1
|
Huang H, Feng G, Wang M, Liu C, Wu Y, Dong L, Feng L, Zheng X, Chen Y. Nitric Oxide: A Neglected Driver for the Conjugative Transfer of Antibiotic Resistance Genes among Wastewater Microbiota. ENVIRONMENTAL SCIENCE & TECHNOLOGY 2022; 56:6466-6478. [PMID: 35512279 DOI: 10.1021/acs.est.2c01889] [Citation(s) in RCA: 31] [Impact Index Per Article: 10.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 06/14/2023]
Abstract
The dissemination of plasmid-borne antibiotic resistance genes (ARGs) in wastewater is becoming an urgent concern. Previous studies mainly focused on the effects of coexisting contaminants on plasmid conjugation, but ignored the potential contribution of some byproducts inevitably released from wastewater treatment processes. Herein, we demonstrate for the first time that nitric oxide (NO), an intermediate of the wastewater nitrogen cycle, can significantly boost the conjugative transfer of plasmid RP4 from Escherichia coli K12 to different recipients (E. coli HB101, Salmonella typhimurium, and wastewater microbiota). Phenotypic and genotypic tests confirmed that NO-induced promotion was not attributed to the SOS response, a well-recognized driver for horizontal gene transfer. Instead, NO exposure increased the outer membrane permeability of both the donor and recipient by inhibiting the expression of key genes involved in lipopolysaccharide biosynthesis (such as waaJ), thereby lowering the membrane barrier for conjugation. On the other hand, NO exposure not only resulted in the accumulation of intracellular tryptophan but also triggered the deficiency of intracellular methionine, both of which were validated to play key roles in regulating the global regulatory genes (korA, korB, and trbA) of plasmid RP4, activating its encoding transfer apparatus (represented by trfAp and trbBp). Overall, our findings highlighted the risks of NO in spreading ARGs among wastewater microbiota and updated the regulation mechanism of plasmid conjugation.
Collapse
Affiliation(s)
- Haining Huang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Guanqun Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Meng Wang
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Chao Liu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Yang Wu
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
| | - Lei Dong
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Municipal Engn Design Inst Grp Co. Ltd., 901 Zhongshan North Second Road, Shanghai 200092, P. R. China
| | - Leiyu Feng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Xiong Zheng
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| | - Yinguang Chen
- State key laboratory of pollution control and Resource reuse, School of Environmental Science and Engineering, Tongji University, 1239 Siping Road, Shanghai 200092, China
- Shanghai Institute of Pollution Control and Ecological Security, Shanghai 200092, China
| |
Collapse
|
2
|
Kagan J, Sharon I, Beja O, Kuhn JC. The tryptophan pathway genes of the Sargasso Sea metagenome: new operon structures and the prevalence of non-operon organization. Genome Biol 2008; 9:R20. [PMID: 18221558 PMCID: PMC2395257 DOI: 10.1186/gb-2008-9-1-r20] [Citation(s) in RCA: 12] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/01/2007] [Revised: 12/17/2007] [Accepted: 01/27/2008] [Indexed: 11/10/2022] Open
Abstract
BACKGROUND The enormous database of microbial DNA generated from the Sargasso Sea metagenome provides a unique opportunity to locate genes participating in different biosynthetic pathways and to attempt to understand the relationship and evolution of those genes. In this article, an analysis of the Sargasso Sea metagenome is made with respect to the seven genes of the tryptophan pathway. RESULTS At least 5% of all the genes that are related to amino acid biosynthesis are tryptophan (trp) genes. Many contigs and scaffolds contain whole or split operons that are similar to previously analyzed trp gene organizations. Only two scaffolds discovered in this analysis possess a different operon organization of tryptophan pathway genes than those previously known. Many marine organisms lack an operon-type organization of these genes or have mini-operons containing only two trp genes. In addition, the trpB genes from this search reveal that the dichotomous division between trpB_1 and trpB_2 also occurs in organisms from the Sargasso Sea. One cluster was found to contain trpB sequences that were closely related to each other but distinct from most known trpB sequences. CONCLUSION The data show that trp genes are widely dispersed within this metagenome. The novel organization of these genes and an unusual group of trpB_1 sequences that were found among some of these Sargasso Sea bacteria indicate that there is much to be discovered about both the reason for certain gene orders and the regulation of tryptophan biosynthesis in marine bacteria.
Collapse
Affiliation(s)
- Juliana Kagan
- Faculty of Biology, Technion, Israel Institute of Technology, Haifa, Israel 32000
| | | | | | | |
Collapse
|
3
|
Cuervo P, Cupolillo E, Nehme N, Hernandez V, Saravia N, Fernandes O. Leishmania (Viannia): genetic analysis of cutaneous and mucosal strains isolated from the same patient. Exp Parasitol 2004; 108:59-66. [PMID: 15491550 DOI: 10.1016/j.exppara.2004.07.005] [Citation(s) in RCA: 13] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/19/2003] [Revised: 05/20/2004] [Accepted: 07/14/2004] [Indexed: 10/26/2022]
Abstract
Ten pairs of Leishmania (Viannia) strains isolated from mucosal and cutaneous lesions of the same patient were analyzed genotypically in order to determine whether populations that had metastasized to mucosal sites differed from those in the cutaneous lesion. The strains were previously characterized by multi locus enzyme electrophoresis and/or monoclonal antibodies reactivity, and, for this study, only isolates from the same patient which were identified as the same species were employed. PCR-RFLP of internal transcribed spacer (ITS) rDNA, random amplified polymorphic DNA (RAPD), and schizodeme analyses were conducted. All genotyping methods revealed microheterogeneity between cutaneous and mucosal isolates from the same patient. The PCR-RFLP of the ITS rDNA and RAPD analysis were numerically analyzed through similarity coefficients and dendrograms were generated. All phenograms clustered cutaneous and mucosal strains of the same patient in one branch with a high degree of similarity, and phenetic analysis matched between them. Schizodeme analysis revealed differences between strains that composed some pairs. Genetic analyses indicate that some populations that metastasize to mucosal sites are distinguishable from the population in cutaneous lesions, however, other approaches will be required to associate genetic polymorphisms with the cutaneous or mucosal phenotype of strains.
Collapse
Affiliation(s)
- Patricia Cuervo
- Department of Tropical Medicine, Oswaldo Cruz Institute, FIOCRUZ, Rio de Janeiro, Brazil
| | | | | | | | | | | |
Collapse
|