1
|
Chamakura KR, Tran JS, O'Leary C, Lisciandro HG, Antillon SF, Garza KD, Tran E, Min L, Young R. Rapid de novo evolution of lysis genes in single-stranded RNA phages. Nat Commun 2020; 11:6009. [PMID: 33243984 PMCID: PMC7693330 DOI: 10.1038/s41467-020-19860-0] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/21/2020] [Accepted: 10/30/2020] [Indexed: 12/27/2022] Open
Abstract
Leviviruses are bacteriophages with small single-stranded RNA genomes consisting of 3-4 genes, one of which (sgl) encodes a protein that induces the host to undergo autolysis and liberate progeny virions. Recent meta-transcriptomic studies have uncovered thousands of leviviral genomes, but most of these lack an annotated sgl, mainly due to the small size, lack of sequence similarity, and embedded nature of these genes. Here, we identify sgl genes in 244 leviviral genomes and functionally characterize them in Escherichia coli. We show that leviviruses readily evolve sgl genes and sometimes have more than one per genome. Moreover, these genes share little to no similarity with each other or to previously known sgl genes, thus representing a rich source for potential protein antibiotics.
Collapse
Affiliation(s)
- Karthik R Chamakura
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Jennifer S Tran
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Pharmaceutical Sciences Division, University of Wisconsin-Madison, Madison, WI, 53705, USA
| | - Chandler O'Leary
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- University of North Texas Health Science Center, Fort Worth, TX, 43210, USA
| | - Hannah G Lisciandro
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Sophia F Antillon
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Kameron D Garza
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
| | - Elizabeth Tran
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- College of Pharmacy, University of North Texas Health Science Center, Fort Worth, TX, 43210, USA
| | - Lorna Min
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA
- Baylor College of Medicine, Houston, TX, 77030, USA
| | - Ry Young
- Center for Phage Technology and Texas A&M AgriLife, Department of Biochemistry and Biophysics, Texas A&M University, College Station, TX, 77843-2128, USA.
| |
Collapse
|
2
|
Abstract
In general, the last step in the vegetative cycle of bacterial viruses, or bacteriophages, is lysis of the host. dsDNA phages require multiple lysis proteins, including at least one enzyme that degrades the cell wall (peptidoglycan (PG)). In contrast, the lytic ssDNA and ssRNA phages have a single lysis protein that achieves cell lysis without enzymatically degrading the PG. Here, we review four "single-gene lysis" or Sgl proteins. Three of the Sgls block bacterial cell wall synthesis by binding to and inhibiting several enzymes in the PG precursor pathway. The target of the fourth Sgl, L from bacteriophage MS2, is still unknown, but we review evidence indicating that it is likely a protein involved in maintaining cell wall integrity. Although only a few phage genomes are available to date, the ssRNA Leviviridae are a rich source of novel Sgls, which may facilitate further unraveling of bacterial cell wall biosynthesis and discovery of new antibacterial agents.
Collapse
Affiliation(s)
- Karthik Chamakura
- From the Department of Biochemistry and Biophysics and
- the Center for Phage Technology, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas 77843-2128
| | - Ry Young
- From the Department of Biochemistry and Biophysics and
- the Center for Phage Technology, Texas A&M AgriLife Research, Texas A&M University, College Station, Texas 77843-2128
| |
Collapse
|
3
|
Reed CA, Langlais C, Wang IN, Young R. A(2) expression and assembly regulates lysis in Qβ infections. MICROBIOLOGY (READING, ENGLAND) 2013; 159:507-514. [PMID: 23329676 PMCID: PMC3709820 DOI: 10.1099/mic.0.064790-0] [Citation(s) in RCA: 19] [Impact Index Per Article: 1.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/07/2012] [Revised: 12/29/2012] [Accepted: 01/05/2013] [Indexed: 01/19/2023]
Abstract
The capsids of ssRNA phages comprise a single copy of an ~45 kDa maturation protein that serves to recognize the conjugative pilus as receptor, to protect the ends of the viral RNA and also to escort the genomic RNA into the host cytoplasm. In the Alloleviviridae, represented by the canonical phage Qβ, the maturation protein A(2) also causes lysis. This is achieved by inhibiting the activity of MurA, which catalyses the first committed step of murein biosynthesis. Previously, it was shown that Qβ virions, with a single copy of A(2), inhibit MurA activity. This led to a model for lysis timing in which, during phage infection, A(2) is not active as a MurA inhibitor until assembled into virion particles, thus preventing premature lysis before a sufficient yield of viable progeny has accumulated. Here we report that MurA inactivates purified Qβ particles, casting doubt on the notion that A(2) must assemble into particles prior to MurA inhibition. Furthermore, quantification of A(2) protein induced from a plasmid indicated that lysis is entrained when the amount of the lysis protein is approximately equimolar to that of cellular MurA. Qβ por mutants, isolated as suppressors that overcome a murA(rat) mutation that reduces the affinity of MurA for A(2), were shown to be missense mutations in A(2) that increase the translation of the maturation protein. Because of the increased production of A(2), the por mutants have an attenuated infection cycle and reduced burst size, indicating that a delicate balance between assembled and unassembled A(2) levels regulates lysis timing.
Collapse
Affiliation(s)
- Catrina A Reed
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Carrie Langlais
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Ing-Nang Wang
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | - Ry Young
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| |
Collapse
|
4
|
Reed CA, Langlais C, Kuznetsov V, Young R. Inhibitory mechanism of the Qβ lysis protein A2. Mol Microbiol 2012; 86:836-44. [PMID: 22934834 DOI: 10.1111/mmi.12021] [Citation(s) in RCA: 16] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 08/28/2012] [Indexed: 11/29/2022]
Abstract
The lysis protein A2 , present as a single copy on the surface of Qβ virion particles, was previously shown to inhibit the activity of MurA, an enzyme that catalyses the first committed step of murein biosynthesis. Here we report experiments with a two-hybrid study that indicates A2 and MurA interact directly. Moreover, experiments with a soluble MBP-A2 fusion indicate that the interaction between MurA and A2 is dependent on a substrate-induced conformational change featured in the UDP-NAG-liganded state of MurA but not the tetrahedral intermediate state. Moreover, based on the location of L138Q, the original dominant A2 -resistant mutant that identified MurA as the target, a directed mutagenesis strategy has identified a continuous surface required for A2 binding. This surface spans the catalytic loop/cleft and encompasses both the catalytic and C-terminal domains. These data support a model in which A2 preferentially binds MurA liganded with UDP-NAG, thereby preventing catalysis by occluding PEP from accessing the active site.
Collapse
Affiliation(s)
- C A Reed
- Department of Biochemistry and Biophysics, Texas A&M University, 2128 TAMU, College Station, TX 77843-2128, USA
| | | | | | | |
Collapse
|
5
|
Comparative genomic analysis of bacteriophage EP23 infecting Shigella sonnei and Escherichia coli. J Microbiol 2011; 49:927-34. [PMID: 22203555 DOI: 10.1007/s12275-011-1577-0] [Citation(s) in RCA: 18] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/17/2011] [Accepted: 12/07/2011] [Indexed: 02/06/2023]
Abstract
Bacteriophage EP23 that infects Escherichia coli and Shigella sonnei was isolated and characterized. The bacteriophage morphology was similar to members of the family Siphoviridae. The 44,077 bp genome was fully sequenced using 454 pyrosequencing. Comparative genomic and phylogenetic analyses showed that EP23 was most closely related to phage SO-1, which infects Sodalis glossinidius and phage SSL-2009a, which infects engineered E. coli. Genomic comparison indicated that EP23 and SO-1 were very similar with each other in terms of gene order and amino acid similarity, even though their hosts were separated in the level of genus. EP23 and SSL-2009a displayed high amino acid similarity between their genes, but there was evidence of several recombination events in SSL-2009a. The results of the comparative genomic analyses further the understanding of the evolution and relationship between EP23 and its bacteriophage relatives.
Collapse
|
6
|
Kim KH, Chang HW, Nam YD, Roh SW, Bae JW. Phenotypic characterization and genomic analysis of the Shigella sonnei bacteriophage SP18. J Microbiol 2010; 48:213-22. [PMID: 20437154 DOI: 10.1007/s12275-010-0055-4] [Citation(s) in RCA: 11] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2010] [Accepted: 04/01/2010] [Indexed: 11/29/2022]
Abstract
A novel bacteriophage that infects Shigella sonnei was isolated from the Gap River in Korea, and its phenotypic and genomic characteristics were investigated. The virus, called SP18, showed morphology characteristic of the family Myoviridae, and phylogenetic analysis of major capsid gene (gp23) sequences classified it as a T4-like phage. Based on host spectrum analysis, it is lytic to S. sonnei, but not to Shigella flexneri, Shigella boydii or members of the genera Escherichia and Salmonella. Pyrosequencing of the SP18 bacteriophage genome revealed a 170-kb length sequence. In total, 286 ORFs and 3 tRNA genes were identified, and 259 ORFs showed similarity (BLASTP e-value<0.001) to genes of other bacteriophages. The results from comparative genomic analysis indicated that the enterophage JS98, isolated from human stool, is the closest relative of SP18. Based on phylogenetic analysis of gp23 protein-coding sequences, dot plot comparison and BLASTP analysis of genomes, SP18 and JS98 appear to be closely related to T4-even phages. However, several insertions, deletions, and duplications indicate differences between SP18 and JS98. Comparison of duplicated gp24 genes and the soc gene showed that duplication events are responsible for the differentiation and evolution of T4-like bacteriophages.
Collapse
Affiliation(s)
- Kyoung-Ho Kim
- Department of Microbiology, Pukyong National University, Pusan, 608-737, Republic of Korea
| | | | | | | | | |
Collapse
|