1
|
Lyons H, Pradhan P, Prakasam G, Vashishtha S, Li X, Eppert M, Fornero C, Tcheuyap VT, McGlynn K, Yu Z, Raju DR, Koduru PR, Xing C, Kapur P, Brugarolas J, Sabari BR. RNA polymerase II partitioning is a shared feature of diverse oncofusion condensates. Cell 2025:S0092-8674(25)00404-0. [PMID: 40286793 DOI: 10.1016/j.cell.2025.04.002] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2024] [Revised: 12/12/2024] [Accepted: 04/01/2025] [Indexed: 04/29/2025]
Abstract
Condensates regulate transcription by selectively compartmentalizing biomolecules, yet the rules of specificity and their relationship to function remain enigmatic. To identify rules linked to function, we leverage the genetic selection bias of condensate-promoting oncofusions. Focusing on the three most frequent oncofusions driving translocation renal cell carcinoma, we find that they promote the formation of condensates that activate transcription by gain-of-function RNA polymerase II partitioning through a shared signature of elevated π and π-interacting residues and depletion of aliphatic residues. This signature is shared among a broad set of DNA-binding oncofusions associated with diverse cancers. We find that this signature is necessary and sufficient for RNA polymerase II partitioning, gene activation, and cancer cell phenotypes. Our results reveal that dysregulated condensate specificity is a shared molecular mechanism of diverse oncofusions, highlighting the functional role of condensate composition and the power of disease genetics in investigating relationships between condensate specificity and function.
Collapse
Affiliation(s)
- Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Gopinath Prakasam
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hematology-Oncology Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Shubham Vashishtha
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Xiang Li
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Mikayla Eppert
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Christy Fornero
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Vanina T Tcheuyap
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hematology-Oncology Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Kathleen McGlynn
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Ze Yu
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Dinesh Ravindra Raju
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prasad R Koduru
- Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Chao Xing
- Eugene McDermott Center for Human Growth and Development, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Lyda Hill Department of Bioinformatics, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Peter O'Donnell School of Public Health, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Payal Kapur
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Pathology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Urology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - James Brugarolas
- Kidney Cancer Program, Simmons Comprehensive Cancer Center, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hematology-Oncology Division, Department of Internal Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Department of Molecular Biology, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA; Hamon Center for Regenerative Science and Medicine, The University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
2
|
Sabari BR, Hyman AA, Hnisz D. Functional specificity in biomolecular condensates revealed by genetic complementation. Nat Rev Genet 2025; 26:279-290. [PMID: 39433596 DOI: 10.1038/s41576-024-00780-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/05/2024] [Indexed: 10/23/2024]
Abstract
Biomolecular condensates are thought to create subcellular microenvironments that regulate specific biochemical activities. Extensive in vitro work has helped link condensate formation to a wide range of cellular processes, including gene expression, nuclear transport, signalling and stress responses. However, testing the relationship between condensate formation and function in cells is more challenging. In particular, the extent to which the cellular functions of condensates depend on the nature of the molecular interactions through which the condensates form is a major outstanding question. Here, we review results from recent genetic complementation experiments in cells, and highlight how genetic complementation provides important insights into cellular functions and functional specificity of biomolecular condensates. Combined with observations from human genetic disease, these experiments suggest that diverse condensate-promoting regions within cellular proteins confer different condensate compositions, biophysical properties and functions.
Collapse
Affiliation(s)
- Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| | - Anthony A Hyman
- Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
| | - Denes Hnisz
- Max Planck Institute for Molecular Genetics, Berlin, Germany.
| |
Collapse
|
3
|
Vashishtha S, Sabari BR. Disordered Regions of Condensate-promoting Proteins Have Distinct Molecular Signatures Associated with Cellular Function. J Mol Biol 2025; 437:168953. [PMID: 39826710 DOI: 10.1016/j.jmb.2025.168953] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/14/2024] [Revised: 12/23/2024] [Accepted: 01/10/2025] [Indexed: 01/22/2025]
Abstract
Disordered regions of proteins play crucial roles in cellular functions through diverse mechanisms. Some disordered regions function by promoting the formation of biomolecular condensates through dynamic multivalent interactions. While many have assumed that interactions among these condensate-promoting disordered regions are non-specific, recent studies have shown that distinct sequence compositions and patterning lead to specific condensate compositions associated with cellular function. Despite in-depth characterization of several key examples, the full chemical diversity of condensate-promoting disordered regions has not been surveyed. Here, we define a list of disordered regions of condensate-promoting proteins to survey the relationship between sequence and function. We find that these disordered regions show amino acid biases associated with different cellular functions. These amino acid biases are evolutionarily conserved in the absence of positional sequence conservation. Overall, our analysis highlights the relationship between sequence features and function for condensate-promoting disordered regions. This analysis suggests that molecular signatures encoded within disordered regions could impart functional specificity.
Collapse
Affiliation(s)
- Shubham Vashishtha
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|
4
|
Pei G, Lyons H, Li P, Sabari BR. Transcription regulation by biomolecular condensates. Nat Rev Mol Cell Biol 2025; 26:213-236. [PMID: 39516712 DOI: 10.1038/s41580-024-00789-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/30/2024] [Indexed: 11/16/2024]
Abstract
Biomolecular condensates regulate transcription by dynamically compartmentalizing the transcription machinery. Classic models of transcription regulation focus on the recruitment and regulation of RNA polymerase II by the formation of complexes at the 1-10 nm length scale, which are driven by structured and stoichiometric interactions. These complexes are further organized into condensates at the 100-1,000 nm length scale, which are driven by dynamic multivalent interactions often involving domain-ligand pairs or intrinsically disordered regions. Regulation through condensate-mediated organization does not supersede the processes occurring at the 1-10 nm scale, but it provides regulatory mechanisms for promoting or preventing these processes in the crowded nuclear environment. Regulation of transcription by transcriptional condensates is involved in cell state transitions during animal and plant development, cell signalling and cellular responses to the environment. These condensate-mediated processes are dysregulated in developmental disorders, cancer and neurodegeneration. In this Review, we discuss the principles underlying the regulation of transcriptional condensates, their roles in physiology and their dysregulation in human diseases.
Collapse
Affiliation(s)
- Gaofeng Pei
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China
- Tsinghua-Peking Center for Life Sciences, Beijing, China
| | - Heankel Lyons
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA
| | - Pilong Li
- State Key Laboratory of Membrane Biology, School of Life Sciences, Tsinghua University, Beijing, China.
- Beijing Frontier Research Center for Biological Structure, School of Life Sciences, Tsinghua University, Beijing, China.
- Tsinghua-Peking Center for Life Sciences, Beijing, China.
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Division of Basic Research, Department of Obstetrics and Gynecology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Department of Molecular Biology, University of Texas Southwestern Medical Center, Dallas, TX, USA.
- Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX, USA.
| |
Collapse
|
5
|
Yang J. Emerging Insights into Sall4's Role in Cardiac Regenerative Medicine. Cells 2025; 14:154. [PMID: 39936946 PMCID: PMC11817359 DOI: 10.3390/cells14030154] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/27/2024] [Revised: 01/19/2025] [Accepted: 01/20/2025] [Indexed: 02/13/2025] Open
Abstract
Sall4 as a pivotal transcription factor has been extensively studied across diverse biological processes, including stem cell biology, embryonic development, hematopoiesis, tissue stem/progenitor maintenance, and the progression of various cancers. Recent research highlights Sall4's emerging roles in modulating cardiac progenitors and cellular reprogramming, linking its functions to early heart development and regenerative medicine. These findings provide new insights into the critical functions of Sall4 in cardiobiology. This review explores Sall4's complex molecular mechanisms and their implications for advancing cardiac regenerative medicine.
Collapse
Affiliation(s)
- Jianchang Yang
- Michael E. DeBakey Department of Surgery, Baylor College of Medicine, One Baylor Plaza, Houston, TX 77030, USA
| |
Collapse
|
6
|
Pankratova MD, Riabinin AA, Butova EA, Selivanovskiy AV, Morgun EI, Ulianov SV, Vorotelyak EA, Kalabusheva EP. YAP/TAZ Signalling Controls Epidermal Keratinocyte Fate. Int J Mol Sci 2024; 25:12903. [PMID: 39684613 DOI: 10.3390/ijms252312903] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/05/2024] [Revised: 11/24/2024] [Accepted: 11/28/2024] [Indexed: 12/18/2024] Open
Abstract
The paralogues Yes-associated protein (YAP) and transcriptional coactivator with PDZ-binding motif (TAZ) control cell proliferation and cell fate determination from embryogenesis to ageing. In the skin epidermis, these proteins are involved in both homeostatic cell renewal and injury-induced regeneration and also drive carcinogenesis and other pathologies. YAP and TAZ are usually considered downstream of the Hippo pathway. However, they are the central integrating link for the signalling microenvironment since they are involved in the interplay with signalling cascades induced by growth factors, cytokines, and physical parameters of the extracellular matrix. In this review, we summarise the evidence on how YAP and TAZ are activated in epidermal keratinocytes; how YAP/TAZ-mediated signalling cooperates with other signalling molecules at the plasma membrane, cytoplasmic, and nuclear levels; and how YAP/TAZ ultimately controls transcription programmes, defining epidermal cell fate.
Collapse
Affiliation(s)
- Maria D Pankratova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Andrei A Riabinin
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Elizaveta A Butova
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Arseniy V Selivanovskiy
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Elena I Morgun
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Sergey V Ulianov
- Laboratory of Structural-Functional Organization of Chromosomes, Institute of Gene Biology, Russian Academy of Sciences, 119334 Moscow, Russia
- Department of Molecular Biology, Faculty of Biology, M.V. Lomonosov Moscow State University, 119234 Moscow, Russia
| | - Ekaterina A Vorotelyak
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| | - Ekaterina P Kalabusheva
- Cell Biology Laboratory, Koltzov Institute of Developmental Biology, Russian Academy of Sciences, 119334 Moscow, Russia
| |
Collapse
|
7
|
Bremer A, Lang WH, Kempen RP, Sweta K, Taylor AB, Borgia MB, Ansari AZ, Mittag T. Reconciling competing models on the roles of condensates and soluble complexes in transcription factor function. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.11.21.624739. [PMID: 39605529 PMCID: PMC11601617 DOI: 10.1101/2024.11.21.624739] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Subscribe] [Scholar Register] [Indexed: 11/29/2024]
Abstract
Phase separation explains the exquisite spatial and temporal regulation of many biological processes, but the role of transcription factor-mediated condensates in gene regulation is contentious, requiring head-to-head comparison of competing models. Here, we focused on the prototypical yeast transcription factor Gcn4 and assessed two models for gene transcription activation, i.e., mediated via soluble complexes or transcriptional condensates. Both models rely on the ability of transcription factors and coactivators to engage in multivalent interactions. Unexpectedly, we found that propensity to form homotypic Gcn4 condensates does not correlate well with transcriptional activity. Contrary to prevailing models, binding to DNA suppresses Gcn4 phase separation. Notably, the ability of Gcn4 to form soluble complexes with coactivator subunit Med15 closely mirrored the propensity to recruit Med15 into condensates, indicating that these properties are intertwined and cautioning against interpretation of mutational data without head-to-head comparisons. However, Gcn4 variants with the highest affinity for Med15 do not function as well as expected and instead have activities that reflect their abilities to phase separate with Med15. These variants therefore indeed form cellular condensates, and those attenuate activity. Our results show that transcription factors can function as soluble complexes as well as condensates, reconciling two seemingly opposing models, and have implications for other phase-separating systems.
Collapse
Affiliation(s)
- Anne Bremer
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Walter H. Lang
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Ryan P. Kempen
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Kumari Sweta
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aaron B. Taylor
- Cellular Imaging Shared Resource, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Madeleine B. Borgia
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Aseem Z. Ansari
- Department of Chemical Biology & Therapeutics, St. Jude Children’s Research Hospital, Memphis, TN, USA
| | - Tanja Mittag
- Department of Structural Biology, St. Jude Children’s Research Hospital, Memphis, TN, USA
| |
Collapse
|
8
|
Fallacaro S, Mukherjee A, Ratchasanmuang P, Zinski J, Haloush YI, Shankta K, Mir M. A fine kinetic balance of interactions directs transcription factor hubs to genes. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2024.04.16.589811. [PMID: 38659757 PMCID: PMC11042322 DOI: 10.1101/2024.04.16.589811] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/26/2024]
Abstract
Eukaryotic gene regulation relies on the binding of sequence-specific transcription factors (TFs). TFs bind chromatin transiently yet occupy their target sites by forming high-local concentration microenvironments (hubs and condensates) that increase the frequency of binding. Despite their ubiquity, such microenvironments are difficult to study in endogenous contexts due to technical limitations. Here, we use live embryo light-sheet imaging, single-molecule tracking, and genomics to overcome these limitations and investigate how hubs are localized to target genes to drive TF occupancy and transcription. By examining mutants of a hub-forming TF, Zelda, in Drosophila embryos, we find that hub formation propensity, spatial distributions, and temporal stabilities are differentially regulated by DNA binding and disordered protein domains. We show that hub localization to genomic targets is driven by a finely-tuned kinetic balance of interactions between proteins and chromatin, and hubs can be redirected to new genomic sites when this balance is perturbed.
Collapse
Affiliation(s)
- Samantha Fallacaro
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Developmental, Stem Cell, and Regenerative Biology Graduate Group, Perelman School of Medicine; Philadelphia, PA 19104, USA
| | - Apratim Mukherjee
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Puttachai Ratchasanmuang
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Joseph Zinski
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Yara I Haloush
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
| | - Kareena Shankta
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Roy and Diana Vagelos Program in Life Sciences and Management, University of Pennsylvania; Philadelphia, PA 19104, USA
| | - Mustafa Mir
- Department of Cell and Developmental Biology, Perelman School of Medicine, University of Pennsylvania; Philadelphia, PA 19104, USA
- Center for Computational and Genomic Medicine, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Howard Hughes Medical Institute, Children’s Hospital of Philadelphia; Philadelphia, PA 19104, USA
- Epigenetics Institute, University of Pennsylvania Perelman School of Medicine; Philadelphia, PA 19104, USA
| |
Collapse
|
9
|
De La Cruz N, Pradhan P, Veettil RT, Conti BA, Oppikofer M, Sabari BR. Disorder-mediated interactions target proteins to specific condensates. Mol Cell 2024; 84:3497-3512.e9. [PMID: 39232584 DOI: 10.1016/j.molcel.2024.08.017] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/15/2023] [Revised: 05/03/2024] [Accepted: 08/10/2024] [Indexed: 09/06/2024]
Abstract
Selective compartmentalization of cellular contents is fundamental to the regulation of biochemistry. Although membrane-bound organelles control composition by using a semi-permeable barrier, biomolecular condensates rely on interactions among constituents to determine composition. Condensates are formed by dynamic multivalent interactions, often involving intrinsically disordered regions (IDRs) of proteins, yet whether distinct compositions can arise from these dynamic interactions is not known. Here, by comparative analysis of proteins differentially partitioned by two different condensates, we find that distinct compositions arise through specific IDR-mediated interactions. The IDRs of differentially partitioned proteins are necessary and sufficient for selective partitioning. Distinct sequence features are required for IDRs to partition, and swapping these sequence features changes the specificity of partitioning. Swapping whole IDRs retargets proteins and their biochemical activity to different condensates. Our results demonstrate that IDR-mediated interactions can target proteins to specific condensates, enabling the spatial regulation of biochemistry within the cell.
Collapse
Affiliation(s)
- Nancy De La Cruz
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Prashant Pradhan
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Reshma T Veettil
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA
| | - Brooke A Conti
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY 10016, USA
| | - Mariano Oppikofer
- Pfizer Centers for Therapeutic Innovation, Pfizer Inc., New York, NY 10016, USA
| | - Benjamin R Sabari
- Laboratory of Nuclear Organization, Cecil H. and Ida Green Center for Reproductive Biology Sciences, Division of Basic Research, Department of Obstetrics and Gynecology, Department of Molecular Biology, Hamon Center for Regenerative Science and Medicine, University of Texas Southwestern Medical Center, Dallas, TX 75390, USA.
| |
Collapse
|