1
|
Tycko R. The evolving role of solid state nuclear magnetic resonance methods in studies of amyloid fibrils. Curr Opin Struct Biol 2025; 92:103043. [PMID: 40199041 PMCID: PMC12146075 DOI: 10.1016/j.sbi.2025.103043] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/23/2025] [Revised: 03/11/2025] [Accepted: 03/13/2025] [Indexed: 04/10/2025]
Abstract
Beginning in the 1990s, solid state nuclear magnetic resonance (ssNMR) methods played a major role in elucidating the molecular structures and properties of amyloid fibrils. General principles that explain these structures and properties were uncovered and experimentally-based structural models were first developed from ssNMR data. Since 2017, cryogenic electron microscopy (cryo-EM) techniques have become capable of solving amyloid structures at near-atomic resolution. Although cryo-EM measurements are now the main approach for structural studies of amyloid fibrils, ssNMR measurements remain essential for studies of certain structures and structural features, as well as studies of dynamical and mechanistic aspects. Recent publications from various research groups illustrate the continuing importance of ssNMR and the unique information available from ssNMR measurements in amyloid research.
Collapse
Affiliation(s)
- Robert Tycko
- Laboratory of Chemical Physics, National Institute of Diabetes and Digestive and Kidney Diseases, National Institutes of Health, Bethesda, MD 20892-0520, USA.
| |
Collapse
|
2
|
El Mammeri N, Duan P, Hong M. Structures of ΔD421 Truncated Tau Fibrils. J Mol Biol 2025; 437:169051. [PMID: 40021051 DOI: 10.1016/j.jmb.2025.169051] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/28/2024] [Revised: 02/23/2025] [Accepted: 02/24/2025] [Indexed: 03/03/2025]
Abstract
The microtubule-associated protein tau aggregates into pathological β-sheet amyloid fibrils in Alzheimer's disease (AD) and other neurodegenerative diseases. In these aggregates, tau is chemically modified, including abnormal hyperphosphorylation and truncation. Truncation after D421 in the C-terminal domain occurs at early stages of AD. Here we investigate the structures of ΔD421-truncated 0N4R tau fibrils assembled in vitro in the absence of anionic cofactors. Using solid-state NMR spectroscopy and cryoelectron microscopy, we show that ΔD421-truncated 0N4R tau forms homogeneous fibrils whose rigid core adopts a three-layered β-sheet structure that spans R2, R3 and R4 repeats. This structure is essentially identical to that of full-length tau containing phospho-mimetic mutations at the PHF1 epitope in the C-terminal domain. In comparison, a ΔD421-truncated tau that additionally contains three phospho-mimetic mutations at the AT8 epitope in the proline-rich region forms a fibril core that includes the first half of the C-terminal domain, which is excluded from all known pathological tau fibril cores. These results indicate that the posttranslational modification code of tau contains redundancy: both charge modification and truncation of the C-terminal domain promote a three-layered β-sheet structure, which resembles pathological four-repeat tau structures in several tauopathies. In comparison, reducing the positive charges at the AT8 epitope in ΔD421-truncated tau promotes a fibril core that includes an immobilized C-terminal domain. The absence of this structure in tauopathy brains implies that ΔD421 truncation does not occur in conjunction with AT8 phosphorylation in diseased brains.
Collapse
Affiliation(s)
- Nadia El Mammeri
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, MA 02139, United States.
| |
Collapse
|
3
|
Chisholm TS, Hunter CA. Ligands for Protein Fibrils of Amyloid-β, α-Synuclein, and Tau. Chem Rev 2025. [PMID: 40327808 DOI: 10.1021/acs.chemrev.4c00838] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 05/08/2025]
Abstract
Amyloid fibrils are characteristic features of many neurodegenerative diseases, including Alzheimer's disease and Parkinson's disease. The use of small molecule ligands that bind to amyloid fibrils underpins both fundamental research aiming to better understand the pathology of neurodegenerative disease, and clinical research aiming to develop diagnostic tools for these diseases. To date, a large number of amyloid-binding ligands have been reported in the literature, predominantly targeting protein fibrils composed of amyloid-β (Aβ), tau, and α-synuclein (αSyn) fibrils. Fibrils formed by a particular protein can adopt a range of possible morphologies, but protein fibrils formed in vivo possess disease-specific morphologies, highlighting the need for morphology-specific amyloid-binding ligands. This review details the morphologies of Aβ, tau, and αSyn fibril polymorphs that have been reported as a result of structural work and describes a database of amyloid-binding ligands containing 4,288 binding measurements for 2,404 unique compounds targeting Aβ, tau, or αSyn fibrils.
Collapse
Affiliation(s)
- Timothy S Chisholm
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| | - Christopher A Hunter
- Yusuf Hamied Department of Chemistry, University of Cambridge, Cambridge CB2 1EW, U.K
| |
Collapse
|
4
|
Sugiyama M, Kosik KS, Panagiotou E. Geometry based prediction of tau protein sites and motifs associated with misfolding and aggregation. Sci Rep 2025; 15:10283. [PMID: 40133414 PMCID: PMC11937417 DOI: 10.1038/s41598-025-93304-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/18/2024] [Accepted: 03/05/2025] [Indexed: 03/27/2025] Open
Abstract
Recent studies of tau proteins point to specific sites or motifs along the protein related to its misfolding and aggregation propensity, which is associated with neurodegenerative diseases of structure-dependent pathology. In this manuscript we employ topology and geometry to analyze the local structure of tau proteins obtained from the Protein Data Bank. Our results show that mathematical topology/geometry of cryo-EM structures alone identify the PGGG motifs, and the PHF6(*) motifs as sites of interest and reveal a geometrical hierarchy of the PGGG motifs that differs for 3R+4R and 4R tauopathies. By employing the Local Topological Free Energy (LTE), we find that progressive supranuclear palsy (PSP) and globular glial tauopathy (GGT) have the highest LTE values around residues 302-305, which are inside the jR2R3 peptide and in the vicinity of the 301 site, experimentally associated with aggregation. By extending the LTE definition to estimate a global topological free energy, we find that the jR2R3 peptide of PSP and GGT, has in fact the lowest global topological free energy among other tauopathies. These results point to a possible correlation between the global topological free energy of parts of the protein and the LTE of specific sites.
Collapse
Affiliation(s)
- Masumi Sugiyama
- Department of Mathematics, University of Tennessee at Chattanooga, Chattanooga, TN, 37403, USA
- International Institute for Sustainability with Knotted Chiral Meta Matter (WPI-SKCM2), Hiroshima University, Higashi-Hiroshima, Hiroshima, Japan
| | - Kenneth S Kosik
- Neuroscience Research Institute and Department of Molecular, Cellular, and Developmental Biology, University of California Santa Barbara, Santa Barbara, CA, 93106, USA
| | - Eleni Panagiotou
- School of Mathematical and Statistical Sciences, Arizona State University, Tempe, AZ, 85281, USA.
| |
Collapse
|
5
|
El Hajjar L, Boll E, Cantrelle FX, Bridot C, Landrieu I, Smet-Nocca C. Effect of PHF-1 hyperphosphorylation on the seeding activity of C-terminal Tau fragments. Sci Rep 2025; 15:9975. [PMID: 40121258 PMCID: PMC11929799 DOI: 10.1038/s41598-025-91867-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Accepted: 02/24/2025] [Indexed: 03/25/2025] Open
Abstract
Tau proteins as neurofibrillary tangles are one of the molecular hallmarks of Alzheimer's disease (AD) and play a central role in tauopathies, a group of age-related neurodegenerative disorders. The filament cores from diverse tauopathies share a common region of tau consisting of the R3-R4 microtubule-binding repeats and part of the C-terminal domain, but present a structural polymorphism. Unlike the fibril structure, the PTM signature of tau found in neuronal inclusions, more particularly hyperphosphorylation, is variable between individuals with the same tauopathy, giving rise to diverse strains with different seeding properties that could modulate the aggressiveness of tau pathology. Here, we investigate the conformation, function and seeding activity of two tau fragments and their GSK3β-phosphorylated variants. The R2Ct and R3Ct fragments encompass the aggregation-prone region of tau starting at the R2 and R3 repeats, respectively, and the full C-terminal domain including the PHF-1 epitope (S396, S400, S404), which undergoes a triple phosphorylation upon GSK3β activity. We found that the R3Ct fragment shows both a greater loss of function and pathological activity in seeding of aggregation than the R2Ct fragment which imposes a cross-seeding barrier. PHF-1 hyperphosphorylation induces a local conformational change with a propensity to adopt a β-sheet conformation in the region spanning residues 392-402, and exacerbates the seeding ability of fragments to induce aggregation by overcoming a cross-seeding barrier between tau variants.
Collapse
Affiliation(s)
- Léa El Hajjar
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Emmanuelle Boll
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - François-Xavier Cantrelle
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Clarisse Bridot
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Isabelle Landrieu
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France
| | - Caroline Smet-Nocca
- Inserm, CHU Lille, Institut Pasteur de Lille, U1167 - RID-AGE - Risk Factors and Molecular Determinants of Aging-Related Diseases, Univ. Lille, Lille, 59000, France.
- CNRS EMR9002 Integrative Structural Biology, Lille, 59000, France.
- Inserm U1167/Institut Pasteur de Lille, 1 rue Professeur Calmette, BP245, Lille, 59019, France.
| |
Collapse
|
6
|
Han B, Yang J, Zhang Z. Selective Methods Promote Protein Solid-State NMR. J Phys Chem Lett 2024; 15:11300-11311. [PMID: 39495892 DOI: 10.1021/acs.jpclett.4c02841] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/06/2024]
Abstract
Solid-state nuclear magnetic resonance (ssNMR) is indispensable for studying the structures, dynamics, and interactions of insoluble proteins in native or native-like environments. While ssNMR includes numerous nonselective techniques for general analysis, it also provides various selective methods that allow for the extraction of precise details about proteins. This perspective highlights three key aspects of selective methods: selective signals of protein segments, selective recoupling, and site-specific insights into proteins. These methods leverage protein topology, labeling strategies, and the tailored manipulation of spin interactions through radio frequency (RF) pulses, significantly promoting the field of protein ssNMR. With ongoing advancements in higher magnetic fields and faster magic angle spinning (MAS), there remains an ongoing need to enhance the selectivity and efficiency of selective ssNMR methods, facilitating deeper atomic-level insights into complex biological systems.
Collapse
Affiliation(s)
- Bin Han
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| | - Jun Yang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
- National Center for Magnetic Resonance in Wuhan, State Key Laboratory of Magnetic Resonance and Atomic and Molecular Physics, Innovation Academy for Precision Measurement Science and Technology, Chinese Academy of Sciences, Wuhan 430071, P. R. China
| | - Zhengfeng Zhang
- Interdisciplinary Institute of NMR and Molecular Sciences, School of Chemistry and Chemical Engineering, State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, P. R. China
| |
Collapse
|
7
|
Duan P, Dregni AJ, Xu H, Changolkar L, Lee VMY, Lee EB, Hong M. Alzheimer's disease seeded tau forms paired helical filaments yet lacks seeding potential. J Biol Chem 2024; 300:107730. [PMID: 39214304 PMCID: PMC11440801 DOI: 10.1016/j.jbc.2024.107730] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/14/2024] [Revised: 08/16/2024] [Accepted: 08/19/2024] [Indexed: 09/04/2024] Open
Abstract
Alzheimer's disease (AD) and many other neurodegenerative diseases are characterized by pathological aggregation of the protein tau. These tau aggregates spread in a stereotypical spatiotemporal pattern in the brain of each disease, suggesting that the misfolded tau can recruit soluble monomers to adopt the same pathological structure. To investigate whether recruited tau indeed adopts the same structure and properties as the original seed, here we template recombinant full-length 0N3R tau, 0N4R tau, and an equimolar mixture of the two using sarkosyl-insoluble tau extracted from AD brain and determine the structures of the resulting fibrils using cryoelectron microscopy. We show that these cell-free amplified tau fibrils adopt the same molecular structure as the AD paired-helical filament (PHF) tau but are unable to template additional monomers. Therefore, the PHF structure alone is insufficient for defining the pathological properties of AD tau, and other biochemical components such as tau posttranslational modifications, other proteins, polyanionic cofactors, and salt are required for the prion-like serial propagation of tauopathies.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Aurelio J Dregni
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA
| | - Hong Xu
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Lakshmi Changolkar
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Virginia M-Y Lee
- Department of Pathology and Laboratory Medicine, Institute on Aging and Center for Neurodegenerative Disease Research, Perelman School of Medicine at the University of Pennsylvania, Philadelphia, Pennsylvania, USA
| | - Edward B Lee
- Translational Neuropathology Research Laboratory, Department of Pathology and Laboratory Medicine, Perelman School of Medicine at the University of Pennsylvania, Pennsylvania, USA
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, Cambridge, Massachusetts, USA.
| |
Collapse
|
8
|
Yuan Y, Mao X, Pan X, Zhang R, Su W. Kinetic Ensemble of Tau Protein through the Markov State Model and Deep Learning Analysis. J Chem Theory Comput 2024; 20:2947-2958. [PMID: 38501645 DOI: 10.1021/acs.jctc.3c01211] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/20/2024]
Abstract
The ordered assembly of Tau protein into filaments characterizes Alzheimer's and other neurodegenerative diseases, and thus, stabilization of Tau protein is a promising avenue for tauopathies therapy. To dissect the underlying aggregation mechanisms on Tau, we employ a set of molecular simulations and the Markov state model to determine the kinetics of ensemble of K18. K18 is the microtubule-binding domain of Tau protein and plays a vital role in the microtubule assembly, recycling processes, and amyloid fibril formation. Here, we efficiently explore the conformation of K18 with about 150 μs lifetimes in silico. Our results observe that all four repeat regions (R1-R4) are very dynamic, featuring frequent conformational conversion and lacking stable conformations, and the R2 region is more flexible than the R1, R3, and R4 regions. Additionally, it is worth noting that residues 300-310 in R2-R3 and residues 319-336 in R3 tend to form sheet structures, indicating that K18 has a broader functional role than individual repeat monomers. Finally, the simulations combined with Markov state models and deep learning reveal 5 key conformational states along the transition pathway and provide the information on the microsecond time scale interstate transition rates. Overall, this study offers significant insights into the molecular mechanism of Tau pathological aggregation and develops novel strategies for both securing tauopathies and advancing drug discovery.
Collapse
Affiliation(s)
- Yongna Yuan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xuqi Mao
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Xiaohang Pan
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Ruisheng Zhang
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| | - Wei Su
- School of Information Science & Engineering, Lanzhou University, South Tianshui Road, Lanzhou 730000, Gansu, China
| |
Collapse
|
9
|
Duan P, Hong M. Selective Detection of Intermediate-Amplitude Motion by Solid-State NMR. J Phys Chem B 2024; 128:2293-2303. [PMID: 38417154 DOI: 10.1021/acs.jpcb.3c06839] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/01/2024]
Abstract
The coexistence of rigid and mobile molecules or molecular segments abounds in biomolecular assemblies. Examples include the carbohydrate-rich cell walls of plants and intrinsically disordered proteins that contain rigid β-sheet cores. In solid-state nuclear magnetic resonance (NMR) spectroscopy, dipolar polarization transfer experiments are well suited for detecting rigid components, whereas scalar-coupling experiments are well suited for detecting highly mobile components. However, few NMR methods are available to detect the segments that undergo intermediate-amplitude fast motion. Here, we introduce two NMR experiments, a two-dimensional T2H-filtered CP-hCH correlation and a three-dimensional J-INADEQUATE CCH correlation, to observe this intermediate-amplitude motion. Both experiments involve 1H detection under fast magic-angle spinning (MAS). By combining 1H transverse relaxation (T2H) filters with dipolar polarization transfer, we suppress the signals of both highly rigid and highly mobile species, thus revealing the signals of intermediate mobile species. 1H detection under fast MAS is crucial for distinguishing the different motional amplitudes. We demonstrate these techniques on several plant cell wall samples and show that they allow the selective detection and resolution of certain hemicellulose and pectin signals, which are usually masked by the signals of the rigid cellulose and the highly dynamic pectins in purely dipolar and scalar NMR spectra.
Collapse
Affiliation(s)
- Pu Duan
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| | - Mei Hong
- Department of Chemistry, Massachusetts Institute of Technology, 170 Albany Street, Cambridge, Massachusetts 02139, United States
| |
Collapse
|
10
|
Lao Z, Tang Y, Dong X, Tan Y, Li X, Liu X, Li L, Guo C, Wei G. Elucidating the reversible and irreversible self-assembly mechanisms of low-complexity aromatic-rich kinked peptides and steric zipper peptides. NANOSCALE 2024; 16:4025-4038. [PMID: 38347806 DOI: 10.1039/d3nr05130g] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/23/2024]
Abstract
Many RNA-binding proteins such as fused-in sarcoma (FUS) can self-assemble into reversible liquid droplets and fibrils through the self-association of their low-complexity (LC) domains. Recent experiments have revealed that SYG-rich segments in the FUS LC domains play critical roles in the reversible self-assembly behaviors of FUS. These FUS LC segments alone can self-assemble into reversible kinked fibrils, which are markedly different from the canonical irreversible steric zipper β-sheet fibrils. However, the molecular determinants underlying the reversible and irreversible self-assembly are poorly understood. Herein we conducted extensive all-atom and coarse-grained molecular dynamics simulations of four representative hexapeptides: two low-complexity aromatic-rich kinked peptides from the amyotrophic lateral sclerosis-related FUS protein, FUS37-42 (SYSGYS) and FUS54-59 (SYSSYG); and two steric zipper peptides from Alzheimer's-associated Aβ and Tau proteins, Aβ16-21 (KLVFFA) and Tau306-311 (VQIVYK). We dissected their reversible and irreversible self-assembly dynamics, predicted their phase separation behaviors, and elucidated the underpinning molecular interactions. Our simulations showed that alternating stickers (Tyr) and spacers (Gly and Ser) in FUS37-42 and FUS54-59 facilitate the formation of highly dynamic coil-rich oligomers and lead to reversible self-assembly, while consecutive hydrophobic residues of LVFF in Aβ16-21 and IVY in Tau306-311 act as hydrophobic patches, favoring the formation of stable β-sheet-rich oligomers and driving the irreversible self-assembly. Intriguingly, we found that FUS37-42 and FUS54-59 peptides, possessing the same amino acid composition and the same number of sticker and spacer residues, display differential self-assembly propensities. This finding suggests that the self-assembly behaviors of FUS peptides are fine-tuned by the site-specific patterning of spacer residues (Ser and Gly). This study provides significant mechanistic insights into reversible and irreversible peptide self-assembly, which would be helpful for understanding the molecular mechanisms underlying the formation of biological liquid condensates and pathological solid amyloid fibrils.
Collapse
Affiliation(s)
- Zenghui Lao
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Yiming Tang
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Xuewei Dong
- Center for Soft Condensed Matter Physics and Interdisciplinary Research & School of Physical Science and Technology, Soochow University, Suzhou 215006, Jiangsu, China
| | - Yuan Tan
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Xuhua Li
- MOE Key Laboratory for Nonequilibrium Synthesis and Modulation of Condensed Matter, School of Physics, Xi'an Jiaotong University, Xi'an 710049, China
| | - Xianshi Liu
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Le Li
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| | - Cong Guo
- Department of Physics and International Centre for Quantum and Molecular Structures, College of Sciences, Shanghai University, Shanghai, China.
| | - Guanghong Wei
- Department of Physics, State Key Laboratory of Surface Physics, Key Laboratory for Computational Physical Sciences (Ministry of Education), Fudan University, Shanghai, China.
| |
Collapse
|