlangen, Germany
| | - Bert L de Groot
- Department of Theoretical and Computational Biophysics, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| | - Christian Griesinger
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
- Cluster of Excellence "Multiscale Bioimaging: From Molecular Machines to Networks of Excitable Cells" (MBExC), University of Göttingen, Göttingen, Germany.
| | - Loren B Andreas
- NMR Based Structural Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
5
|
Huang F, Yan J, Xu H, Wang Y, Zhang X, Zou Y, Lian J, Ding F, Sun Y. Exploring the Impact of Physiological C-Terminal Truncation on α-Synuclein Conformations to Unveil Mechanisms Regulating Pathological Aggregation. J Chem Inf Model 2024; 64:8616-8627. [PMID: 39504036 PMCID: PMC11588551 DOI: 10.1021/acs.jcim.4c01839] [Citation(s) in RCA: 3] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/12/2024]
Abstract
Emerging evidence suggests that physiological C-terminal truncation of α-synuclein (αS) plays a critical role in regulating liquid-liquid phase separation and promoting amyloid aggregation, processes implicated in neurodegenerative diseases such as Parkinson's disease (PD). However, the molecular mechanisms through which C-terminal truncation influences αS conformation and modulates its aggregation remain poorly understood. In this study, we investigated the impact of C-terminal truncation on αS conformational dynamics by comparing full-length αS1-140 with truncated αS1-103 monomers using atomistic discrete molecular dynamics simulations. Our findings revealed that both αS1-140 and αS1-103 primarily adopted helical conformations around residues 7-32, while residues 36-95, located in the second half of the N-terminal and NAC domains, predominantly formed a dynamic β-sheet core. The C-terminus of αS1-140 was largely unstructured and dynamically wrapped around the β-sheet core. While residues 1-95 exhibited similar secondary structure propensities in both αS1-140 and αS1-103, the dynamic capping by the C-terminus in αS1-140 slightly enhanced β-sheet formation around residues 36-95. In contrast, key aggregation-driving regions (residues 2-9, 36-42, 45-57, and 68-78) were dynamically shielded by the C-terminus in αS1-140, reducing their exposure and potentially preventing interpeptide interactions that drive aggregation. C-terminal truncation, on the other hand, increased the exposed surface area of these aggregation-prone regions, thereby enhancing interpeptide interactions, phase separation, and amyloid aggregation. Overall, our simulations provide valuable insights into the conformational effects of C-terminal truncation on αS and its role in promoting pathological aggregation.
Collapse
Affiliation(s)
- Fengjuan Huang
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Jiajia Yan
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Huan Xu
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Ying Wang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Xiaohan Zhang
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
| | - Yu Zou
- Department of Sport and Exercise Science, Zhejiang University, Hangzhou 310058, China
| | - Jiangfang Lian
- Ningbo Institute of Innovation for Combined Medicine and Engineering (NIIME), The Affiliated Lihuili Hospital of Ningbo University, Ningbo 315211, China
| | - Feng Ding
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| | - Yunxiang Sun
- School of Physical Science and Technology, Ningbo University, Ningbo 315211, China
- Department of Physics and Astronomy, Clemson University, Clemson, SC 29634, United States
| |
Collapse
|
6
|
Lázaro DF, Lee VMY. Navigating through the complexities of synucleinopathies: Insights into pathogenesis, heterogeneity, and future perspectives. Neuron 2024; 112:3029-3042. [PMID: 38861985 PMCID: PMC11427175 DOI: 10.1016/j.neuron.2024.05.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2024] [Revised: 04/22/2024] [Accepted: 05/14/2024] [Indexed: 06/13/2024]
Abstract
The aggregation of alpha-synuclein (aSyn) represents a neuropathological hallmark observed in a group of neurodegenerative disorders collectively known as synucleinopathies. Despite their shared characteristics, these disorders manifest diverse clinical and pathological phenotypes. The mechanism underlying this heterogeneity is thought to be due to the diversity in the aSyn strains present across the diseases. In this perspective, we will explore recent findings on aSyn strains and discuss recent discoveries about Lewy bodies' composition. We further discuss the current hypothesis for aSyn spreading and emphasize the emerging biomarker field demonstrating promising results. A comprehension of these mechanisms holds substantial promise for future clinical applications. This understanding can pave the way for the development of personalized medicine strategies, specifically targeting the unique underlying causes of each synucleinopathy. Such advancements can revolutionize therapeutic approaches and significantly contribute to more effective interventions in the intricate landscape of neurodegenerative disorders.
Collapse
Affiliation(s)
- Diana F Lázaro
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, University of Pennsylvania School of Medicine, Medicine, University of Pennsylvania, Perelman School of Medicine at University of Pennsylvania, 3600 Spruce Street, 3 Maloney Building, Philadelphia, PA 19104, USA.
| |
Collapse
|
7
|
Ansari S, Lagasca D, Dumarieh R, Xiao Y, Krishna S, Li Y, Frederick KK. In cell NMR reveals cells selectively amplify and structurally remodel amyloid fibrils. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.09.09.612142. [PMID: 39314304 PMCID: PMC11419106 DOI: 10.1101/2024.09.09.612142] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 09/25/2024]
Abstract
Amyloid forms of α-synuclein adopt different conformations depending on environmental conditions. Advances in structural biology have accelerated fibril characterization. However, it remains unclear which conformations predominate in biological settings because current methods typically not only require isolating fibrils from their native environments, but they also do not provide insight about flexible regions. To address this, we characterized α-syn amyloid seeds and used sensitivity enhanced nuclear magnetic resonance to investigate the amyloid fibrils resulting from seeded amyloid propagation in different settings. We found that the amyloid fold and conformational preferences of flexible regions are faithfully propagated in vitro and in cellular lysates. However, seeded propagation of amyloids inside cells led to the minority conformation in the seeding population becoming predominant and more ordered, and altered the conformational preferences of flexible regions. The examination of the entire ensemble of protein conformations in biological settings that is made possible with this approach may advance our understanding of protein misfolding disorders and facilitate structure-based drug design efforts.
Collapse
Affiliation(s)
- Shoyab Ansari
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Dominique Lagasca
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Rania Dumarieh
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yiling Xiao
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Sakshi Krishna
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Yang Li
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
| | - Kendra K. Frederick
- Department of Biophysics, UT Southwestern Medical Center, Dallas, TX 75390-8816
- Center for Alzheimer’s and Neurodegenerative Disease, UT Southwestern Medical Center, Dallas, TX 75390
| |
Collapse
|
8
|
Dewison KM, Rowlinson B, Machin JM, Crossley JA, Thacker D, Wilkinson M, Ulamec SM, Khan GN, Ranson NA, van Oosten-Hawle P, Brockwell DJ, Radford SE. Residues 2 to 7 of α-synuclein regulate amyloid formation via lipid-dependent and lipid-independent pathways. Proc Natl Acad Sci U S A 2024; 121:e2315006121. [PMID: 39133842 PMCID: PMC11348338 DOI: 10.1073/pnas.2315006121] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/05/2023] [Accepted: 03/09/2024] [Indexed: 08/29/2024] Open
Abstract
Amyloid formation by α-synuclein (αSyn) occurs in Parkinson's disease, multiple system atrophy, and dementia with Lewy bodies. Deciphering the residues that regulate αSyn amyloid fibril formation will not only provide mechanistic insight but may also reveal targets to prevent and treat disease. Previous investigations have identified several regions of αSyn to be important in the regulation of amyloid formation, including the non-amyloid-β component (NAC), P1 region (residues 36 to 42), and residues in the C-terminal domain. Recent studies have also indicated the importance of the N-terminal region of αSyn for both its physiological and pathological roles. Here, the role of residues 2 to 7 in the N-terminal region of αSyn is investigated in terms of their ability to regulate amyloid fibril formation in vitro and in vivo. Deletion of these residues (αSynΔN7) slows the rate of fibril formation in vitro and reduces the capacity of the protein to be recruited by wild-type (αSynWT) fibril seeds, despite cryo-EM showing a fibril structure consistent with those of full-length αSyn. Strikingly, fibril formation of αSynΔN7 is not induced by liposomes, despite the protein binding to liposomes with similar affinity to αSynWT. A Caenorhabditis elegans model also showed that αSynΔN7::YFP forms few puncta and lacks motility and lifespan defects typified by expression of αSynWT::YFP. Together, the results demonstrate the involvement of residues 2 to 7 of αSyn in amyloid formation, revealing a target for the design of amyloid inhibitors that may leave the functional role of the protein in membrane binding unperturbed.
Collapse
Affiliation(s)
- Katherine M. Dewison
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Benjamin Rowlinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Jonathan M. Machin
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Joel A. Crossley
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Dev Thacker
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Martin Wilkinson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sabine M. Ulamec
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - G. Nasir Khan
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Neil A. Ranson
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | | | - David J. Brockwell
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| | - Sheena E. Radford
- Astbury Centre for Structural Molecular Biology, School of Molecular and Cellular Biology, Faculty of Biological Sciences, University of Leeds, LeedsLS2 9JT, United Kingdom
| |
Collapse
|
9
|
Bali S, Singh R, Wydorski PM, Wosztyl A, Perez VA, Chen D, Rizo J, Joachimiak LA. Ensemble-based design of tau to inhibit aggregation while preserving biological activity. RESEARCH SQUARE 2024:rs.3.rs-3796916. [PMID: 38313287 PMCID: PMC10836093 DOI: 10.21203/rs.3.rs-3796916/v1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/06/2024]
Abstract
The microtubule-associated protein tau is implicated in neurodegenerative diseases characterized by amyloid formation. Mutations associated with frontotemporal dementia increase tau aggregation propensity and disrupt its endogenous microtubule-binding activity. The structural relationship between aggregation propensity and biological activity remains unclear. We employed a multi-disciplinary approach, including computational modeling, NMR, cross-linking mass spectrometry, and cell models to design tau sequences that stabilize its structural ensemble. Our findings reveal that substitutions near the conserved 'PGGG' beta-turn motif can modulate local conformation, more stably engaging in interactions with the 306VQIVYK311 amyloid motif to decrease aggregation in vitro and in cells. Designed tau sequences maintain microtubule binding and explain why 3R isoforms of tau exhibit reduced pathogenesis over 4R isoforms. We propose a simple mechanism to reduce the formation of pathogenic species while preserving biological function, offering insights for therapeutic strategies aimed at reducing protein misfolding in neurodegenerative diseases.
Collapse
Affiliation(s)
- Sofia Bali
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas
| | - Ruhar Singh
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas
| | - Pawel M Wydorski
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas
| | - Aleksandra Wosztyl
- Molecular Biophysics Graduate Program, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Valerie A Perez
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas
| | - Dailu Chen
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas
| | - Josep Rizo
- Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States Southwestern Medical Center, Dallas, TX 75390, United States
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
- Department of Pharmacology, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| | - Lukasz A Joachimiak
- Center for Alzheimer's and Neurodegenerative Diseases, Peter O'Donnell Jr. Brain Institute, University of Texas
- Department of Biochemistry, University of Texas Southwestern Medical Center, Dallas, TX 75390, United States
| |
Collapse
|