1
|
Boo HJ, Yoon D, Choi Y, Kim Y, Cha JS, Yoo J. Quercetin: Molecular Insights into Its Biological Roles. Biomolecules 2025; 15:313. [PMID: 40149849 PMCID: PMC11940409 DOI: 10.3390/biom15030313] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/18/2025] [Revised: 02/15/2025] [Accepted: 02/18/2025] [Indexed: 03/29/2025] Open
Abstract
Quercetin, a prevalent plant flavonoid, demonstrates many biological functions through its interaction with distinct protein targets. Recent structural investigations of protein-quercetin complexes have elucidated the molecular mechanism behind these actions. This paper presents a thorough structural analysis of experimentally established protein-quercetin complex structures published to date. The structure of the protein-quercetin complex elucidates the molecular mechanism by which quercetin influences protein function. These structures illustrate how quercetin's chemical characteristics facilitate diverse modes of action by enabling particular interactions with the target protein. This structural knowledge provides the molecular foundation for comprehending quercetin's biological roles and indicates avenues for future structural investigations of flavonoid-protein complexes, especially those with ambiguous molecular processes.
Collapse
Affiliation(s)
- Hye Joon Boo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Danbi Yoon
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Yujeong Choi
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Younghyun Kim
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jeong Seok Cha
- Research Institute of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| | - Jiho Yoo
- College of Pharmacy, Chung-Ang University, Seoul 06974, Republic of Korea
| |
Collapse
|
2
|
Christoffersen M, Greve AM, Hornstrup LS, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Transthyretin Tetramer Destabilization and Increased Mortality in the General Population. JAMA Cardiol 2025; 10:155-163. [PMID: 39630472 PMCID: PMC11618624 DOI: 10.1001/jamacardio.2024.4102] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 03/02/2024] [Accepted: 08/30/2024] [Indexed: 12/08/2024]
Abstract
Importance Transthyretin tetramer destabilization is the rate-limiting step in the development of transthyretin cardiac amyloidosis, an underrecognized contributor to mortality in older adults. Objective To test the hypothesis that transthyretin tetramer destabilization is associated with all-cause and cardiovascular mortality in the general population. Design, Setting, and Participants In this cohort study including individuals aged 20 to 80 years, genetic data were analyzed from 2 similar prospective studies of the Danish general population, the Copenhagen City Heart Study (CCHS) and the Copenhagen General Population Study (CGPS). Observational data from a subsample of the same studies where transthyretin was measured consecutively were also analyzed. In both studies, individuals were followed up from the examination date (1991-1994 in CCHS and 2003-2015 in CGPS) until death or the end of follow-up in December 2018. Data were analyzed from November 1, 2023, to August 15, 2024. Exposures Missense variants in TTR associated with increasing transthyretin tetramer destabilization in primary genetic analyses, and plasma transthyretin level in secondary observational analyses. Main Outcomes and Measures All-cause and cardiovascular mortality identified from the national Danish Civil Registration System and the national Danish Register of Causes of Death. Results A total of 102 204 individuals (median [IQR] age, 57 [47-66] years; 56 445 [55%] female) were included. Median follow-up was 10 years (range, <1-27 years). In genetic analyses, p.T139M, a transthyretin tetramer stabilizing variant that is more stable than noncarriers' tetramer stability, was used as the reference. For noncarriers who have intermediate tetramer stability and for heterozygotes for amyloidogenic variants (p.V142I, p.H110N, and p.D119N) who have the lowest tetramer stability, respective hazard ratios (HRs) were 1.37 (95% CI, 1.06-1.77) and 1.65 (95% CI, 0.95-2.88) for all-cause mortality (P for trend = .01), and 1.63 (95% CI, 0.92-2.89) and 2.23 (95% CI, 0.78-6.34) for cardiovascular mortality (P for trend = .06). Furthermore, compared with p.T139M, plasma transthyretin decreased stepwise by TTR genotype: -18% for noncarriers and -29% for heterozygotes for amyloidogenic variants (p.V142I, p.H110N, p.D119N; P for trend < .001). Therefore, genetically determined, increasingly lower plasma transthyretin could be considered a surrogate marker for transthyretin tetramer destabilization. Observationally, among 19 619 individuals, noncarriers with plasma transthyretin concentrations less than 20 mg/dL vs 20 to 40 mg/dL had HRs of 1.12 (95% CI, 1.02-1.23) for all-cause mortality and 1.16 (95% CI, 0.97-1.39) for cardiovascular mortality. Conclusions and Relevance Transthyretin tetramer destabilization was associated with all-cause and cardiovascular mortality in the Danish general population. These findings may suggest a need for large-scale assays to measure transthyretin destabilization for detection of transthyretin amyloidosis before clinical manifestations emerge, since early treatment improves the prognosis.
Collapse
Affiliation(s)
- Mette Christoffersen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Anders Møller Greve
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
| | - Louise Stig Hornstrup
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Department of Obstetrics and Gynaecology, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
| | - Børge Grønne Nordestgaard
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Department of Clinical Biochemistry, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Copenhagen City Heart Study, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Department of Clinical Biochemistry, Copenhagen University Hospital, Rigshospitalet, Copenhagen, Denmark
- Copenhagen General Population Study, Copenhagen University Hospital, Herlev and Gentofte Hospital, Copenhagen, Denmark
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark
- Copenhagen City Heart Study, Copenhagen University Hospital, Bispebjerg and Frederiksberg Hospital, Copenhagen, Denmark
| |
Collapse
|
3
|
Angueira A, Abramowitz SA, Levin MG. Unfolding the Link Between Transthyretin Stability and Survival. JAMA Cardiol 2025; 10:112-113. [PMID: 39630419 DOI: 10.1001/jamacardio.2024.4112] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/13/2025]
Affiliation(s)
- Anthony Angueira
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Sarah A Abramowitz
- Department of Surgery, University of Pennsylvania Perelman School of Medicine, Philadelphia
| | - Michael G Levin
- Division of Cardiovascular Medicine, Department of Medicine, University of Pennsylvania Perelman School of Medicine, Philadelphia
- Cardiovascular Institute, University of Pennsylvania Perelman School of Medicine, Philadelphia
- Corporal Michael J. Crescenz VA Medical Center, Philadelphia, Pennsylvania
| |
Collapse
|
4
|
Stein-Merlob AF, Swier R, Vucicevic D. Evolving Strategies in Cardiac Amyloidosis: From Mechanistic Discoveries to Diagnostic and Therapeutic Advances. Cardiol Clin 2025; 43:93-110. [PMID: 39551565 PMCID: PMC11819944 DOI: 10.1016/j.ccl.2024.09.006] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 11/19/2024]
Abstract
Diagnosis and treatment of cardiac amyloidosis have rapidly evolved over the past decade by harnessing mechanisms of disease pathogenesis. Cardiac amyloidosis is caused by myocardial deposition of fibrils formed by misfolded proteins, namely transthyretin (ATTR) and immunoglobulin light chains (AL). Advances in noninvasive imaging have revolutionized diagnosis of ATTR cardiomyopathy (CM). Novel treatments for ATTR-CM utilize a range of therapeutic techniques, including protein stabilizers, interfering RNA, gene editing, and monoclonal antibodies. AL-CM, primarily driven by plasma cell dyscrasias, requires treatment with chemotherapy and consideration for autologous stem cell transplant. These incredible advances aim to improve patient outcomes in cardiac amyloidosis.
Collapse
Affiliation(s)
- Ashley F. Stein-Merlob
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- UCLA Cardio-Oncology Program, Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Rachel Swier
- Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
| | - Darko Vucicevic
- Division of Cardiology, Department of Medicine, University of California, Los Angeles, Los Angeles, CA, USA
- Ahmanson-UCLA Cardiomyopathy Center, Department of Medicine, Ronald Reagan UCLA Medical Center, Los Angeles, CA, USA
| |
Collapse
|
5
|
Egi R, Matsusaka Y, Watanabe K, Seto A, Matsunari I, Arai T, Nakano S, Kuji I. Single-center analysis of cardiac amyloidosis using 99m Tc-HMDP imaging for diagnosis and evaluation after tafamidis treatment. Nucl Med Commun 2025; 46:38-46. [PMID: 39483085 PMCID: PMC11634134 DOI: 10.1097/mnm.0000000000001922] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/04/2024] [Accepted: 10/11/2024] [Indexed: 11/03/2024]
Abstract
OBJECTIVE This study aimed to evaluate the diagnostic performance of 99m Tc-hydroxymethylene diphosphonate ( 99m Tc-HMDP) imaging for cardiac amyloidosis and to demonstrate changes in cardiac uptake of 99m Tc-HMDP after tafamidis treatment. METHODS Seventy-five patients with suspected cardiac amyloidosis who underwent 99m Tc-HMDP imaging were included. We compared visual Perugini grades and semiquantitative heart-to-contralateral (H/CL) area ratios, myocardial maximum standardized uptake value (SUVmax), and peak of SUV (SUVpeak) between cardiac transthyretin amyloidosis (ATTR) and amyloid light-chain amyloidosis (AL). Comparison of interobserver reproducibility between H/CL ratios and myocardial SUVmax/SUVpeak was performed. H/CL ratio of 99m Tc-HMDP and myocardial SUVmax/SUVpeak were compared before and after tafamidis administration for cardiac wild-type ATTR. RESULTS Among 75 patients, 20 patients (26.7%) were visually positive based on Perugini grade. Fifteen and three patients were pathologically identified as cardiac ATTR and AL, respectively. ATTR group ( n = 15) had significantly higher H/CL ratios of 99m Tc-HMDP than AL group ( n = 3) ( P = 0.003). ATTR group ( n = 15) had significantly higher myocardial SUVmax/SUVpeak of 99m Tc-HMDP than AL group ( n = 2) ( P = 0.015). Myocardial SUVmax/SUVpeak had better interobserver reproducibility than H/CL ratios. After tafamidis treatment for cardiac wild-type ATTR, the decrease in myocardial SUVpeak was significant but not in H/CL ratios and myocardial SUVmax. CONCLUSION H/CL ratio and SUVmax/SUVpeak in 99m Tc-HMDP imaging were useful for diagnosing cardiac ATTR. Myocardial SUVpeak may be useful for monitoring changes in cardiac uptake after tafamidis treatment for cardiac ATTR.
Collapse
Affiliation(s)
- Ryuta Egi
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama
| | - Yohji Matsusaka
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama
| | - Kaho Watanabe
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama
| | - Akira Seto
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama
| | - Ichiro Matsunari
- Division of Nuclear Medicine, Department of Radiology, Saitama Medical University Hospital, Moroyama
| | - Takahide Arai
- Department of Cardiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Shintaro Nakano
- Department of Cardiology, Saitama Medical University International Medical Center, Saitama, Japan
| | - Ichiei Kuji
- Department of Nuclear Medicine, Saitama Medical University International Medical Center, Saitama
| |
Collapse
|
6
|
Eze FN. Transthyretin Amyloidosis: Role of oxidative stress and the beneficial implications of antioxidants and nutraceutical supplementation. Neurochem Int 2024; 179:105837. [PMID: 39154837 DOI: 10.1016/j.neuint.2024.105837] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/16/2024] [Revised: 06/28/2024] [Accepted: 08/15/2024] [Indexed: 08/20/2024]
Abstract
Transthyretin (ATTR) amyloidosis constitutes a spectrum of debilitating neurodegenerative diseases instigated by systemic extracellular deposition of partially unfolded/aggregated aberrant transthyretin. The homotetrameric protein, TTR, is abundant in the plasma, and to a lesser extent the cerebrospinal fluid. Rate-limiting tetramer dissociation of the native protein is regarded as the critical step in the formation of morphologically heterogenous toxic aggregates and the onset of clinical manifestations such as polyneuropathy, cardiomyopathy, disturbances in motor and autonomic functions. Over the past few decades there has been increasing evidence suggesting that in addition to destabilization in TTR tetramer structure, oxidative stress may also play an important role in the pathogenesis of ATTR amyloidosis. In this review, an update on the impact of oxidative stress in TTR amyloidogenesis as well as TTR aggregate-mediated pathologies is discussed. The counteracting effects of antioxidants and nutraceutical agents explored in the treatment of ATTR amyloidosis based on recent evidence is also critically examined. The insights unveiled could further strengthen current understanding of the mechanisms underlying ATTR amyloidosis as well as extend the range of strategies for effective management of ATTR amyloidoses.
Collapse
Affiliation(s)
- Fredrick Nwude Eze
- Office of Research Administration, Chiang Mai University, Chiang Mai, 50200, Thailand; Faculty of Agro-Industry, Chiang Mai University, Chiang Mai, 50100, Thailand.
| |
Collapse
|
7
|
Lantz C, Rider RL, Yun SD, Laganowsky A, Russell DH. Water Plays Key Roles in Stabilities of Wild Type and Mutant Transthyretin Complexes. JOURNAL OF THE AMERICAN SOCIETY FOR MASS SPECTROMETRY 2024; 35:1854-1864. [PMID: 39057193 PMCID: PMC11311534 DOI: 10.1021/jasms.4c00170] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 04/26/2024] [Revised: 07/01/2024] [Accepted: 07/15/2024] [Indexed: 07/28/2024]
Abstract
Transthyretin (TTR), a 56 kDa homotetramer that is involved in the transport of thyroxine and retinol, has been linked to amyloidosis through disassembly of tetramers to form monomers, dimers, and trimers that then reassemble into higher order oligomers and/or fibrils. Hybrid TTR (hTTR) tetramers are found in heterozygous individuals that express both wild type TTR (wt-TTR) and mutant TTR (mTTR) forms of the protein, and these states display increased rates of amyloidosis. Here we monitor subunit exchange (SUE) reactions involving homomeric and mixed tetramers using high resolution native mass spectrometry (nMS). Our results show evidence that differences in TTR primary structure alter tetramer stabilities, and hTTR products can form spontaneously by SUE reactions. In addition, we find that solution temperature has strong effects on TTR tetramer stabilities and formation of SUE products. Lower temperatures promote formation of hTTR tetramers containing L55P and V30M subunits, whereas small effects on the formation of hTTR tetramers containing F87A and T119M subunits are observed. We hypothesize that the observed temperature dependent stabilities and subsequent SUE behavior are a result of perturbations to the network of "two kinds of water": hydrating and structure stabilizing water molecules (Spyrakis et al. J. Med. Chem. 2017, 60 (16), 6781-6827; Xu et al. Soft Matter 2012, 8, 324-336) that stabilize wt-TTR and mTTR tetramers. The results presented in this work illustrate the utility of high resolution nMS for studies of the structures, stabilities, and dynamics of protein complexes that directly influence SUE reactions.
Collapse
Affiliation(s)
- Carter Lantz
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Robert L. Rider
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Sangho D. Yun
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - Arthur Laganowsky
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| | - David H. Russell
- Department of Chemistry, Texas A&M University, College
Station, Texas 77843, United States
| |
Collapse
|
8
|
Martins LDA, Ferreira PS, Leitão Dos Santos OA, Martins LO, Cabral Fernandes Barroso LG, Pereira HM, Waddington-Cruz M, Palhano FL, Foguel D. Structural and thermodynamic characterization of a highly amyloidogenic dimer of transthyretin involved in a severe cardiomyopathy. J Biol Chem 2024; 300:107495. [PMID: 38925327 PMCID: PMC11293521 DOI: 10.1016/j.jbc.2024.107495] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2023] [Revised: 06/09/2024] [Accepted: 06/13/2024] [Indexed: 06/28/2024] Open
Abstract
Transthyretin (TTR) is an homotetrameric protein involved in the transport of thyroxine. More than 150 different mutations have been described in the TTR gene, several of them associated with familial amyloid cardiomyopathy. Recently, our group described a new variant of TTR in Brazil, namely A39D-TTR, which causes a severe cardiac condition. Position 39 is in the AB loop, a region of the protein that is located within the thyroxine-binding channels and is involved in tetramer formation. In the present study, we solved the structure and characterize the thermodynamic stability of this new variant of TTR using urea and high hydrostatic pressure. Interestingly, during the process of purification, A39D-TTR turned out to be a dimer and not a tetramer, a variation that might be explained by the close contact of the four aspartic acids at position 39, where they face each other inside the thyroxine channel. In the presence of subdenaturing concentrations of urea, bis-ANS binding and dynamic light scattering revealed A39D-TTR in the form of a molten-globule dimer. Co-expression of A39D and WT isoforms in the same bacterial cell did not produce heterodimers or heterotetramers, suggesting that somehow a negative charge at the AB loop precludes tetramer formation. A39D-TTR proved to be highly amyloidogenic, even at mildly acidic pH values where WT-TTR does not aggregate. Interestingly, despite being a dimer, aggregation of A39D-TTR was inhibited by diclofenac, which binds to the thyroxine channel in the tetramer, suggesting the existence of other pockets in A39D-TTR able to accommodate this molecule.
Collapse
Affiliation(s)
- Lucas do Amaral Martins
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Priscila S Ferreira
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Leticia Oliveira Martins
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | | | - Humberto M Pereira
- Instituto de Física de São Carlos, Universidade São Paulo, São Carlos, Brazil
| | - Márcia Waddington-Cruz
- Centro de Estudos de Paramiloidose Antônio Rodrigues de Mello, Hospital Universitário Clementino Fraga Filho, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Fernando Lucas Palhano
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil
| | - Debora Foguel
- Instituto de Bioquímica Médica Leopoldo De Meis, Universidade Federal do Rio de Janeiro, Rio de Janeiro, Brazil.
| |
Collapse
|
9
|
Hendren NS, De Lemos JA, Berry JD, Kozlitina J, Saelices L, Ji AX, Shao Z, Liu CF, Garg S, Farr MA, Drazner MH, Tang WW, Grodin JL. Circulating transthyretin and retinol binding protein 4 levels among middle-age V122I TTR carriers in the general population. Amyloid 2024; 31:124-131. [PMID: 38445629 PMCID: PMC11127723 DOI: 10.1080/13506129.2024.2322479] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 11/01/2023] [Accepted: 02/19/2024] [Indexed: 03/07/2024]
Abstract
BACKGROUND Hereditary transthyretin cardiac amyloidosis (ATTRv-CA) has a long latency phase before clinical onset, creating a need to identify subclinical disease. We hypothesized circulating transthyretin (TTR) and retinol binding protein 4 (RBP4) levels would be associated with TTR carrier status and correlated with possible evidence of subclinical ATTRv-CA. METHODS TTR and RBP4 were measured in blood samples from V122I TTR carriers and age-, sex- and race-matched non-carrier controls (1:2 matching) among Dallas Heart Study participants (phases 1 (DHS-1) and 2 (DHS-2)). Multivariable linear regression models determined factors associated with TTR and RBP4. RESULTS There were 40 V122I TTR carriers in DHS-1 and 54 V122I TTR carriers in DHS-2. In DHS-1 and DHS-2, TTR was lower in V122I TTR carriers (p < .001 for both), and RBP4 in DHS-2 was lower in V122I TTR carriers than non-carriers (p = .002). Among V122I TTR carriers, TTR was negatively correlated with markers of kidney function, and limb lead voltage (p < .05 for both) and TTR and RBP4 were correlated with atrial volume in DHS-2 (p < .05). CONCLUSIONS V122I TTR carrier status is independently associated with lower TTR and RBP4 in comparison with non-carriers. These findings support the hypothesis that TTR and RBP4 may correlate with evidence of subclinical ATTRv-CA.
Collapse
Affiliation(s)
- Nicholas S. Hendren
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Parkland Health System, Dallas, TX
| | - James A. De Lemos
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Parkland Health System, Dallas, TX
| | - Jarett D. Berry
- Department of Internal Medicine, University of Texas Tyler, Tyler, TX
| | - Julia Kozlitina
- Eugene McDermott Center for Human Growth and Development, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Lorena Saelices
- Center for Alzheimer’s and Neurodegenerative Diseases, Department of Biophysics, University of Texas Southwestern Medical Center, Dallas, Texas
| | - Alan X. Ji
- Eidos Therapeutics, a BridgeBio Company, Palo Alto, CA
| | - Zhili Shao
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | - Chia-Feng Liu
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | - Sonia Garg
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Parkland Health System, Dallas, TX
| | - Maryjane A. Farr
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Parkland Health System, Dallas, TX
| | - Mark H. Drazner
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Parkland Health System, Dallas, TX
| | - W.H. Wilson Tang
- Department of Cardiovascular Medicine, Cleveland Clinic, Cleveland, Ohio
- Department of Cardiovascular and Metabolic Sciences, Lerner Research Institute, Cleveland Clinic, Cleveland OH
| | - Justin L. Grodin
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas
- Parkland Health System, Dallas, TX
| |
Collapse
|
10
|
Zabrodskaya Y, Tsvetkov V, Shurygina AP, Vasyliev K, Shaldzhyan A, Gorshkov A, Kuklin A, Fedorova N, Egorov V. How the immune mousetrap works: Structural evidence for the immunomodulatory action of a peptide from influenza NS1 protein. Biophys Chem 2024; 307:107176. [PMID: 38219420 DOI: 10.1016/j.bpc.2024.107176] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/20/2023] [Accepted: 01/08/2024] [Indexed: 01/16/2024]
Abstract
One of the critical stages of the T-cell immune response is the dimerization of the intramembrane domains of T-cell receptors (TCR). Structural similarities between the immunosuppressive domains of viral proteins and the transmembrane domains of TCR have led several authors to hypothesize the mechanism of immune response suppression by highly pathogenic viruses: viral proteins embed themselves in the membrane and act on the intramembrane domain of the TCRalpha subunit, hindering its functional oligomerization. It has also been suggested that this mechanism is used by influenza A virus in NS1-mediated immunosuppression. We have shown that the peptide corresponding to the primary structure of the potential immunosuppressive domain of NS1 protein (G51) can reduce concanavalin A-induced proliferation of PBMC cells, as well as in vitro, G51 can affect the oligomerization of the core peptide corresponding to the intramembrane domain of TCR, using AFM and small-angle neutron scattering. The results obtained using in cellulo and in vitro model systems suggest the presence of functional interaction between the NS1 fragment and the intramembrane domain of the TCR alpha subunit. We have proposed a possible scheme for such interaction obtained by computer modeling. This suggests the existence of another NS1-mediated mechanism of immunosuppression in influenza.
Collapse
Affiliation(s)
- Yana Zabrodskaya
- Institute of Biomedical Systems and Biotechnology, Peter the Great Saint Petersburg Polytechnic University, 29 Ulitsa Polytechnicheskaya, St. Petersburg 194064, Russia; Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia.
| | - Vladimir Tsvetkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia; Federal Research and Clinical Center for Physical Chemical Medicine, 1a Ulitsa Malaya Pirogovskaya, Moscow 119435, Russia; Center for Mathematical Modeling in Drug Development, I.M. Sechenov First Moscow State Medical University, Moscow 119146, Russia
| | - Anna-Polina Shurygina
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Kirill Vasyliev
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Aram Shaldzhyan
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Andrey Gorshkov
- Smorodintsev Research Institute of Influenza, Russian Ministry of Health, 15/17 Ulitsa Prof. Popova, St. Petersburg 197376, Russia
| | - Alexander Kuklin
- International Intergovernmental Organization Joint Institute for Nuclear Research, 6 Ulitsa Joliot-Curie, Dubna 141980, Russia; Moscow Institute of Physics and Technology (State University), 9 Institutskiy pereulok, 141701 Dolgoprudny, Moscow Region, Russia
| | - Natalya Fedorova
- Petersburg Nuclear Physics Institute Named by B. P. Konstantinov of National Research Center, Kurchatov Institute, 1 mkr. Orlova Roshcha, Gatchina 188300, Russia
| | - Vladimir Egorov
- Institute of Experimental Medicine, 12 Ulitsa Akademika Pavlova, St. Petersburg 197376, Russia
| |
Collapse
|
11
|
Verona G, Raimondi S, Canetti D, Mangione PP, Marchese L, Corazza A, Lavatelli F, Gillmore JD, Taylor GW, Bellotti V, Giorgetti S. Degradation versus fibrillogenesis, two alternative pathways modulated by seeds and glycosaminoglycans. Protein Sci 2024; 33:e4931. [PMID: 38380705 PMCID: PMC10880434 DOI: 10.1002/pro.4931] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2023] [Revised: 01/19/2024] [Accepted: 01/31/2024] [Indexed: 02/22/2024]
Abstract
The mechanism that converts native human transthyretin into amyloid fibrils in vivo is still a debated and controversial issue. Commonly, non-physiological conditions of pH, temperature, or organic solvents are used in in vitro models of fibrillogenesis of globular proteins. Transthyretin amyloid formation can be achieved under physiological conditions through a mechano-enzymatic mechanism involving specific serine proteases such as trypsin or plasmin. Here, we investigate S52P and L111M transthyretin variants, both causing a severe form of systemic amyloidosis mostly targeting the heart at a relatively young age with heterogeneous phenotype among patients. Our studies on thermodynamics show that both proteins are significantly less stable than other amyloidogenic variants. However, despite a similar thermodynamic stability, L111M variant seems to have enhanced susceptibility to cleavage and a lower tendency to form fibrils than S52P in the presence of specific proteases and biomechanical forces. Heparin strongly enhances the fibrillogenic capacity of L111M transthyretin, but has no effect on the S52P variant. Fibrillar seeds similarly affect the fibrillogenesis of both proteins, with a stronger effect on the L111M variant. According to our model of mechano-enzymatic fibrillogenesis, both full-length and truncated monomers, released after the first cleavage, can enter into fibrillogenesis or degradation pathways. Our findings show that the kinetics of the two processes can be affected by several factors, such as intrinsic amyloidogenicity due to the specific mutations, environmental factors including heparin and fibrillar seeds that significantly accelerate the fibrillogenic pathway.
Collapse
Affiliation(s)
- Guglielmo Verona
- Centre for AmyloidosisUniversity College LondonLondonUK
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Sara Raimondi
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
| | - Diana Canetti
- Centre for AmyloidosisUniversity College LondonLondonUK
| | - P. Patrizia Mangione
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | - Alessandra Corazza
- Department of Medicine (DAME)University of UdineUdineItaly
- Istituto Nazionale Biostrutture e BiosistemiRomeItaly
| | - Francesca Lavatelli
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | | | | | - Vittorio Bellotti
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| | - Sofia Giorgetti
- Department of Molecular MedicineUniversity of PaviaPaviaItaly
- Research DepartmentFondazione IRCCS Policlinico San MatteoPaviaItaly
| |
Collapse
|
12
|
He S, Lv X, He X, Guo J, Pan R, Jin Y, Tian Z, Pan L, Zhang S. Drug Repositioning for Amyloid Transthyretin Amyloidosis by Interactome Network Corrected by Graph Neural Networks and Transcriptome Analysis. Hum Gene Ther 2024; 35:70-79. [PMID: 37756369 DOI: 10.1089/hum.2021.222] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 09/29/2023] Open
Abstract
Amyloid transthyretin (ATTR) amyloidosis caused by transthyretin misfolded into amyloid deposits in nerve and heart is a progressive rare disease. The unknown pathogenesis and the lack of therapy make the 5-year survival prognosis extremely poor. Currently available ATTR drugs can only relieve symptoms and slow down progression, but no drug has demonstrated curable effect for this disease. The growing volume of pharmacological data and large-scale genome and transcriptome data bring new opportunities to find potential new ATTR drugs through computational drug repositioning. We collected the ATTR-related in the disease pathogenesis and differentially expressed (DE) genes from five public databases and Gene Expression Omnibus expression profiles, respectively, then screened drug candidates by a corrected protein-protein network analysis of the ATTR-related genes as well as the drug targets from DrugBank database, and then filtered the drug candidates on the basis of gene expression data perturbed by compounds. We collected 139 and 56 ATTR-related genes from five public databases and transcriptome data, respectively, and performed functional enrichment analysis. We screened out 355 drug candidates based on the proximity to ATTR-related genes in the corrected interactome network, refined by graph neural networks. An Inverted Gene Set Enrichment analysis was further applied to estimate the effect of perturbations on ATTR-related and DE genes. High probability drug candidates were discussed. Drug repositioning using systematic computational processes on an interactome network with transcriptome data were performed to screen out several potential new drug candidates for ATTR.
Collapse
Affiliation(s)
- Shan He
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - XiaoYing Lv
- Global Health Drug Discovery Institute, Beijing, China
| | - XinYue He
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - JinJiang Guo
- Global Health Drug Discovery Institute, Beijing, China
| | - RuoKai Pan
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - YuTong Jin
- Global Health Drug Discovery Institute, Beijing, China
| | - Zhuang Tian
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| | - LuRong Pan
- Global Health Drug Discovery Institute, Beijing, China
| | - ShuYang Zhang
- Department of Cardiology, Peking Union Medical College Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
| |
Collapse
|
13
|
Inada Y, Ono Y, Okazaki K, Yamashita T, Kawaguchi T, Kawano S, Kobashigawa Y, Shinya S, Kojima C, Shuto T, Kai H, Morioka H, Sato T. Hydrogen bonds connecting the N-terminal region and the DE loop stabilize the monomeric structure of transthyretin. J Biochem 2023; 174:355-370. [PMID: 37400978 DOI: 10.1093/jb/mvad049] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/02/2023] [Revised: 06/26/2023] [Accepted: 06/26/2023] [Indexed: 07/05/2023] Open
Abstract
Transthyretin (TTR) is a homo-tetrameric serum protein associated with sporadic and hereditary systemic amyloidosis. TTR amyloid formation proceeds by the dissociation of the TTR tetramer and the subsequent partial unfolding of the TTR monomer into an aggregation-prone conformation. Although TTR kinetic stabilizers suppress tetramer dissociation, a strategy for stabilizing monomers has not yet been developed. Here, we show that an N-terminal C10S mutation increases the thermodynamic stability of the TTR monomer by forming new hydrogen bond networks through the side chain hydroxyl group of Ser10. Nuclear magnetic resonance spectrometry and molecular dynamics simulation revealed that the Ser10 hydroxyl group forms hydrogen bonds with the main chain amide group of either Gly57 or Thr59 on the DE loop. These hydrogen bonds prevent the dissociation of edge strands in the DAGH and CBEF β-sheets during the unfolding of the TTR monomer by stabilizing the interaction between β-strands A and D and the quasi-helical structure in the DE loop. We propose that introducing hydrogen bonds to connect the N-terminal region to the DE loop reduces the amyloidogenic potential of TTR by stabilizing the monomer.
Collapse
Affiliation(s)
- Yuki Inada
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yuichiro Ono
- Department of Analytical and Biophysical Chemistry, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Kyo Okazaki
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takuma Yamashita
- Department of Analytical and Biophysical Chemistry, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Tomoyuki Kawaguchi
- Department of Analytical and Biophysical Chemistry, School of Pharmacy, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shingo Kawano
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Yoshihiro Kobashigawa
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Shoko Shinya
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
| | - Chojiro Kojima
- Laboratory of Molecular Biophysics, Institute for Protein Research, Osaka University, 3-2 Yamadaoka, Suita, Osaka 565-0871, Japan
- Division of Materials Science and Chemical Engineering, Graduate School of Engineering, Yokohama National University, 79-5 Tokiwadai, Hodogaya-ku, Yokohama 240-8501, Japan
| | - Tsuyoshi Shuto
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hirofumi Kai
- Department of Molecular Medicine, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Hiroshi Morioka
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| | - Takashi Sato
- Department of Analytical and Biophysical Chemistry, Graduate School of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Chuo-ku, Kumamoto 862-0973, Japan
| |
Collapse
|
14
|
Tsai FJ, Jaeger M, Coelho T, Powers ET, Kelly JW. Tafamidis concentration required for transthyretin stabilisation in cerebrospinal fluid. Amyloid 2023; 30:279-289. [PMID: 36691999 PMCID: PMC10363573 DOI: 10.1080/13506129.2023.2167595] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 10/06/2022] [Revised: 12/21/2022] [Accepted: 01/07/2023] [Indexed: 01/25/2023]
Abstract
BACKGROUND Hereditary transthyretin (TTR) amyloidosis (ATTRv) initially presents as a polyneuropathy and/or a cardiomyopathy. Central nervous system (CNS) pathology in ATTRv amyloidosis, including focal neurological episodes, dementia, cerebrovascular bleeding, and seizures, appears around a decade later. Wild-type (WT) TTR amyloidosis (ATTRwt) causes a cardiomyopathy. CNS pathology risk likely also increases in these patients as cardiomyopathy progresses. Herein, we study tafamidis-mediated TTR kinetic stabilisation in cerebrospinal fluid (CSF). METHODS Varying tafamidis concentrations (50-1000 nM) were added to CSF from healthy donors or ATTRv patients, and TTR stabilisation was measured via the decrease in dissociation rate. RESULTS Tafamidis meglumine (Vyndaqel) can be dosed at 20 or 80 mg QD. The latter dose is bioequivalent to a 61 mg QD dose of tafamidis free acid (Vyndamax). The tafamidis CSF concentration in ATTRv patients on 20 mg Vyndaqel is ∼125 nM. By linear extrapolation, we expect a CSF concentration of ∼500 nM at the higher dose. When tafamidis is added to healthy donor CSF at 125 or 500 nM, the WT TTR dissociation rate decreases by 42% or 87%, respectively. CONCLUSIONS Tafamidis stabilises TTR in CSF to what is likely a clinically meaningful extent at CSF concentrations achieved by the normal tafamidis dosing regimen.
Collapse
Affiliation(s)
- Felix J. Tsai
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Marcus Jaeger
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Teresa Coelho
- Unidade Corino de Andrade, Centro Hospitalar do Porto, Porto, Portugal
| | - Evan T. Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W. Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
- The Skaggs Institute for Chemical Biology, The Scripps Research Institute, CA, USA
| |
Collapse
|
15
|
Ramirez E, Ganegamage SK, Elbatrawy AA, Alnakhala H, Shimanaka K, Tripathi A, Min S, Rochet JC, Dettmer U, Fortin JS. 5-Nitro-1,2-benzothiazol-3-amine and N-Ethyl-1-[(ethylcarbamoyl)(5-nitro-1,2-benzothiazol-3-yl)amino]formamide Modulate α-Synuclein and Tau Aggregation. ACS OMEGA 2023; 8:20102-20115. [PMID: 37305264 PMCID: PMC10249125 DOI: 10.1021/acsomega.3c02668] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Accepted: 05/09/2023] [Indexed: 06/13/2023]
Abstract
Protein misfolding results in a plethora of known diseases such as Alzheimer's disease, Parkinson's disease, Huntington's disease, transthyretin-related amyloidosis, type 2 diabetes, Lewy body dementia, and spongiform encephalopathy. To provide a diverse portfolio of therapeutic small molecules with the ability to reduce protein misfolding, we evaluated a set of 13 compounds: 4-(benzo[d]thiazol-2-yl)aniline (BTA) and its derivatives containing urea (1), thiourea (2), sulfonamide (3), triazole (4), and triazine (5) linker. In addition, we explored small modifications on a very potent antioligomer 5-nitro-1,2-benzothiazol-3-amine (5-NBA) (compounds 6-13). This study aims to define the activity of BTA and its derivatives on a variety of prone-to-aggregate proteins such as transthyretin (TTR81-127, TTR101-125), α-synuclein (α-syn), and tau isoform 2N4R (tau 2N4R) through various biophysical methods. Thioflavin T (ThT) fluorescence assay was used to monitor fibril formation of the previously mentioned proteins after treatment with BTA and its derivatives. Antifibrillary activity was confirmed using transmission electron microscopy (TEM). Photoreactive cross-linking assay (PICUP) was utilized to detect antioligomer activity and lead to the identification of 5-NBA (at low micromolar concentration) and compound 13 (at high concentration) as the most promising in reducing oligomerization. 5-NBA and not BTA inhibited the inclusion formation based on the cell-based assay using M17D neuroblastoma cells that express inclusion-prone αS-3K::YFP. 5-NBA abrogated the fibril, oligomer, and inclusion formation in a dose-dependent manner. 5-NBA derivatives could be the key to mitigate protein aggregation. In the future, the results made from this study will provide an initial platform to generate more potent inhibitors of α-syn and tau 2N4R oligomer and fibril formation.
Collapse
Affiliation(s)
- Eduardo Ramirez
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| | - Susantha K. Ganegamage
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| | - Ahmed A. Elbatrawy
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| | - Heba Alnakhala
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Kazuma Shimanaka
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Arati Tripathi
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Sehong Min
- Department
of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47906, United States
| | - Jean-Christophe Rochet
- Department
of Medicinal Chemistry and Molecular Pharmacology, College of Pharmacy, Purdue University, West Lafayette, Indiana 47906, United States
| | - Ulf Dettmer
- Department
of Neurology, Brigham and Women’s Hospital and Harvard Medical
School, Ann Romney Center for Neurologic
Diseases, Boston, Massachusetts 02115, United States
| | - Jessica S. Fortin
- Department
of Basic Medical Sciences, College of Veterinary Medicine, Purdue University, 625 Harrison Street, West
Lafayette, Indiana 47907, United States
| |
Collapse
|
16
|
Kumar S, Bhardwaj VK, Singh R, Purohit R. Structure restoration and aggregate inhibition of V30M mutant transthyretin protein by potential quinoline molecules. Int J Biol Macromol 2023; 231:123318. [PMID: 36681222 DOI: 10.1016/j.ijbiomac.2023.123318] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/08/2022] [Revised: 01/01/2023] [Accepted: 01/14/2023] [Indexed: 01/20/2023]
Abstract
Transthyretin (TTR) is a tetrameric protein found in human plasma and cerebrospinal fluid that functions as a transporter of thyroxine (T4) and retinol. A mutation resulting in the substitution of valine to methionine at position 30 (V30M) is the most common mutation that destabilizes the tetramer structure of TTR protein resulting in a fatal neuropathy known as TTR amyloidosis. The V30M TTR-induced neuropathy can be inhibited through stabilization of the TTR tetramer by the binding of small molecules. We accessed the potential of in-house synthesized quinoline molecules to stabilize the V30M TTR structure and analyzed the impact of protein-ligand interactions through molecular docking, molecular dynamics (MD) simulations, steered MD, and umbrella sampling simulations. This study revealed that the binding of quinoline molecules reverted back the structural changes including the residual flexibility, changes in secondary structural elements, and also restored the alterations in the electrostatic surface potential induced by the V30M mutation. Further, the top-most 4G and 4R molecules were compared with an FDA-approved drug (Tafamidis) and a reference quinoline molecule 14C. Here, we intend to suggest that the quinoline molecules could revert the structural changes, cease tetramer dissociation, prevent abnormal oligomerization and therefore could be developed as an effective therapeutics against TTR amyloidosis.
Collapse
Affiliation(s)
- Sachin Kumar
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Vijay Kumar Bhardwaj
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rahul Singh
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India
| | - Rituraj Purohit
- Structural Bioinformatics Lab, CSIR-Institute of Himalayan Bioresource Technology (CSIR-IHBT), Palampur, HP 176061, India; Biotechnology Division, CSIR-IHBT, Palampur, HP 176061, India; Academy of Scientific & Innovative Research (AcSIR), Ghaziabad 201002, India.
| |
Collapse
|
17
|
Pinto MV, França MC, Gonçalves MVM, Machado-Costa MC, Freitas MRGD, Gondim FDAA, Marrone CD, Martinez ARM, Moreira CL, Nascimento OJM, Covaleski APP, Oliveira ASBD, Pupe CCB, Rodrigues MMJ, Rotta FT, Scola RH, Marques W, Waddington-Cruz M. Brazilian consensus for diagnosis, management and treatment of hereditary transthyretin amyloidosis with peripheral neuropathy: second edition. ARQUIVOS DE NEURO-PSIQUIATRIA 2023; 81:308-321. [PMID: 37059440 PMCID: PMC10104762 DOI: 10.1055/s-0043-1764412] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 04/16/2023]
Abstract
Hereditary transthyretin amyloidosis with peripheral neuropathy (ATTRv-PN) is an autosomal dominant inherited sensorimotor and autonomic polyneuropathy with over 130 pathogenic variants identified in the TTR gene. Hereditary transthyretin amyloidosis with peripheral neuropathy is a disabling, progressive and life-threatening genetic condition that leads to death in ∼ 10 years if untreated. The prospects for ATTRv-PN have changed in the last decades, as it has become a treatable neuropathy. In addition to liver transplantation, initiated in 1990, there are now at least 3 drugs approved in many countries, including Brazil, and many more are being developed. The first Brazilian consensus on ATTRv-PN was held in the city of Fortaleza, Brazil, in June 2017. Given the new advances in the area over the last 5 years, the Peripheral Neuropathy Scientific Department of the Brazilian Academy of Neurology organized a second edition of the consensus. Each panelist was responsible for reviewing the literature and updating a section of the previous paper. Thereafter, the 18 panelists got together virtually after careful review of the draft, discussed each section of the text, and reached a consensus for the final version of the manuscript.
Collapse
Affiliation(s)
- Marcus Vinicius Pinto
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Estudos em Paramiloidose Antônio Rodrigues de Mello, Rio de Janeiro RJ, Brazil
- Mayo Clinic, Department of Neurology, Rochester, Minnesota, United States
| | | | | | | | - Marcos Raimundo Gomes de Freitas
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Estudos em Paramiloidose Antônio Rodrigues de Mello, Rio de Janeiro RJ, Brazil
| | | | - Carlo Domenico Marrone
- Pontifícia Universidade Católica do Rio Grande do Sul, Hospital São Lucas, Clínica Marrone e Ambulatório de Doenças Neuromusculare, Porto Alegre RS, Brazil
| | | | | | | | | | | | | | | | - Francisco Tellechea Rotta
- Hospital Moinhos de Vento, Porto Alegre RS, Brazil
- Santa Casa de Misericórdia de Porto Alegre, Porto Alegre RS, Brazil
| | | | - Wilson Marques
- Universidade de São Paulo, Faculdade de Medicina de Ribeirão Preto, Ribeirão Preto SP, Brazil
| | - Márcia Waddington-Cruz
- Universidade Federal do Rio de Janeiro, Hospital Universitário Clementino Fraga Filho, Centro de Estudos em Paramiloidose Antônio Rodrigues de Mello, Rio de Janeiro RJ, Brazil
| |
Collapse
|
18
|
Olivotto I, Udelson JE, Pieroni M, Rapezzi C. Genetic causes of heart failure with preserved ejection fraction: emerging pharmacological treatments. Eur Heart J 2023; 44:656-667. [PMID: 36582184 DOI: 10.1093/eurheartj/ehac764] [Citation(s) in RCA: 15] [Impact Index Per Article: 7.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 05/31/2022] [Revised: 11/13/2022] [Accepted: 11/26/2022] [Indexed: 12/31/2022] Open
Abstract
Heart failure with preserved ejection fraction (HFpEF) is a major driver of cardiac morbidity and mortality in developed countries, due to ageing populations and the increasing prevalence of comorbidities. While heart failure with reduced ejection fraction is dominated by left ventricular impairment, HFpEF results from a complex interplay of cardiac remodelling, peripheral circulation, and concomitant features including age, hypertension, obesity, and diabetes. In an important subset, however, HFpEF is subtended by specific diseases of the myocardium that are genetically determined, have distinct pathophysiology, and are increasingly amenable to targeted, innovative treatments. While each of these conditions is rare, they collectively represent a relevant subset within HFpEF cohorts, and their prompt recognition has major consequences for clinical practice, as access to dedicated, disease-specific treatments may radically change the quality of life and outcome. Furthermore, response to standard heart failure treatment will generally be modest for these individuals, whose inclusion in registries and trials may dilute the perceived efficacy of treatments targeting mainstream HFpEF. Finally, a better understanding of the molecular underpinnings of monogenic myocardial disease may help identify therapeutic targets and develop innovative treatments for selected HFpEF phenotypes of broader epidemiological relevance. The field of genetic cardiomyopathies is undergoing rapid transformation due to recent, groundbreaking advances in drug development, and deserves greater awareness within the heart failure community. The present review addressed existing and developing therapies for genetic causes of HFpEF, including hypertrophic cardiomyopathy, cardiac amyloidosis, and storage diseases, discussing their potential impact on management and their broader implications for our understanding of HFpEF at large.
Collapse
Affiliation(s)
- Iacopo Olivotto
- Department of Experimental and Clinical Medicine, University of Florence, Meyer University Children Hospital and Careggi University Hospital, Viale Pieraccini 24, 50139 Florence, Italy
| | - James E Udelson
- Division of Cardiology and The CardioVascular Center, Tufts Medical Center, and the Tufts University School of Medicine, 800 Washington St, Boston, MA 02111, USA
| | - Maurizio Pieroni
- Cardiology Department, Hospital San Donato, Via Pietro Nenni, 20 - 52100 Arezzo, Italy
| | - Claudio Rapezzi
- Cardiology Centre, University of Ferrara, Via Fossato di Mortara, 64/B - 44121 Ferrara, Italy.,Maria Cecilia Hospital, GVM Care & Research, Via Corriera, 1, 48033 Cotignola, Emilia-Romagna, Italy
| |
Collapse
|
19
|
Oral Therapy for the Treatment of Transthyretin-Related Amyloid Cardiomyopathy. Int J Mol Sci 2022; 23:ijms232416145. [PMID: 36555787 PMCID: PMC9788438 DOI: 10.3390/ijms232416145] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2022] [Revised: 12/13/2022] [Accepted: 12/15/2022] [Indexed: 12/23/2022] Open
Abstract
The care of systemic amyloidosis has improved dramatically due to improved awareness, accurate diagnostic tools, the development of powerful prognostic and companion biomarkers, and a continuous flow of innovative drugs, which translated into the blooming of phase 2/3 interventional studies for light chain (AL) and transthyretin (ATTR) amyloidosis. The unprecedented availability of effective drugs ignited great interest across various medical specialties, particularly among cardiologists who are now recognizing cardiac amyloidosis at an extraordinary pace. In all amyloidosis referral centers, we are observing a substantial increase in the prevalence of wild-type transthyretin (ATTRwt) cardiomyopathy, which is now becoming the most common form of cardiac amyloidosis. This review focuses on the oral drugs that have been recently introduced for the treatment of ATTR cardiac amyloidosis, for their ease of use in the clinic. They include both old repurposed drugs or fit-for-purpose designed compounds which bind and stabilize the TTR tetramer, thus reducing the formation of new amyloid fibrils, such as tafamidis, diflunisal, and acoramidis, as well as fibril disruptors which have the potential to promote the clearance of amyloid deposits, such as doxycycline. The development of novel therapies is based on the advances in the understanding of the molecular events underlying amyloid cardiomyopathy.
Collapse
|
20
|
Patel JK, Rosen AM, Chamberlin A, Feldmann B, Antolik C, Zimmermann H, Johnston T, Narayana A. Three Newly Recognized Likely Pathogenic Gene Variants Associated with Hereditary Transthyretin Amyloidosis. Neurol Ther 2022; 11:1595-1607. [PMID: 35933469 PMCID: PMC9588125 DOI: 10.1007/s40120-022-00385-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 12/13/2021] [Accepted: 06/24/2022] [Indexed: 10/16/2022] Open
Abstract
INTRODUCTION Hereditary transthyretin amyloidosis (ATTRv [variant]) is a clinically heterogeneous, progressively debilitating, fatal disease resulting from the deposition of insoluble amyloid fibrils in various organs and tissues. Early diagnosis of ATTRv can be facilitated with genetic testing; however, such testing of the TTR gene identifies variants of uncertain significance (VUS) in a minority of cases, a small percentage of which have the potential to be pathogenic. The Akcea/Ambry VUS Initiative is dedicated to gathering molecular, clinical, and inheritance data for each TTR VUS identified by genetic testing programs to reclassify TTR variants to a clinically actionable status (e.g., variant likely pathogenic [VLP]) where appropriate. METHODS Classification criteria used here, based on recommendations from the American College of Medical Genetics and Genomics, are stringent and comprehensive, requiring distinct lines of evidence supporting pathogenesis. RESULTS Three TTR variants have been reclassified from VUS to VLP, including c.194C>T (p.A65V), c.172G>C (p.D58H), and c.239C>T (p.T80I). In each case, the totality of genetic, structural, and clinical evidence provided strong support for pathogenicity. CONCLUSIONS Based on several lines of evidence, three TTR VUS were reclassified as VLP, resulting in a high likelihood of disease diagnosis for those and subsequent patients as well as at-risk family members.
Collapse
Affiliation(s)
- Jignesh K Patel
- Cardiac Amyloid Program, Smidt Cedars-Sinai Heart Institute, Los Angeles, CA, USA.
- Smidt Cedars-Sinai Heart Institute, 8670 Wilshire Blvd, 2nd Floor, Beverly Hills, CA, 90211, USA.
| | | | | | | | | | | | | | | |
Collapse
|
21
|
Overview of Current and Emerging Therapies for Amyloid Transthyretin Cardiomyopathy. Am J Cardiol 2022; 185 Suppl 1:S23-S34. [PMID: 36371281 DOI: 10.1016/j.amjcard.2022.10.014] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/22/2022] [Revised: 10/03/2022] [Accepted: 10/06/2022] [Indexed: 11/11/2022]
Abstract
Recent efforts in basic science have elucidated the pathobiology of amyloid transthyretin (ATTR) amyloidosis, leading to the development of the first generation of transthyretin (TTR)-targeted therapies for this disease. Along with tafamidis, the first approved therapy for ATTR-cardiomyopathy (CM), several other agents are in late-stage clinical development for ATTR-CM. TTR-stabilizing and -silencing agents with various mechanisms target TTR, preventing disaggregation of tetrameric TTR, and subsequent misfolding of TTR and formation of amyloid fibrils in the myocardium. These agents, including the TTR-super-stabilizing agent acoramidis, TTR-silencing agents patisiran, vutrisiran, and eplontersen, and TTR gene silencing with clustered, regularly interspaced, short palindromic repeats and associated Cas9 endonuclease-based therapy NTLA-2001, are in varying stages of development. The nonsteroidal anti-inflammatory diflunisal has been shown to have TTR-stabilizing properties and may play a role off-label as treatment in selected patients, particularly allele carriers of TTR variants and patients unable to afford current therapies. Anti-amyloid treatments represent another strategy for treating patients with advanced ATTR amyloidosis. These agents are designed to bind to epitopes on amyloid fibril and extract amyloid by activation of macrophage-mediated phagocytosis addressing amyloid already deposited in organs and tissues. Since many patients with ATTR-CM present with advanced disease and the presence of significant amyloid burden in the heart, anti-amyloid therapy represents an important area of unmet treatment need. Various investigational anti-amyloid therapies are in early-stage clinical development.
Collapse
|
22
|
Barker N, Judge DP. Counseling Family Members and Monitoring for Evidence of Disease in Asymptomatic Carriers of Amyloid Transthyretin Cardiac Amyloidosis. Am J Cardiol 2022; 185 Suppl 1:S43-S50. [PMID: 36216601 DOI: 10.1016/j.amjcard.2022.09.011] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Received: 07/25/2022] [Accepted: 09/09/2022] [Indexed: 01/30/2023]
Abstract
Transthyretin (TTR), a plasma transport protein produced in the liver, is prone to misfolding, leading to the deposition of amyloid fibrils and progressive dysfunction of cardiac and nervous system tissues, a condition known as amyloid TTR (ATTR) amyloidosis. More than 140 different pathogenic variants in TTR have been documented, most of which cause hereditary forms of ATTR amyloidosis. The most common mutations, traditionally known as Val30Met, Val122Ile, and Thr60Ala, lead to predominantly sensory, motor, and autonomic neuropathies, cardiomyopathy, and mixed presentations, respectively, although each mutation may cause symptoms across the neurologic and cardiac spectrum. Val30Met is endemic to Brazil, Japan, Portugal, and Sweden. The Val122Ile variant is present in 3.4% of people with West African ancestry, whereas Thr60Ala originated in northwestern Ireland and spread to the rest of the United Kingdom, the United States, and elsewhere. Val30Met and Thr60Ala tend to have more aggressive clinical presentations at younger ages, whereas Val122Ile predominantly affects older Black men. Due to similarities with hypertrophic cardiomyopathy, heart failure with preserved ejection fraction, and other overlapping conditions, ATTR cardiomyopathy is often under recognized and underdiagnosed, especially in Val122Ile carriers. Understanding these carrier populations and differences in ATTR amyloidosis characteristics associated with each variant is essential for appropriate diagnosis and genetic counseling of affected patients and their relatives.
Collapse
Affiliation(s)
- Naomi Barker
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina
| | - Daniel P Judge
- Department of Medicine, Medical University of South Carolina, Charleston, South Carolina.
| |
Collapse
|
23
|
Surendran P, Stewart ID, Au Yeung VPW, Pietzner M, Raffler J, Wörheide MA, Li C, Smith RF, Wittemans LBL, Bomba L, Menni C, Zierer J, Rossi N, Sheridan PA, Watkins NA, Mangino M, Hysi PG, Di Angelantonio E, Falchi M, Spector TD, Soranzo N, Michelotti GA, Arlt W, Lotta LA, Denaxas S, Hemingway H, Gamazon ER, Howson JMM, Wood AM, Danesh J, Wareham NJ, Kastenmüller G, Fauman EB, Suhre K, Butterworth AS, Langenberg C. Rare and common genetic determinants of metabolic individuality and their effects on human health. Nat Med 2022; 28:2321-2332. [PMID: 36357675 PMCID: PMC9671801 DOI: 10.1038/s41591-022-02046-0] [Citation(s) in RCA: 61] [Impact Index Per Article: 20.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/10/2021] [Accepted: 09/16/2022] [Indexed: 11/12/2022]
Abstract
Garrod's concept of 'chemical individuality' has contributed to comprehension of the molecular origins of human diseases. Untargeted high-throughput metabolomic technologies provide an in-depth snapshot of human metabolism at scale. We studied the genetic architecture of the human plasma metabolome using 913 metabolites assayed in 19,994 individuals and identified 2,599 variant-metabolite associations (P < 1.25 × 10-11) within 330 genomic regions, with rare variants (minor allele frequency ≤ 1%) explaining 9.4% of associations. Jointly modeling metabolites in each region, we identified 423 regional, co-regulated, variant-metabolite clusters called genetically influenced metabotypes. We assigned causal genes for 62.4% of these genetically influenced metabotypes, providing new insights into fundamental metabolite physiology and clinical relevance, including metabolite-guided discovery of potential adverse drug effects (DPYD and SRD5A2). We show strong enrichment of inborn errors of metabolism-causing genes, with examples of metabolite associations and clinical phenotypes of non-pathogenic variant carriers matching characteristics of the inborn errors of metabolism. Systematic, phenotypic follow-up of metabolite-specific genetic scores revealed multiple potential etiological relationships.
Collapse
Affiliation(s)
- Praveen Surendran
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- Rutherford Fund Fellow, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | | | | | - Maik Pietzner
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany
| | - Johannes Raffler
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
- Digital Medicine, University Hospital of Augsburg, Augsburg, Germany
| | - Maria A Wörheide
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Chen Li
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Rebecca F Smith
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
| | - Laura B L Wittemans
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
- Big Data Institute, University of Oxford, Oxford, UK
- Nuffield Department of Women's and Reproductive Health, University of Oxford, Oxford, UK
| | - Lorenzo Bomba
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
| | - Cristina Menni
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Jonas Zierer
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Niccolò Rossi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | | | | | - Massimo Mangino
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
- NIHR Biomedical Research Centre at Guy's and St Thomas' Foundation Trust, London, UK
| | - Pirro G Hysi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Emanuele Di Angelantonio
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Health Data Science Research Centre, Human Technopole, Milan, Italy
| | - Mario Falchi
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Tim D Spector
- Department of Twin Research & Genetic Epidemiology, King's College London, London, UK
| | - Nicole Soranzo
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- Open Targets, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- Department of Haematology, University of Cambridge, Cambridge, UK
| | | | - Wiebke Arlt
- Institute of Metabolism and Systems Research, University of Birmingham, Birmingham, UK
- NIHR Birmingham Biomedical Research Centre, University Hospitals Birmingham NHS Foundation Trust and University of Birmingham, Birmingham, UK
| | - Luca A Lotta
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Spiros Denaxas
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
- British Heart Foundation Data Science Centre, London, UK
| | - Harry Hemingway
- Institute of Health Informatics, University College London, London, UK
- Health Data Research UK, London, UK
| | - Eric R Gamazon
- Vanderbilt Genetics Institute, Vanderbilt University Medical Center, Nashville, TN, USA
- Clare Hall & MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Joanna M M Howson
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- Department of Genetics, Novo Nordisk Research Centre Oxford, Oxford, UK
| | - Angela M Wood
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
- MRC Biostatistics Unit, Cambridge Institute of Public Health, University of Cambridge, Cambridge, UK
- The Alan Turing Institute, London, UK
| | - John Danesh
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- Department of Human Genetics, Wellcome Sanger Institute, Wellcome Genome Campus, Hinxton, UK
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK
| | - Nicholas J Wareham
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK
| | - Gabi Kastenmüller
- Institute of Computational Biology, Helmholtz Zentrum München-German Research Center for Environmental Health, Neuherberg, Germany
| | - Eric B Fauman
- Internal Medicine Research Unit, Pfizer Worldwide Research, Development and Medical, Cambridge, MA, USA
| | - Karsten Suhre
- Department of Biophysics and Physiology, Weill Cornell Medicine-Qatar, Doha, Qatar
| | - Adam S Butterworth
- British Heart Foundation Cardiovascular Epidemiology Unit, Department of Public Health and Primary Care, University of Cambridge, Cambridge, UK.
- British Heart Foundation Centre of Research Excellence, School of Clinical Medicine, Addenbrooke's Hospital, University of Cambridge, Cambridge, UK.
- Health Data Research UK Cambridge, Wellcome Genome Campus and University of Cambridge, Hinxton, UK.
- NIHR Blood and Transplant Research Unit in Donor Health and Genomics, University of Cambridge, Cambridge, UK.
| | - Claudia Langenberg
- MRC Epidemiology Unit, University of Cambridge, Cambridge, UK.
- Computational Medicine, Berlin Institute of Health at Charité-Universitätsmedizin Berlin, Berlin, Germany.
- Precision Healthcare University Research Institute, Queen Mary University of London, London, UK.
| |
Collapse
|
24
|
Cantone A, Sanguettoli F, Dal Passo B, Serenelli M, Rapezzi C. The treatment of amyloidosis is being refined. Eur Heart J Suppl 2022; 24:I131-I138. [PMID: 36380794 PMCID: PMC9653129 DOI: 10.1093/eurheartjsupp/suac104] [Citation(s) in RCA: 12] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/17/2023]
Abstract
The therapy of transthyretin (TTR)-related cardiac amyloidosis consists, on the one hand, of the prevention and management of complications (supportive therapy) and on the other of treatments aimed at interrupting or slowing down the production and deposition of fibrils (disease-modifying therapy). This definition includes drugs that act on different phases of amyloidogenesis: (i) silencing of the gene encoding TTR (small interfering RNA: patisiran, vutrisiran; antisense oligonucleotides: inotersen, eplontersen; new CRISPR Cas-9 drug technology for editing in vivo DNA); (ii) stabilization of circulating TTR to inhibit its dissociation and subsequent assembly of the resulting monomers in amyloidotic fibrils (tafamidis, acoramidis, and tolcapone); (iii) destruction and re-absorption of already formed amyloid tissue deposits. Drugs related to the latter strategy (antibodies) are still the subject of Phase 1 or 2 studies.
Collapse
Affiliation(s)
- Anna Cantone
- Cardiovascular Centre, University of Ferrara, Italy
| | | | | | | | - Claudio Rapezzi
- Cardiovascular Centre, University of Ferrara, Italy
- Maria Cecilia Hospital, GVM Care & Research, Cotignola, Ravenna, Italy
| |
Collapse
|
25
|
Pinheiro F, Pallarès I, Peccati F, Sánchez-Morales A, Varejão N, Bezerra F, Ortega-Alarcon D, Gonzalez D, Osorio M, Navarro S, Velázquez-Campoy A, Almeida MR, Reverter D, Busqué F, Alibés R, Sodupe M, Ventura S. Development of a Highly Potent Transthyretin Amyloidogenesis Inhibitor: Design, Synthesis, and Evaluation. J Med Chem 2022; 65:14673-14691. [PMID: 36306808 PMCID: PMC9661476 DOI: 10.1021/acs.jmedchem.2c01195] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022]
Abstract
![]()
Transthyretin amyloidosis
(ATTR) is a group of fatal diseases described
by the misfolding and amyloid deposition of transthyretin (TTR). Discovering
small molecules that bind and stabilize the TTR tetramer, preventing
its dissociation and subsequent aggregation, is a therapeutic strategy
for these pathologies. Departing from the crystal structure of TTR
in complex with tolcapone, a potent binder in clinical trials for
ATTR, we combined rational design and molecular dynamics (MD) simulations
to generate a series of novel halogenated kinetic stabilizers. Among
them, M-23 displays one of the highest affinities for
TTR described so far. The TTR/M-23 crystal structure
confirmed the formation of unprecedented protein–ligand contacts,
as predicted by MD simulations, leading to an enhanced tetramer stability
both in vitro and in whole serum. We demonstrate
that MD-assisted design of TTR ligands constitutes a new avenue for
discovering molecules that, like M-23, hold the potential
to become highly potent drugs to treat ATTR.
Collapse
Affiliation(s)
- Francisca Pinheiro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Irantzu Pallarès
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Francesca Peccati
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrià Sánchez-Morales
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Nathalia Varejão
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Filipa Bezerra
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Ortega-Alarcon
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Danilo Gonzalez
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Marcelo Osorio
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Susanna Navarro
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Adrián Velázquez-Campoy
- Department of Biochemistry and Molecular & Cellular Biology, and Institute for Biocomputation eand Physics of Complex Systems (BIFI), Joint Unit GBsC-CSIC-BIFI, Universidad de Zaragoza, 50018 Zaragoza, Spain
- Aragon Institute for Health Research, 50009 Zaragoza, Spain
- Biomedical Research Network Center in Hepatic and Digestive Diseases (CIBERehd), 28029 Madrid, Spain
| | - Maria Rosário Almeida
- Molecular Neurobiology Group, i3S−Instituto de Investigação e Inovação em Saúde, IBMC−Instituto de Biologia Molecular e Celular, Universidade do Porto, 4200-135 Porto, Portugal
- Departamento de Biologia Molecular, ICBAS−Instituto de Ciências Biomédicas Abel Salazar, Universidade do Porto, 4050-313 Porto, Portugal
| | - David Reverter
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Félix Busqué
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Ramon Alibés
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Mariona Sodupe
- Departament de Química, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i Biomedicina and Departament de Bioquímica i Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona 08193, Spain
- ICREA, Passeig Lluis Companys 23, E-08010 Barcelona, Spain
| |
Collapse
|
26
|
Lee K, Kuczera K. Modulation of human transthyretin stability by the mutations at histidine 88 studied by free energy simulation. Proteins 2022; 90:1825-1836. [DOI: 10.1002/prot.26353] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/16/2022] [Revised: 04/03/2022] [Accepted: 04/20/2022] [Indexed: 11/10/2022]
Affiliation(s)
- Kyung‐Hoon Lee
- Department of Biology Chowan University Murfreesboro North Carolina USA
| | - Krzysztof Kuczera
- Department of Chemistry and Department of Molecular Biosciences University of Kansas Lawrence Kansas USA
| |
Collapse
|
27
|
Obi CA, Mostertz WC, Griffin JM, Judge DP. ATTR Epidemiology, Genetics, and Prognostic Factors. Methodist Debakey Cardiovasc J 2022; 18:17-26. [PMID: 35414855 PMCID: PMC8932385 DOI: 10.14797/mdcvj.1066] [Citation(s) in RCA: 43] [Impact Index Per Article: 14.3] [Reference Citation Analysis] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/19/2021] [Accepted: 12/23/2021] [Indexed: 01/15/2023] Open
Affiliation(s)
- Chukwuemeka A. Obi
- Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, US
| | - William C. Mostertz
- Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, US
| | - Jan M. Griffin
- Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, US
- Division of Cardiology, Columbia University Irving Medical Center, New York, New York, US
| | - Daniel P. Judge
- Division of Cardiology, Medical University of South Carolina, Charleston, South Carolina, US
| |
Collapse
|
28
|
Large-scale integration of the plasma proteome with genetics and disease. Nat Genet 2021; 53:1712-1721. [PMID: 34857953 DOI: 10.1038/s41588-021-00978-w] [Citation(s) in RCA: 653] [Impact Index Per Article: 163.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/19/2021] [Accepted: 10/22/2021] [Indexed: 11/08/2022]
Abstract
The plasma proteome can help bridge the gap between the genome and diseases. Here we describe genome-wide association studies (GWASs) of plasma protein levels measured with 4,907 aptamers in 35,559 Icelanders. We found 18,084 associations between sequence variants and levels of proteins in plasma (protein quantitative trait loci; pQTL), of which 19% were with rare variants (minor allele frequency (MAF) < 1%). We tested plasma protein levels for association with 373 diseases and other traits and identified 257,490 associations. We integrated pQTL and genetic associations with diseases and other traits and found that 12% of 45,334 lead associations in the GWAS Catalog are with variants in high linkage disequilibrium with pQTL. We identified 938 genes encoding potential drug targets with variants that influence levels of possible biomarkers. Combining proteomics, genomics and transcriptomics, we provide a valuable resource that can be used to improve understanding of disease pathogenesis and to assist with drug discovery and development.
Collapse
|
29
|
Chandrashekar P, Desai AK, Trachtenberg BH. Targeted treatments of AL and ATTR amyloidosis. Heart Fail Rev 2021; 27:1587-1603. [PMID: 34783948 DOI: 10.1007/s10741-021-10180-z] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 10/12/2021] [Indexed: 12/22/2022]
Abstract
The therapeutic landscape for cardiac amyloidosis is rapidly evolving. In the last decade, our focus has shifted from dealing with the inevitable complications of continued extracellular infiltration of amyloid fibrils to earlier identification of these patients with prompt initiation of targeted therapy to prevent further deposition. Although much of the focus on novel targeted therapies is within the realm of transthyretin amyloidosis, light chain amyloidosis has benefited due to an overlap particularly in the final common pathway of fibrillogenesis and extraction of amyloid fibrils from the heart. Here, we review the targeted therapeutics for transthyretin and light chain amyloidosis. For transthyretin amyloidosis, the list of current and future therapeutics continues to evolve; and therefore, it is crucial to become familiar with the underlying mechanistic pathways of the disease. Although targeted therapeutic choices in AL amyloidosis are largely driven by the hematology team, the cardiac adverse effect profiles of these therapies, particularly in those with advanced amyloidosis, provide an opportunity for early recognition to prevent decompensation and can help inform recommendations regarding therapy changes when required.
Collapse
Affiliation(s)
- Pranav Chandrashekar
- Amyloidosis Center, Knight Cardiovascular Institute, Oregon Health & Science University, Portland, OR, USA
| | - Anish K Desai
- Department of Medicine, Oregon Health & Science University, Portland, OR, USA
| | - Barry H Trachtenberg
- Methodist DeBakey Heart and Vascular Center, Houston, TX, USA. .,Cardio-Oncology and Cardiac Amyloidosis Program, Advanced Heart Failure Fellowship Program, Methodist DeBakey Heart and Vascular Centers, J.C. Walter Transplant Center, Houston, USA.
| |
Collapse
|
30
|
Lioncino M, Monda E, Palmiero G, Caiazza M, Vetrano E, Rubino M, Esposito A, Salerno G, Dongiglio F, D'Onofrio B, Verrillo F, Cerciello G, Manganelli F, Pacileo G, Bossone E, Golino P, Calabrò P, Limongelli G. Cardiovascular Involvement in Transthyretin Cardiac Amyloidosis. Heart Fail Clin 2021; 18:73-87. [PMID: 34776085 DOI: 10.1016/j.hfc.2021.07.006] [Citation(s) in RCA: 12] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 02/07/2023]
Abstract
Transthyretin cardiac amyloidosis (ATTR-CA) is a systemic disorder resulting from the extracellular deposition of amyloid fibrils of misfolded transthyretin protein in the heart. ATTR-CA is a life-threatening disease, which can be caused by progressive deposition of wild type transthyretin (wtATTR) or by aggregation of an inherited mutated variant of transthyretin (mATTR). mATTR Is a rare condition transmitted in an autosomal dominant manner with incomplete penetrance, causing heterogenous phenotypes which can range from predominant neuropathic involvement, predominant cardiomyopathy, or mixed. Diagnosis of ATTR-CA is complex and requires integration of different imaging tools (echocardiography, bone scintigraphy, magnetic resonance) with genetics, clinical signs, laboratory tests, and histology. In recent years, new therapeutic agents have shown good efficacy and impact on survival and quality of life in this subset of patients, nevertheless patients affected by ATTR-CA may still carry an unfavorable prognosis, thus highlighting the need for new therapies. This review aims to assess cardiovascular involvement, diagnosis, and management of patients affected by ATTR-CA.
Collapse
Affiliation(s)
- Michele Lioncino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Emanuele Monda
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Giuseppe Palmiero
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Martina Caiazza
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Erica Vetrano
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy; Internal Medicine Unit, Department of Translational Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Marta Rubino
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Augusto Esposito
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Gemma Salerno
- Vanvitelli Cardiology Unit, Monaldi Hospital, Naples 80131, Italy
| | - Francesca Dongiglio
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Barbara D'Onofrio
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Federica Verrillo
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Giuseppe Cerciello
- Haematology Unit, Department of Clinical Medicine and Surgery, University of Naples Federico II, Naples, Italy
| | - Fiore Manganelli
- Department of Neuroscience, Reproductive Sciences and Odontostomatology, University of Naples 'Federico II', Via Pansini, 5, Naples 81025, Italy
| | - Giuseppe Pacileo
- Heart Failure and Cardiac Rehabilitation Unit, Department of Cardiology, AORN dei Colli, Monaldi Hospital, Naples, Italy
| | - Eduardo Bossone
- Division of Cardiology, "Antonio Cardarelli" Hospital, Naples 80131, Italy
| | - Paolo Golino
- Vanvitelli Cardiology Unit, Monaldi Hospital, Naples 80131, Italy; Department of Translational Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy
| | - Paolo Calabrò
- Department of Translational Sciences, University of Campania "Luigi Vanvitelli", Naples, Italy; Division of Cardiology, A.O.R.N. "Sant'Anna & San Sebastiano", Caserta I-81100, Italy
| | - Giuseppe Limongelli
- Inherited and Rare Cardiovascular Disease Unit, Department of Translational Medical Sciences, University of Campania "Luigi Vanvitelli", AORN dei Colli, Monaldi Hospital, Naples, Italy; Institute of Cardiovascular Sciences, University College of London and St. Bartholomew's Hospital, London WC1E 6DD, UK.
| |
Collapse
|
31
|
Sun F, Liu J, Huang Y, Zhu X, Liu Y, Zhang L, Yan J. A quinoline derived D-A-D type fluorescent probe for sensing tetrameric transthyretin. Bioorg Med Chem Lett 2021; 52:128408. [PMID: 34626785 DOI: 10.1016/j.bmcl.2021.128408] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/15/2021] [Revised: 09/20/2021] [Accepted: 10/01/2021] [Indexed: 10/20/2022]
Abstract
Nowadays, with an upward trend in the prevalence of intracerebral amyloidosis, it is of great significance to use fluorescent probes for early diagnosis in vitro. In this study, a quinoline-derived D-A-D type chemosensor was rationally designed and synthesized as a probe for the sensitive detection of tetrameric transthyretin (WT-TTR).
Collapse
Affiliation(s)
- Fantao Sun
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinsheng Liu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yanan Huang
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Xinyin Zhu
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Yu Liu
- CAS Key Laboratory of Separation Science for Analytical Chemistry, Dalian Institute of Chemical Physics, Chinese Academy of Sciences, 457 Zhongshan Road, Dalian 116023, PR China
| | - Lei Zhang
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China
| | - Jinwu Yan
- MOE International Joint Research Laboratory on Synthetic Biology and Medicines, School of Biology and Biological Engineering, South China University of Technology, Guangzhou 510006, PR China.
| |
Collapse
|
32
|
Griffin JM, Rosenthal JL, Grodin JL, Maurer MS, Grogan M, Cheng RK. ATTR Amyloidosis: Current and Emerging Management Strategies: JACC: CardioOncology State-of-the-Art Review. JACC: CARDIOONCOLOGY 2021; 3:488-505. [PMID: 34729521 PMCID: PMC8543085 DOI: 10.1016/j.jaccao.2021.06.006] [Citation(s) in RCA: 98] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/23/2021] [Revised: 06/02/2021] [Accepted: 06/04/2021] [Indexed: 12/15/2022]
Abstract
Transthyretin cardiac amyloidosis (ATTR-CA) is increasingly diagnosed owing to the emergence of noninvasive imaging and improved awareness. Clinical penetrance of pathogenic alleles is not complete and therefore there is a large cohort of asymptomatic transthyretin variant carriers. Screening strategies, monitoring, and treatment of subclinical ATTR-CA requires further study. Perhaps the most important translational triumph has been the development of effective therapies that have emerged from a biological understanding of ATTR-CA pathophysiology. These include recently proven strategies of transthyretin protein stabilization and silencing of transthyretin production. Data on neurohormonal blockade in ATTR-CA are limited, with the primary focus of medical therapy on judicious fluid management. Atrial fibrillation is common and requires anticoagulation owing to the propensity for thrombus formation. Although conduction disease and ventricular arrhythmias frequently occur, little is known regarding optimal management. Finally, aortic stenosis and ATTR-CA frequently coexist, and transcatheter valve replacement is the preferred treatment approach.
Collapse
Key Words
- 6MWT, 6-minute walk test
- AF, atrial fibrillation
- AL, light chain amyloid
- AS, aortic stenosis
- ASO, antisense oligonucleotide
- ATTR-CA, transthyretin cardiac amyloidosis
- ATTRv, variant transthyretin cardiac amyloidosis
- ATTRwt, wild-type transthyretin cardiac amyloidosis
- CMR, cardiac magnetic resonance
- DCCV, direct current cardioversion
- HF, heart failure
- LVEF, left ventricular ejection fraction
- NT-proBNP, N-terminal pro–B-type natriuretic peptide
- SAP, serum amyloid P component
- TAVR, transcatheter aortic valve replacement
- amyloidosis
- cardiomyopathy
- heart failure
- siRNA, small interfering RNA
Collapse
Affiliation(s)
- Jan M Griffin
- Columbia University Irving Medical Center, New York, New York, USA
| | | | - Justin L Grodin
- Division of Cardiology, Department of Internal Medicine, University of Texas Southwestern Medical Center, Dallas, Texas, USA
| | - Mathew S Maurer
- Columbia University Irving Medical Center, New York, New York, USA
| | | | - Richard K Cheng
- University of Washington Medical Center, Seattle, Washington, USA
| |
Collapse
|
33
|
Korosoglou G, Giusca S, André F, Aus dem Siepen F, Nunninger P, Kristen AV, Frey N. Diagnostic Work-Up of Cardiac Amyloidosis Using Cardiovascular Imaging: Current Standards and Practical Algorithms. Vasc Health Risk Manag 2021; 17:661-673. [PMID: 34720583 PMCID: PMC8550552 DOI: 10.2147/vhrm.s295376] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/06/2021] [Accepted: 10/07/2021] [Indexed: 01/15/2023] Open
Abstract
Among non-ischemic cardiomyopathies, cardiac amyloidosis is one of the most common, being caused by extracellular depositions of amyloid fibrils in the myocardium. Two main forms of cardiac amyloidosis are known so far, including 1) light-chain (AL) amyloidosis caused by monoclonal production of light-chains, and 2) transthyretin (ATTR) amyloidosis, caused by dissociation of the transthyretin tetramer into monomers. Both AL and ATTR amyloidosis are progressive diseases with median survival from diagnosis of less than 6 months and 3 to 5 years, respectively, if untreated. In this regard, death occurs in most patients due to cardiac causes, mainly congestive heart failure, which can be prevented due to the presence of effective, life-saving treatment regimens. Therefore, early diagnosis of cardiac amyloidosis is crucial more than ever. However, diagnosis of cardiac amyloidosis may be challenging due to variable clinical manifestations and the perceived rarity of the disease. In this regard, clinical and laboratory reg flags are available, which may help clinicians to raise suspicion of cardiac amyloidosis. In addition, advances in cardiovascular imaging have already revealed a higher prevalence of cardiac amyloidosis in specific populations, so that the diagnosis especially of ATTR amyloidosis has experienced a >30-fold increase during the past ten years. The goal of our review article is to summarize these findings and provide a practical approach for clinicians on how to use cardiovascular imaging techniques, such as echocardiography, cardiac magnetic resonance, bone scintigraphy and, if required, organ biopsy within predefined diagnostic algorithms for the diagnostic work-up of patients with suspected cardiac amyloidosis. In addition, two clinical cases and practical tips are provided in this context.
Collapse
Affiliation(s)
- Grigorios Korosoglou
- GRN Hospital Weinheim, Department of Cardiology, Vascular Medicine and Pneumology, Weinheim, Germany.,Cardiac Imaging Center Weinheim, Hector Foundation, Weinheim, Germany
| | - Sorin Giusca
- GRN Hospital Weinheim, Department of Cardiology, Vascular Medicine and Pneumology, Weinheim, Germany.,Cardiac Imaging Center Weinheim, Hector Foundation, Weinheim, Germany
| | - Florian André
- Department of Cardiology, Pneumology and Angiology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | - Fabian Aus dem Siepen
- Department of Cardiology, Pneumology and Angiology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| | | | - Arnt V Kristen
- Department of Cardiology, Pneumology and Angiology, University Hospital Heidelberg, Heidelberg, Germany.,Cardiovascular Center Darmstadt, Darmstadt, Germany
| | - Norbert Frey
- Department of Cardiology, Pneumology and Angiology, University Hospital Heidelberg, Heidelberg, Germany.,German Centre for Cardiovascular Research (DZHK), Partner Site Heidelberg, Heidelberg, Germany
| |
Collapse
|
34
|
Pacini L, Lesieur C. A computational methodology to diagnose sequence-variant dynamic perturbations by comparing atomic protein structures. Bioinformatics 2021; 38:703-709. [PMID: 34694373 PMCID: PMC8574318 DOI: 10.1093/bioinformatics/btab736] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/19/2021] [Revised: 09/29/2021] [Accepted: 10/21/2021] [Indexed: 02/03/2023] Open
Abstract
MOTIVATION The objective is to diagnose dynamics perturbations caused by amino-acid mutations as prerequisite to assess protein functional health or drug failure, simply using network models of protein X-ray structures. RESULTS We find that the differences in the allocation of the atomic interactions of each amino acid to 1D, 2D, 3D, 4D structural levels between variants structurally robust, recover experimental dynamic perturbations. The allocation measure validated on two B-pentamers variants of AB5 toxins having 17 mutations, also distinguishes dynamic perturbations of pathogenic and non-pathogenic Transthyretin single-mutants. Finally, the main proteases of the coronaviruses SARS-CoV and SARS-CoV-2 exhibit changes in the allocation measure, raising the possibility of drug failure despite the main proteases structural similarity. AVAILABILITY AND IMPLEMENTATION The Python code used for the production of the results is available at github.com/lorpac/protein_partitioning_atomic_contacts. The authors will run the analysis on any PDB structures of protein variants upon request. SUPPLEMENTARY INFORMATION Supplementary data are available at Bioinformatics online.
Collapse
Affiliation(s)
- Lorenza Pacini
- AMPERE, CNRS, Université de Lyon, Lyon, 69622, France,Institut Rhônalpin des systèmes complexes (IXXI), École Normale Supérieure de Lyon, Lyon, 69007, France
| | - Claire Lesieur
- AMPERE, CNRS, Université de Lyon, Lyon, 69622, France,Institut Rhônalpin des systèmes complexes (IXXI), École Normale Supérieure de Lyon, Lyon, 69007, France,To whom correspondence should be addressed. E-mail:
| |
Collapse
|
35
|
The discovery and development of transthyretin amyloidogenesis inhibitors: what are the lessons? Future Med Chem 2021; 13:2083-2105. [PMID: 34633220 DOI: 10.4155/fmc-2021-0248] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
Transthyretin (TTR) is associated with several human amyloid diseases. Various kinetic stabilizers have been developed to inhibit the dissociation of TTR tetramer and the formation of amyloid fibrils. Most of them are bisaryl derivatives, natural flavonoids, crown ethers and carborans. In this review article, we focus on TTR tetramer stabilizers, genetic therapeutic approaches and fibril remodelers. The binding modes of typical bisaryl derivatives, natural flavonoids, crown ethers and carborans are discussed. Based on knowledge of the binding of thyroxine to TTR tetramer, many stabilizers have been screened to dock into the thyroxine binding sites, leading to TTR tetramer stabilization. Particularly, those stabilizers with unique binding profiles have shown great potential in developing the therapeutic management of TTR amyloidogenesis.
Collapse
|
36
|
Obici L, Mussinelli R. Current and Emerging Therapies for Hereditary Transthyretin Amyloidosis: Strides Towards a Brighter Future. Neurotherapeutics 2021; 18:2286-2302. [PMID: 34850359 PMCID: PMC8804119 DOI: 10.1007/s13311-021-01154-y] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/29/2021] [Indexed: 12/19/2022] Open
Abstract
The past few years have witnessed an unprecedented acceleration in the clinical development of novel therapeutic options for hereditary transthyretin amyloidosis. Recently approved agents and drugs currently under investigation not only represent a major breakthrough in this field but also provide validation of the therapeutic potential of innovative approaches, like RNA interference and CRISPR-Cas9-mediated gene editing, in rare inherited disorders. In this review, we describe the evolving therapeutic landscape for hereditary transthyretin amyloidosis and discuss how this highly disabling and fatal condition is turning into a treatable disease. We also provide an overview of the molecular mechanisms involved in transthyretin (TTR) amyloid formation and regression, to highlight how a deeper understanding of these processes has contributed to the identification of novel treatment targets. Finally, we focus on major areas of uncertainty and unmet needs that deserve further efforts to improve long-term patients' outcomes and allow for a brighter future.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, Viale Golgi, 19, 27100, Pavia, Italy.
| | - Roberta Mussinelli
- Amyloidosis Research and Treatment Centre, IRCCS Fondazione Policlinico San Matteo, Viale Golgi, 19, 27100, Pavia, Italy
| |
Collapse
|
37
|
A circulating, disease-specific, mechanism-linked biomarker for ATTR polyneuropathy diagnosis and response to therapy prediction. Proc Natl Acad Sci U S A 2021; 118:2016072118. [PMID: 33597308 DOI: 10.1073/pnas.2016072118] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
The transthyretin (TTR) amyloidoses (ATTR) are progressive, degenerative diseases resulting from dissociation of the TTR tetramer to monomers, which subsequently misfold and aggregate, forming a spectrum of aggregate structures including oligomers and amyloid fibrils. To determine whether circulating nonnative TTR (NNTTR) levels correlate with the clinical status of patients with V30M TTR familial amyloid polyneuropathy (FAP), we quantified plasma NNTTR using a newly developed sandwich enzyme-linked immunosorbent assay. The assay detected significant plasma levels of NNTTR in most presymptomatic V30M TTR carriers and in all FAP patients. NNTTR was not detected in age-matched control plasmas or in subjects with other peripheral neuropathies, suggesting NNTTR can be useful in diagnosing FAP. NNTTR levels were substantially reduced in patients receiving approved FAP disease-modifying therapies (e.g., the TTR stabilizer tafamidis, 20 mg once daily). This NNTTR decrease was seen in both the responders (average reduction 56.4 ± 4.2%; n = 49) and nonresponders (average reduction of 63.3 ± 4.8%; n = 32) at 12 mo posttreatment. Notably, high pretreatment NNTTR levels were associated with a significantly lower likelihood of clinical response to tafamidis. Our data suggest that NNTTR is a disease driver whose reduction is sufficient to ameliorate FAP so long as pretreatment NNTTR levels are below a critical clinical threshold.
Collapse
|
38
|
Esperante SA, Varejāo N, Pinheiro F, Sant'Anna R, Luque-Ortega JR, Alfonso C, Sora V, Papaleo E, Rivas G, Reverter D, Ventura S. Disease-associated mutations impacting BC-loop flexibility trigger long-range transthyretin tetramer destabilization and aggregation. J Biol Chem 2021; 297:101039. [PMID: 34343569 PMCID: PMC8406001 DOI: 10.1016/j.jbc.2021.101039] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/06/2021] [Revised: 07/30/2021] [Accepted: 07/30/2021] [Indexed: 11/13/2022] Open
Abstract
Hereditary transthyretin amyloidosis (ATTR) is an autosomal dominant disease characterized by the extracellular deposition of the transport protein transthyretin (TTR) as amyloid fibrils. Despite the progress achieved in recent years, understanding why different TTR residue substitutions lead to different clinical manifestations remains elusive. Here, we studied the molecular basis of disease-causing missense mutations affecting residues R34 and K35. R34G and K35T variants cause vitreous amyloidosis, whereas R34T and K35N mutations result in amyloid polyneuropathy and restrictive cardiomyopathy. All variants are more sensitive to pH-induced dissociation and amyloid formation than the wild-type (WT)-TTR counterpart, specifically in the variants deposited in the eyes amyloid formation occurs close to physiological pHs. Chemical denaturation experiments indicate that all the mutants are less stable than WT-TTR, with the vitreous amyloidosis variants, R34G and K35T, being highly destabilized. Sequence-induced stabilization of the dimer–dimer interface with T119M rendered tetramers containing R34G or K35T mutations resistant to pH-induced aggregation. Because R34 and K35 are among the residues more distant to the TTR interface, their impact in this region is therefore theorized to occur at long range. The crystal structures of double mutants, R34G/T119M and K35T/T119M, together with molecular dynamics simulations indicate that their strong destabilizing effect is initiated locally at the BC loop, increasing its flexibility in a mutation-dependent manner. Overall, the present findings help us to understand the sequence-dynamic-structural mechanistic details of TTR amyloid aggregation triggered by R34 and K35 variants and to link the degree of mutation-induced conformational flexibility to protein aggregation propensity.
Collapse
Affiliation(s)
- Sebastián A Esperante
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| | - Nathalia Varejāo
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Francisca Pinheiro
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Ricardo Sant'Anna
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Juan Román Luque-Ortega
- Molecular Interactions Facility, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Carlos Alfonso
- Systems Biochemistry of Bacterial Division Laboratory, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - Valentina Sora
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark; Cancer Systems Biology, Health and Technology Department, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Elena Papaleo
- Computational Biology Laboratory, Danish Cancer Society Research Center, Copenhagen, Denmark; Cancer Systems Biology, Health and Technology Department, Section for Bioinformatics, Technical University of Denmark, Lyngby, Denmark
| | - Germán Rivas
- Systems Biochemistry of Bacterial Division Laboratory, Centro de Investigaciones Biológicas Margarita Salas, CSIC, Madrid, Spain
| | - David Reverter
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain
| | - Salvador Ventura
- Institut de Biotecnologia i de Biomedicina and Departament de Bioquímica i de Biologia Molecular, Universitat Autònoma de Barcelona, Bellaterra, Barcelona, Spain.
| |
Collapse
|
39
|
Kelly JW. Does protein aggregation drive postmitotic tissue degeneration? Sci Transl Med 2021; 13:13/577/eaax0914. [PMID: 33472954 DOI: 10.1126/scitranslmed.aax0914] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/22/2019] [Revised: 11/04/2019] [Accepted: 03/31/2020] [Indexed: 12/22/2022]
Abstract
Pharmacological evidence, from clinical trials where patients with systemic amyloid diseases are treated with disease-modifying therapies, supports the notion that protein aggregation drives tissue degeneration in these disorders. The protein aggregate structures driving tissue pathology and the commonalities in etiology between these diseases and Alzheimer's disease are under investigation.
Collapse
Affiliation(s)
- Jeffery W Kelly
- Departments of Chemistry and Molecular Medicine, The Scripps Research Institute, La Jolla, CA 92037, USA.
| |
Collapse
|
40
|
Obici L, Adams D. Acquired and inherited amyloidosis: Knowledge driving patients' care. J Peripher Nerv Syst 2021; 25:85-101. [PMID: 32378274 DOI: 10.1111/jns.12381] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/23/2020] [Revised: 04/30/2020] [Accepted: 05/01/2020] [Indexed: 12/19/2022]
Abstract
Until recently, systemic amyloidoses were regarded as ineluctably disabling and life-threatening diseases. However, this field has witnessed major advances in the last decade, with significant improvements in therapeutic options and in the availability of accurate and non-invasive diagnostic tools. Outstanding progress includes unprecedented hematological response rates provided by risk-adapted regimens in light chain (AL) amyloidosis and the approval of innovative pharmacological agents for both hereditary and wild-type transthyretin amyloidosis (ATTR). Moreover, the incidence of secondary (AA) amyloidosis has continuously reduced, reflecting advances in therapeutics and overall management of several chronic inflammatory diseases. The identification and validation of novel therapeutic targets has grounded on a better knowledge of key molecular events underlying protein misfolding and aggregation and on the increasing availability of diagnostic, prognostic and predictive markers of organ damage and response to treatment. In this review, we focus on these recent advancements and discuss how they are translating into improved outcomes. Neurological involvement dominates the clinical picture in transthyretin and gelsolin inherited amyloidosis and has a significant impact on disease course and management in all patients. Neurologists, therefore, play a major role in improving patients' journey to diagnosis and in providing early access to treatment in order to prevent significant disability and extend survival.
Collapse
Affiliation(s)
- Laura Obici
- Amyloidosis Research and Treatment Centre, Fondazione IRCCS Policlinico San Matteo, Pavia, Italy
| | - David Adams
- National Reference Center for Familial Amyloid Polyneuropathy and Other Rare Neuropathies, APHP, Université Paris Saclay, INSERM U1195, Le Kremlin Bicêtre, France
| |
Collapse
|
41
|
Methods to study the structure of misfolded protein states in systemic amyloidosis. Biochem Soc Trans 2021; 49:977-985. [PMID: 33929491 DOI: 10.1042/bst20201022] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Key Words] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/11/2021] [Revised: 04/08/2021] [Accepted: 04/12/2021] [Indexed: 12/19/2022]
Abstract
Systemic amyloidosis is defined as a protein misfolding disease in which the amyloid is not necessarily deposited within the same organ that produces the fibril precursor protein. There are different types of systemic amyloidosis, depending on the protein constructing the fibrils. This review will focus on recent advances made in the understanding of the structural basis of three major forms of systemic amyloidosis: systemic AA, AL and ATTR amyloidosis. The three diseases arise from the misfolding of serum amyloid A protein, immunoglobulin light chains or transthyretin. The presented advances in understanding were enabled by recent progress in the methodology available to study amyloid structures and protein misfolding, in particular concerning cryo-electron microscopy (cryo-EM) and nuclear magnetic resonance (NMR) spectroscopy. An important observation made with these techniques is that the structures of previously described in vitro formed amyloid fibrils did not correlate with the structures of amyloid fibrils extracted from diseased tissue, and that in vitro fibrils were typically more protease sensitive. It is thus possible that ex vivo fibrils were selected in vivo by their proteolytic stability.
Collapse
|
42
|
Addison D, Slivnick JA, Campbell CM, Vallakati A, Jneid H, Schelbert E. Recent Advances and Current Dilemmas in the Diagnosis and Management of Transthyretin Cardiac Amyloidosis. J Am Heart Assoc 2021; 10:e019840. [PMID: 33899502 PMCID: PMC8200718 DOI: 10.1161/jaha.120.019840] [Citation(s) in RCA: 10] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/15/2022]
Abstract
Cardiac amyloidosis (CA) is an increasingly recognized cause of heart failure, arrhythmias, and sudden cardiac death. While CA was previously rapidly fatal, recent advances in diagnosis and treatment have significantly improved outcomes. Advances in cardiac imaging and biomarkers have critically improved the accuracy and efficiency with which CA is diagnosed, even allowing for the noninvasive diagnosis of transthyretin CA. Cardiac magnetic resonance imaging, technetium nuclear imaging, echocardiography, and blood-based biomarkers have established important and complementary roles in the management and advancement of care. At the same time, the development of novel targeted amyloid therapies has allowed patients with CA to live longer and potentially achieve better quality of life. Still, despite this significant progress, there remain critical ongoing questions in the field. Accordingly, within this review we will highlight recent advances in cardiac imaging and therapeutics for CA, while focusing on key opportunities for further optimization of care and outcomes among this growing population. Specifically, we will discuss ongoing debates in the diagnosis of CA, including the interpretation of indeterminate cardiac imaging findings, the best technique to screen asymptomatic transthyretin amyloidosis gene mutation carriers for cardiac involvement, and the ideal method for monitoring response to CA treatment. We will additionally focus on recent advances in treatment for transthyretin amyloidosis-CA, including a discussion of available agents as well as highlighting ongoing clinical trials. Together, these data will allow clinicians to emerge with a greater understanding of the present and future of diagnosis, management, and potentially enhanced outcomes in this rapidly advancing field.
Collapse
Affiliation(s)
- Daniel Addison
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Jeremy A Slivnick
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Courtney M Campbell
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Ajay Vallakati
- Cardio-Oncology Program Division of Cardiology Department of Internal Medicine The Ohio State University Medical Center Columbus OH
| | - Hani Jneid
- Division of Cardiology Baylor College of MedicineMichael E. DeBakey VA Medical Center Houston TX
| | - Erik Schelbert
- Division of Cardiology Department of Internal Medicine University of Pittsburgh PA
| |
Collapse
|
43
|
Transthyretin Misfolding, A Fatal Structural Pathogenesis Mechanism. Int J Mol Sci 2021; 22:ijms22094429. [PMID: 33922648 PMCID: PMC8122960 DOI: 10.3390/ijms22094429] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/29/2021] [Revised: 04/18/2021] [Accepted: 04/21/2021] [Indexed: 12/11/2022] Open
Abstract
Transthyretin (TTR) is an essential transporter of a thyroid hormone and a holo-retinol binding protein, found abundantly in human plasma and cerebrospinal fluid. In addition, this protein is infamous for its amyloidogenic propensity, causing various amyloidoses in humans, such as senile systemic amyloidosis, familial amyloid polyneuropathy, and familial amyloid cardiomyopathy. It has been known for over two decades that decreased stability of the native tetrameric conformation of TTR is the main cause of these diseases. Yet, mechanistic details on the amyloidogenic transformation of TTR were not clear until recent multidisciplinary investigations on various structural states of TTR. In this review, we discuss recent advancements in the structural understanding of TTR misfolding and amyloidosis processes. Special emphasis has been laid on the observations of novel structural features in various amyloidogenic species of TTR. In addition, proteolysis-induced fragmentation of TTR, a recently proposed mechanism facilitating TTR amyloidosis, has been discussed in light of its structural consequences and relevance to acknowledge the amyloidogenicity of TTR.
Collapse
|
44
|
Burton A, Castaño A, Bruno M, Riley S, Schumacher J, Sultan MB, See Tai S, Judge DP, Patel JK, Kelly JW. Drug Discovery and Development in Rare Diseases: Taking a Closer Look at the Tafamidis Story. Drug Des Devel Ther 2021; 15:1225-1243. [PMID: 33776421 PMCID: PMC7987260 DOI: 10.2147/dddt.s289772] [Citation(s) in RCA: 34] [Impact Index Per Article: 8.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/31/2020] [Accepted: 01/20/2021] [Indexed: 12/25/2022] Open
Abstract
Rare diseases are increasingly recognized as a global public health priority. Governments worldwide currently provide important incentives to stimulate the discovery and development of orphan drugs for the treatment of these conditions, but substantial scientific, clinical, and regulatory challenges remain. Tafamidis is a first-in-class, disease-modifying transthyretin (TTR) kinetic stabilizer that represents a major breakthrough in the treatment of transthyretin amyloidosis (ATTR amyloidosis). ATTR amyloidosis is a rare, progressive, and fatal systemic disorder caused by aggregation of misfolded TTR and extracellular deposition of amyloid fibrils in various tissues and organs, including the heart and nervous systems. In this review, we present the successful development of tafamidis spanning 3 decades, marked by meticulous laboratory research into disease mechanisms and natural history, and innovative clinical study design and implementation. These efforts established the safety and efficacy profile of tafamidis, leading to its regulatory approval, and enabled post-approval initiatives that further support patients with ATTR amyloidosis.
Collapse
Affiliation(s)
| | | | | | - Steve Riley
- Clinical Pharmacology, Pfizer Inc, Groton, CT, USA
| | | | - Marla B Sultan
- Global Product Development, Pfizer Inc, New York, NY, USA
| | - Sandi See Tai
- Global Product Development, Pfizer Inc, Collegeville, PA, USA
| | - Daniel P Judge
- Department of Medicine, Medical University of South Carolina, Charleston, SC, USA
| | - Jignesh K Patel
- Department of Cardiology, Cedars-Sinai Smidt Heart Institute, Los Angeles, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
45
|
Greve AM, Christoffersen M, Frikke-Schmidt R, Nordestgaard BG, Tybjærg-Hansen A. Association of Low Plasma Transthyretin Concentration With Risk of Heart Failure in the General Population. JAMA Cardiol 2021; 6:258-266. [PMID: 33237279 DOI: 10.1001/jamacardio.2020.5969] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 12/26/2022]
Abstract
Importance Several lines of evidence support low plasma transthyretin concentration as an in vivo biomarker of transthyretin tetramer instability, a prerequisite for the development of both wild-type transthyretin cardiac amyloidosis (ATTRwt) and hereditary transthyretin cardiac amyloidosis (ATTRm). Both ATTRm and ATTRwt cardiac amyloidosis may manifest as heart failure (HF). However, whether low plasma transthyretin concentration confers increased risk of incident HF in the general population is unknown. Objective To evaluate whether low plasma transthyretin concentration is associated with incident HF in the general population. Design, Setting, and Participants This study included data from 2 similar prospective cohort studies of the Danish general population, the Copenhagen General Population Study (CGPS; n = 9582) and the Copenhagen City Heart Study (CCHS; n = 7385). Using these data, first, whether low concentration of plasma transthyretin was associated with increased risk of incident HF was tested. Second, whether genetic variants in TTR associated with increasing tetramer instability were associated with lower transthyretin concentration and with higher risk of HF was tested. Data were collected from November 2003 to March 2017 in the CGPS and from November 1991 to June 1994 in the CCHS; participants from both studies were observed for survival time end points until March 2017. Data were analyzed from March to June 2019. Exposures Transthyretin concentration at or below the 5th percentile, between the 5th and 95th percentile (reference), and greater than the 95th percentile; genetic variants in TTR. Main Outcome and Measure Incident HF identified using the Danish National Patient Registry. Results Of 9582 individuals in the CGPS, 5077 (53.0%) were women, and the median (interquartile range [IQR]) age was 56 (47-65) years. Of 7385 individuals in the CCHS, 4452 (60.3%) were women, and the median (IQR) age was 59 (46-70) years. During a median (IQR) follow-up of 12.6 (12.3-12.9) years and 21.7 (11.6-23.8) years, 441 individuals (4.6%) in the CGPS and 1122 individuals (15.2%) in the CCHS, respectively, developed HF. Baseline plasma transthyretin concentrations at or below the 5th percentile were associated with incident HF (CGPS: hazard ratio [HR], 1.6; 95% CI, 1.1-2.4; CCHS: HR, 1.4; 95% CI, 1.1-1.7). Risk of HF was highest in men with low transthyretin levels. Compared with p.T139M, a transthyretin-stabilizing variant, TTR genotype was associated with stepwise lower transthyretin concentrations for wild-type TTR (-16.5%), p.G26S (-18.1%), and heterozygotes for other variants (p.V142I, p.H110N, and p.D119N; -30.8%) (P for trend <.001). The corresponding HRs for incident HF were 1.14 (95% CI, 0.57-2.28), 1.29 (95% CI, 0.64-2.61), and 2.04 (95% CI, 0.54-7.67), respectively (P for trend = .04). Conclusions and Relevance In this study, lower plasma and genetically determined transthyretin concentrations were associated with a higher risk of incident HF, suggesting a potential mechanistic association between low transthyretin concentration as a marker of tetramer instability and incident HF in the general population.
Collapse
Affiliation(s)
- Anders M Greve
- Section for Molecular Genetics, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Mette Christoffersen
- Section for Molecular Genetics, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark
| | - Ruth Frikke-Schmidt
- Section for Molecular Genetics, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Børge G Nordestgaard
- Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| | - Anne Tybjærg-Hansen
- Section for Molecular Genetics, Department of Clinical Biochemistry, Rigshospitalet, Copenhagen University Hospital, Copenhagen, Denmark.,Department of Clinical Medicine, Faculty of Health and Medical Sciences, University of Copenhagen, Copenhagen, Denmark.,Department of Clinical Biochemistry, Herlev and Gentofte Hospital, Copenhagen University Hospital, Copenhagen, Denmark.,The Copenhagen City Heart Study, Bispebjerg and Frederiksberg Hospital, Copenhagen University Hospital, Copenhagen, Denmark
| |
Collapse
|
46
|
Nelson LT, Paxman RJ, Xu J, Webb B, Powers ET, Kelly JW. Blinded potency comparison of transthyretin kinetic stabilisers by subunit exchange in human plasma. Amyloid 2021; 28:24-29. [PMID: 32811187 PMCID: PMC7952025 DOI: 10.1080/13506129.2020.1808783] [Citation(s) in RCA: 21] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 01/08/2023]
Abstract
Transthyretin (TTR) tetramer dissociation is rate limiting for aggregation and subunit exchange. Slowing of TTR tetramer dissociation via kinetic stabiliser binding slows cardiomyopathy progression. Quadruplicate subunit exchange comparisons of the drug candidate AG10, and the drugs tolcapone, diflunisal, and tafamidis were carried out at 1, 5, 10, 20 and 30 µM concentrations in 4 distinct pooled wild type TTR (TTRwt) human plasma samples. These experiments reveal that the concentration dependence of the efficacy of each compound at inhibiting TTR dissociation was primarily determined by the ratio between the stabiliser's dissociation constants from TTR and albumin, which competes with TTR to bind kinetic stabilisers. The best stabilisers, tafamidis (80 mg QD), AG10 (800 mg BID), and tolcapone (3 x 100 mg over 12 h), exhibit very similar kinetic stabilisation at the plasma concentrations resulting from these doses. At a 10 µM plasma concentration, AG10 is slightly more potent as a kinetic stabiliser vs. tolcapone and tafamidis (which are similar), which are substantially more potent than diflunisal. Dissociation of TTR can be limited to 10% of its normal rate at concentrations of 5.7 µM AG10, 10.3 µM tolcapone, 12.0 µM tafamidis, and 188 µM diflunisal. The potency similarities revealed by our study suggest that differences in safety, adsorption and metabolism, pharmacokinetics, and tissue distribution become important for kinetic stabiliser clinical use decisions.
Collapse
Affiliation(s)
- Luke T Nelson
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Ryan J Paxman
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jin Xu
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Bill Webb
- Center for Metabolomics, The Scripps Research Institute, La Jolla, CA, USA
| | - Evan T Powers
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA
| | - Jeffery W Kelly
- Department of Chemistry, The Scripps Research Institute, La Jolla, CA, USA.,The Skaggs Institute for Chemical Biology, The Scripps Research Institute, La Jolla, CA, USA
| |
Collapse
|
47
|
Bistola V, Parissis J, Foukarakis E, Valsamaki PN, Anastasakis A, Koutsis G, Efthimiadis G, Kastritis E. Practical recommendations for the diagnosis and management of transthyretin cardiac amyloidosis. Heart Fail Rev 2021; 26:861-879. [PMID: 33452596 DOI: 10.1007/s10741-020-10062-w] [Citation(s) in RCA: 16] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Accepted: 11/30/2020] [Indexed: 01/01/2023]
Abstract
Cardiac amyloidosis (CA) is an infiltrative restrictive cardiomyopathy caused by accumulation in the heart interstitium of amyloid fibrils formed by misfolded proteins. Most common CA types are light chain amyloidosis (AL) caused by monoclonal immunoglobulin light chains and transthyretin amyloidosis (ATTR) caused by either mutated or wild-type transthyretin aggregates. Previously considered a rare disease, CA is increasingly recognized among patients who may be misdiagnosed as undifferentiated heart failure with preserved ejection fraction (HFPEF), paradoxical low-flow/low-gradient aortic stenosis, or otherwise unexplained left ventricular hypertrophy. Progress in diagnosis has been due to the refinement of cardiac echocardiographic techniques (speckle tracking imaging) and magnetic resonance (T1 mapping) and mostly due to the advent of bone scintigraphy that has enabled noninvasive diagnosis of ATTR, limiting the need for endomyocardial biopsy. Importantly, proper management of CA starts from early recognition of suspected cases among high prevalence populations, followed by advanced diagnostic evaluation to confirm diagnosis and typing, preferentially in experienced amyloidosis centers. Differentiating ATTR from other types of amyloidosis, especially AL, is critical. Emerging targeted ATTR therapies offer the potential to improve outcomes of these patients previously treated only palliatively.
Collapse
Affiliation(s)
- Vasiliki Bistola
- Department of Cardiology, Heart Failure Unit, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - John Parissis
- Department of Cardiology, Heart Failure Unit, National and Kapodistrian University of Athens, Attikon University Hospital, Athens, Greece
| | - Emmanouil Foukarakis
- Cardiology Department, Venizeleion General Hospital of Heraklion, Heraklion, Greece
| | - Pipitsa N Valsamaki
- Nuclear Medicine Department, "Alexandra" University General Hospital, Athens, Greece
| | - Aris Anastasakis
- Unit of Inherited and Rare Cardiovascular Diseases, Onassis Cardiac Surgery Center, Athens, Greece
| | - Georgios Koutsis
- Neurogenetics Unit, 1st Department of Neurology, National and Kapodistrian University of Athens, Eginition University Hospital, Athens, Greece
| | - Georgios Efthimiadis
- 1st Cardiology Department, AHEPA University Hospital, Aristotle University of Thessaloniki, Thessaloniki, Greece
| | - Efstathios Kastritis
- Department of Clinical Therapeutics, National and Kapodistrian University of Athens, Athens, Greece.
| |
Collapse
|
48
|
Parker MM, Ticau S, Butler J, Erbe D, Merkel M, Aldinc E, Hinkle G, Nioi P. Transthyretin-stabilising mutation T119M is not associated with protection against vascular disease or death in the UK Biobank. Amyloid 2020; 27:184-190. [PMID: 32425064 DOI: 10.1080/13506129.2020.1758658] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Submit a Manuscript] [Subscribe] [Scholar Register] [Indexed: 10/24/2022]
Abstract
Background: Destabilised transthyretin (TTR) can result in the progressive, fatal disease transthyretin-mediated (ATTR) amyloidosis. A stabilising TTR mutation, T119M, is the basis for a therapeutic strategy to reduce destabilised TTR. Recently, T119M was associated with extended lifespan and lower risk of cerebrovascular disease in a Danish cohort. We aimed to determine whether this finding could be replicated in the UK Biobank.Methods: TTR T119M carriers were identified in the UK Biobank, a large prospective cohort of ∼500,000 individuals. Association between T119M genotype and inpatient diagnosis of vascular disease, cardiovascular disease, cerebrovascular disease, and mortality was analysed.Results: Frequency of T119M within the white UK Biobank population (n = 337,148) was 0.4%. Logistic regression comparing T119M carriers to non-carriers found no association between T119M and vascular disease (odds ratio [OR] = 1.08; p = .27), cardiovascular disease (OR = 1.08; p = .31), cerebrovascular disease (OR = 1.1; p = .42), or death (OR = 1.2; p = .06). Cox proportional hazards regression showed similar results (hazard ratio >1, p>.05). Age at death and vascular disease diagnosis were similar between T119M carriers and non-carriers (p = .12 and p = .38, respectively).Conclusions: There was no association between the TTR T119M genotype and risk of vascular disease or death in a large prospective cohort study, indicating that TTR tetramer stabilisation through T119M is not protective in this setting.
Collapse
Affiliation(s)
| | | | | | - David Erbe
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| | | | | | | | - Paul Nioi
- Alnylam Pharmaceuticals, Cambridge, MA, USA
| |
Collapse
|
49
|
Abstract
PURPOSE OF REVIEW The review's main focus centers on the genetics of hereditary cardiac amyloidosis, highlighting the opportunities and challenges posed by the widespread availability of genetic screening and diagnostic cardiac imaging. RECENT FINDINGS Advancements in cardiac imaging, heightened awareness of the ATTR amyloidosis diagnosis, and greater access to genetic testing have all led to an increased appreciation of the prevalence of ATTR cardiac amyloidosis. Elucidation of the TTR molecular structure and effect of mutations on TTR function have allowed for novel TTR therapy development leading to clinical implementation of transthyretin stabilizers and transthyretin gene silencers. The transthyretin amyloidoses are a diverse group of protein misfolding disorders with cardiac and peripheral/autonomic nervous system manifestations due to protein deposition. Genetic screening allows for the early identification of asymptomatic TTR mutation carriers. With the advent of TTR-specific therapeutics, clinical guidance is necessary for the management of individuals with mutations in the TTR gene without evidence of disease.
Collapse
|
50
|
Nevone A, Merlini G, Nuvolone M. Treating Protein Misfolding Diseases: Therapeutic Successes Against Systemic Amyloidoses. Front Pharmacol 2020; 11:1024. [PMID: 32754033 PMCID: PMC7366848 DOI: 10.3389/fphar.2020.01024] [Citation(s) in RCA: 24] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/29/2020] [Accepted: 06/24/2020] [Indexed: 12/20/2022] Open
Abstract
Misfolding and extracellular deposition of proteins is the hallmark of a heterogeneous group of conditions collectively termed protein misfolding and deposition diseases or amyloidoses. These include both localized (e.g. Alzheimer’s disease, prion diseases, type 2 diabetes mellitus) and systemic amyloidoses. Historically regarded as a group of maladies with limited, even inexistent, therapeutic options, some forms of systemic amyloidoses have recently witnessed a series of unparalleled therapeutic successes, positively impacting on their natural history and sometimes even on their incidence. In this review article we will revisit the most relevant of these accomplishments. Collectively, current evidence converges towards a crucial role of an early and conspicuous reduction or stabilization of the amyloid-forming protein in its native conformation. Such an approach can reduce disease incidence in at risk individuals, limit organ function deterioration, promote organ function recovery, improve quality of life and extend survival in diseased subjects. Therapeutic success achieved in these forms of systemic amyloidoses may guide the research on other protein misfolding and deposition diseases for which effective etiologic therapeutic options are still absent.
Collapse
Affiliation(s)
- Alice Nevone
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Giampaolo Merlini
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| | - Mario Nuvolone
- Amyloidosis Research and Treatment Center, Foundation IRCCS Policlinico San Matteo, Pavia, Italy.,Department of Molecular Medicine, University of Pavia, Pavia, Italy
| |
Collapse
|