1
|
Udry A, Ostwald AM, Day JM, Hallis LJ. Fundamental constraints and questions from the study of martian meteorites and the need for returned samples. Proc Natl Acad Sci U S A 2025; 122:e2404254121. [PMID: 39761396 PMCID: PMC11745394 DOI: 10.1073/pnas.2404254121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/23/2025] Open
Abstract
Physical materials from planetary bodies are crucial for understanding fundamental processes that constrain the evolution of the solar system, as samples can be analyzed at high precision and accuracy in Earth-based laboratories. Mars is the only planet outside of Earth from which we possess samples in the form of meteorites. Martian meteorites (n > 350) have enabled constraints to be placed on various aspects of the red planet's formation and evolution, notably: that Mars accreted and differentiated rapidly; that the planet has a complex volatile element evolution; and that it has always been volcanically active with a rich and diverse magmatic history. Meteorites have limitations, however, with lack of field context, restricted lithological diversity compared to the martian surface, and with no sampling of a major portion of Mars' history between 4.1 and 2.4 billion years ago. Returned samples from Mars have the potential to fill these gaps and answer many open questions driven by the study of meteorites, as well as reveal new fundamental research questions. Key questions that Mars Sample Return is likely to answer regard the basic evolution of the martian interior and surface, its potential for habitability and the possibility of past life, and calibration of age dating of the martian surface. Samples of various lithologies and different ages collected at Jezero crater by the Perseverance rover will aid in better understanding our own planet and will answer outstanding questions regarding Mars' future geological evolution and habitability.
Collapse
Affiliation(s)
- Arya Udry
- Department of Geosciences, University of Nevada Las Vegas, Las Vegas, NV89154
| | - Amanda M. Ostwald
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, Washington, DC20013-7012
| | - James M.D. Day
- Scripps Institution of Oceanography, University of California San Diego, La Jolla, CA92093
| | - Lydia J. Hallis
- School of Geographical and Earth Sciences, Gregory Building, University of Glasgow, GlasgowG12 8QQ, Scotland
| |
Collapse
|
2
|
Herd CDK, Hamilton JS, Walton EL, Tornabene LL, Lagain A, Benedix GK, Sheen AI, Melosh HJ, Johnson BC, Wiggins SE, Sharp TG, Darling JR. The source craters of the martian meteorites: Implications for the igneous evolution of Mars. SCIENCE ADVANCES 2024; 10:eadn2378. [PMID: 39151015 PMCID: PMC11328911 DOI: 10.1126/sciadv.adn2378] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 11/29/2023] [Accepted: 07/11/2024] [Indexed: 08/18/2024]
Abstract
Approximately 200 meteorites come from ~10 impact events on the surface of Mars, yet their pre-ejection locations are largely unknown. Here, we combine the results of diverse sets of observations and modeling to constrain the source craters for several groups of martian meteorites. We compute that ejection-paired groups of meteorites are derived from lava flows within the top 26 m of the surface. We link ejection-paired groups to specific source craters and geologic units, providing context for these important samples, reconciling microscopic observations with remote sensing records, and demonstrating the potential to constrain the ages of their source geologic units. Furthermore, we show that there are craters that may have produced martian meteorites not represented in the world's meteorite collections that have yet to be discovered.
Collapse
Affiliation(s)
- Christopher D K Herd
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Jarret S Hamilton
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
| | - Erin L Walton
- Department of Physical Sciences, MacEwan University, Edmonton, AB T5J 4S2, Canada
| | - Livio L Tornabene
- Department of Earth Sciences, Institute for Earth and Space Exploration, University of Western Ontario, 1151 Richmond Street, London, Ontario N6A 5B7, Canada
- The SETI Institute, 339 Bernardo Ave, Suite 200, Mountain View, CA 94043, USA
| | - Anthony Lagain
- Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
- Aix-Marseille Université, CNRS, IRD, INRA, CEREGE, Aix en Provence, France
- Institut ORIGINES, Aix-Marseille Université, Marseille, France
| | - Gretchen K Benedix
- Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, Bentley, Western Australia, Australia
- Planetary Science Institute, Tucson, AZ 85719, USA
- Department of Earth and Planetary Sciences, Western Australia Museum, Perth, Western Australia, Australia
| | - Alex I Sheen
- Department of Earth and Atmospheric Sciences, University of Alberta, Edmonton, AB T6G 2E3, Canada
- Royal Ontario Museum, 100 Queens Park, Toronto, ON M5S 2C6, Canada
- Department of Earth Sciences, University of Toronto, Toronto, ON M5S 3B1, Canada
| | - Harry J Melosh
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Brandon C Johnson
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
- Department of Physics and Astronomy, Purdue University, West Lafayette, IN, USA
| | - Sean E Wiggins
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, IN 47907, USA
- Lawrence Livermore National Laboratory, Livermore, CA 94550, USA
| | - Thomas G Sharp
- School of Earth and Space Exploration, Arizona State University, Tempe, AZ 85287-1404, USA
| | - James R Darling
- School of the Environment, Geography and Geosciences, University of Portsmouth, Portsmouth PO1 3QL, UK
| |
Collapse
|
3
|
Hu J, Asimow PD, Liu Y, Ma C. Shock-recovered maskelynite indicates low-pressure ejection of shergottites from Mars. SCIENCE ADVANCES 2023; 9:eadf2906. [PMID: 37134156 PMCID: PMC10156110 DOI: 10.1126/sciadv.adf2906] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/05/2023]
Abstract
Diaplectic feldspathic glass, commonly known as maskelynite, is a widely used impact indicator, notably for shergottites, whose shock conditions are keys to their geochemistry and launch mechanism. However, classic reverberating shock recovery experiments show maskelynitization at higher shock pressures (>30 gigapascals) than the stability field of the high-pressure minerals found in many shergottites (15 to 25 gigapascals). Most likely, differences between experimental loading paths and those appropriate for martian impacts have created this ambiguity in shergottite shock histories. Shock reverberation yields lower temperature and deviatoric stress than single-shock planetary impacts at equivalent pressure. We report the Hugoniot equation of state of a martian analog basalt and single-shock recovery experiments, indicating partial-to-complete maskelynitization at 17 to 22 gigapascals, consistent with the high-pressure minerals in maskelynitized shergottites. This pressure explains the presence of intact magmatic accessory minerals, used for geochronology in shergottites, and offers a new pressure-time profile for modeling shergottite launch, likely requiring greater origin depth.
Collapse
Affiliation(s)
- Jinping Hu
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Paul D Asimow
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, Pasadena, CA 91109, USA
| | - Chi Ma
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Sithamparam M, Satthiyasilan N, Chen C, Jia TZ, Chandru K. A material-based panspermia hypothesis: The potential of polymer gels and membraneless droplets. Biopolymers 2022; 113:e23486. [PMID: 35148427 DOI: 10.1002/bip.23486] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/08/2021] [Revised: 01/27/2022] [Accepted: 01/28/2022] [Indexed: 01/08/2023]
Abstract
The Panspermia hypothesis posits that either life's building blocks (molecular Panspermia) or life itself (organism-based Panspermia) may have been interplanetarily transferred to facilitate the origins of life (OoL) on a given planet, complementing several current OoL frameworks. Although many spaceflight experiments were performed in the past to test for potential terrestrial organisms as Panspermia seeds, it is uncertain whether such organisms will likely "seed" a new planet even if they are able to survive spaceflight. Therefore, rather than using organisms, using abiotic chemicals as seeds has been proposed as part of the molecular Panspermia hypothesis. Here, as an extension of this hypothesis, we introduce and review the plausibility of a polymeric material-based Panspermia seed (M-BPS) as a theoretical concept, where the type of polymeric material that can function as a M-BPS must be able to: (1) survive spaceflight and (2) "function", i.e., contingently drive chemical evolution toward some form of abiogenesis once arriving on a foreign planet. We use polymeric gels as a model example of a potential M-BPS. Polymeric gels that can be prebiotically synthesized on one planet (such as polyester gels) could be transferred to another planet via meteoritic transfer, where upon landing on a liquid bearing planet, can assemble into structures containing cellular-like characteristics and functionalities. Such features presupposed that these gels can assemble into compartments through phase separation to accomplish relevant functions such as encapsulation of primitive metabolic, genetic and catalytic materials, exchange of these materials, motion, coalescence, and evolution. All of these functions can result in the gels' capability to alter local geochemical niches on other planets, thereby allowing chemical evolution to lead to OoL events.
Collapse
Affiliation(s)
- Mahendran Sithamparam
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Nirmell Satthiyasilan
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| | - Chen Chen
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan
| | - Tony Z Jia
- Earth-Life Science Institute, Tokyo Institute of Technology, Tokyo, Japan.,Blue Marble Space Institute of Science, Seattle, Washington, USA
| | - Kuhan Chandru
- Space Science Center (ANGKASA), Institute of Climate Change, National University of Malaysia (UKM), Bangi, Selangor, Malaysia
| |
Collapse
|
5
|
Lagain A, Benedix GK, Servis K, Baratoux D, Doucet LS, Rajšic A, Devillepoix HAR, Bland PA, Towner MC, Sansom EK, Miljković K. The Tharsis mantle source of depleted shergottites revealed by 90 million impact craters. Nat Commun 2021; 12:6352. [PMID: 34732704 PMCID: PMC8566585 DOI: 10.1038/s41467-021-26648-3] [Citation(s) in RCA: 11] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/04/2021] [Accepted: 10/14/2021] [Indexed: 11/09/2022] Open
Abstract
The only martian rock samples on Earth are meteorites ejected from the surface of Mars by asteroid impacts. The locations and geological contexts of the launch sites are currently unknown. Determining the impact locations is essential to unravel the relations between the evolution of the martian interior and its surface. Here we adapt a Crater Detection Algorithm that compile a database of 90 million impact craters, allowing to determine the potential launch position of these meteorites through the observation of secondary crater fields. We show that Tooting and 09-000015 craters, both located in the Tharsis volcanic province, are the most likely source of the depleted shergottites ejected 1.1 million year ago. This implies that a major thermal anomaly deeply rooted in the mantle under Tharsis was active over most of the geological history of the planet, and has sampled a depleted mantle, that has retained until recently geochemical signatures of Mars' early history.
Collapse
Affiliation(s)
- A. Lagain
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - G. K. Benedix
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia ,grid.452917.c0000 0000 9848 8286Department of Earth and Planetary Sciences, Western Australian Museum, Perth, WA Australia ,grid.423138.f0000 0004 0637 3991Planetary Sciences Institute, Tucson, AZ USA
| | - K. Servis
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia ,CSIRO—Pawsey Supercomputing Centre, Kensington, WA Australia
| | - D. Baratoux
- grid.508721.9Géosciences Environnement Toulouse, University of Toulouse, CNRS & IRD, 14, Avenue Edouard Belin, 31 400 Toulouse, France ,grid.410694.e0000 0001 2176 6353University Félix Houphouët-Boigny, UFR Sciences de la Terre et des Ressources Minières, Abidjan-Cocody, Côte d’Ivoire
| | - L. S. Doucet
- grid.1032.00000 0004 0375 4078Earth Dynamics Research Group, TIGeR, School of Earth and Planetary Sciences, Curtin University, Perth, WA Australia
| | - A. Rajšic
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - H. A. R. Devillepoix
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - P. A. Bland
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - M. C. Towner
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - E. K. Sansom
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| | - K. Miljković
- grid.1032.00000 0004 0375 4078Space Science and Technology Centre, School of Earth and Planetary Science, Curtin University, Perth, WA Australia
| |
Collapse
|
6
|
Stack KM, Williams NR, Calef F, Sun VZ, Williford KH, Farley KA, Eide S, Flannery D, Hughes C, Jacob SR, Kah LC, Meyen F, Molina A, Nataf CQ, Rice M, Russell P, Scheller E, Seeger CH, Abbey WJ, Adler JB, Amundsen H, Anderson RB, Angel SM, Arana G, Atkins J, Barrington M, Berger T, Borden R, Boring B, Brown A, Carrier BL, Conrad P, Dypvik H, Fagents SA, Gallegos ZE, Garczynski B, Golder K, Gomez F, Goreva Y, Gupta S, Hamran SE, Hicks T, Hinterman ED, Horgan BN, Hurowitz J, Johnson JR, Lasue J, Kronyak RE, Liu Y, Madariaga JM, Mangold N, McClean J, Miklusicak N, Nunes D, Rojas C, Runyon K, Schmitz N, Scudder N, Shaver E, SooHoo J, Spaulding R, Stanish E, Tamppari LK, Tice MM, Turenne N, Willis PA, Yingst RA. Photogeologic Map of the Perseverance Rover Field Site in Jezero Crater Constructed by the Mars 2020 Science Team. SPACE SCIENCE REVIEWS 2020; 216:127. [PMID: 33568875 DOI: 10.1007/s11214-020-00762-y] [Citation(s) in RCA: 86] [Impact Index Per Article: 17.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/01/2020] [Accepted: 11/09/2020] [Indexed: 05/29/2023]
Abstract
The Mars 2020 Perseverance rover landing site is located within Jezero crater, a ∼ 50 km diameter impact crater interpreted to be a Noachian-aged lake basin inside the western edge of the Isidis impact structure. Jezero hosts remnants of a fluvial delta, inlet and outlet valleys, and infill deposits containing diverse carbonate, mafic, and hydrated minerals. Prior to the launch of the Mars 2020 mission, members of the Science Team collaborated to produce a photogeologic map of the Perseverance landing site in Jezero crater. Mapping was performed at a 1:5000 digital map scale using a 25 cm/pixel High Resolution Imaging Science Experiment (HiRISE) orthoimage mosaic base map and a 1 m/pixel HiRISE stereo digital terrain model. Mapped bedrock and surficial units were distinguished by differences in relative brightness, tone, topography, surface texture, and apparent roughness. Mapped bedrock units are generally consistent with those identified in previously published mapping efforts, but this study's map includes the distribution of surficial deposits and sub-units of the Jezero delta at a higher level of detail than previous studies. This study considers four possible unit correlations to explain the relative age relationships of major units within the map area. Unit correlations include previously published interpretations as well as those that consider more complex interfingering relationships and alternative relative age relationships. The photogeologic map presented here is the foundation for scientific hypothesis development and strategic planning for Perseverance's exploration of Jezero crater.
Collapse
Affiliation(s)
- Kathryn M Stack
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Nathan R Williams
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Fred Calef
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Vivian Z Sun
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Kenneth H Williford
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - David Flannery
- Queensland University of Technology, Brisbane, Queensland, Australia
| | - Cory Hughes
- Western Washington University, Bellingham, WA, USA
| | | | - Linda C Kah
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Antonio Molina
- Centro de Astrobiología, CAB (INTA, CSIC), Madrid, Spain
| | | | - Melissa Rice
- Queensland University of Technology, Brisbane, Queensland, Australia
| | | | - Eva Scheller
- California Institute of Technology, Pasadena, CA, USA
| | | | - William J Abbey
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Hans Amundsen
- Earth and Planetary Exploration Services, Berlin, Germany
| | | | | | - Gorka Arana
- University of the Basque Country (UPV/EHU), Leioa, Bizkaia, Spain
| | - James Atkins
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Tor Berger
- Forsvarets forskingsinstitutt, Kjeller, Norway
| | - Rose Borden
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Beau Boring
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | - Brandi L Carrier
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Pamela Conrad
- Carnegie Institution for Science, Washington, D.C., USA
| | | | | | | | | | - Keenan Golder
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Felipe Gomez
- Centro de Astrobiología, CAB (INTA, CSIC), Madrid, Spain
| | - Yulia Goreva
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - Taryn Hicks
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | | | | | - Joel Hurowitz
- State University of New York-Stony Brook, Stony Brook, NY, USA
| | | | - Jeremie Lasue
- Institut de Recherche en Astrophysique et Planetologie (IRAP), Université de Toulouse, Paul Sabatier, Toulouse, France
| | - Rachel E Kronyak
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | - Yang Liu
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Nicolas Mangold
- Laboratoire Planétologie et Géodynamique, UMR 6112, CNRS, Université de Nantes, Nantes, France
| | | | | | - Daniel Nunes
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | - Kirby Runyon
- Johns Hopkins Applied Physics Laboratory, Laurel, MD, USA
| | - Nicole Schmitz
- Deutsches Zentrum Fuer Luft- und Raumfahrt E.V., Cologne, Germany
| | | | - Emily Shaver
- University of Tennessee-Knoxville, Knoxville, TN, USA
| | - Jason SooHoo
- Massachusetts Institute of Technology, Cambridge, MA, USA
| | | | - Evan Stanish
- University of Winnipeg, Winnipeg, Manitoba, Canada
| | - Leslie K Tamppari
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | | | | - Peter A Willis
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| | | |
Collapse
|
7
|
Abstract
Martian meteorites provide the only direct constraints on the timing of Martian accretion, core formation, magmatic differentiation, and ongoing volcanism. While many radiogenic isotope chronometers have been applied to a wide variety of Martian samples, few, if any, techniques are immune to secondary effects from alteration and terrestrial weathering. This short review focuses on the most robust geochronometers that have been used to date Martian meteorites and geochemically model the differentiation of the planet, including 147Sm/143Nd, 146Sm/142Nd, 176Lu/176Hf, 182Hf/182W, and U-Th-Pb systematics.
Collapse
|
8
|
Kurosawa K, Genda H, Hyodo R, Yamagishi A, Mikouchi T, Niihara T, Matsuyama S, Fujita K. Assessment of the probability of microbial contamination for sample return from Martian moons II: The fate of microbes on Martian moons. LIFE SCIENCES IN SPACE RESEARCH 2019; 23:85-100. [PMID: 31791609 DOI: 10.1016/j.lssr.2019.07.006] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 02/28/2019] [Revised: 06/27/2019] [Accepted: 07/10/2019] [Indexed: 05/26/2023]
Abstract
This paper presents a case study of microbe transportation in the Mars-satellites system. We examined the spatial distribution of potential impact-transported microbes on the Martian moons using impact physics by following a companion study (Fujita et al., in this issue). We used sterilization data from the precede studies (Patel et al., 2018; Summers, 2017). We considered that the microbes came mainly from the Zunil crater on Mars, which was formed during 1.0-0.1 Ma. We found that 70-80% of the microbes are likely to be dispersed all over the moon surface and are rapidly sterilized due to solar and galactic cosmic radiation except for those microbes within a thick ejecta deposit produced by natural meteoroids. The other 20-30% might be shielded from radiation by thick regolith layers that formed at collapsed layers in craters produced by Mars rock impacts. The total number of potentially surviving microbes at the thick ejecta deposits is estimated to be 3-4 orders of magnitude lower than at the Mars rock craters. The microbe concentration is irregular in the horizontal direction due to Mars rock bombardment and is largely depth-dependent due to the radiation sterilization. The surviving fraction of transported microbes would be only ∼1 ppm on Phobos and ∼100 ppm on Deimos, suggesting that the transport processes and radiation severely affect microbe survival. The microbe sampling probability from the Martian moons was also investigatesd. We suggest that sample return missions from the Martian moons are classified into Unrestricted Earth-Return missions for 30 g samples and 10 cm depth sampling, even in our conservative scenario. We also conducted a full statistical analysis pertaining to sampling the regolith of Phobos to include the effects of uncertainties in input parameters on the sampling probability. The most likely probability of microbial contamination for return samples is estimated to be two orders of magnitude lower than the 10-6 criterion defined by the planetary protection policy of the Committee on Space Research (COSPAR).
Collapse
Affiliation(s)
- Kosuke Kurosawa
- Planetary Exploration Research Center, Chiba Institute of Technology, 2-17-1, Narashino, Tsudanuma, Chiba 275-0016, Japan.
| | - Hidenori Genda
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Ryuki Hyodo
- Earth-Life Science Institute, Tokyo Institute of Technology, 2-12-1 Ookayama, Meguro-ku, Tokyo 152-8550, Japan
| | - Akihiko Yamagishi
- Department of Applied Life Sciences, School of Life Sciences, Tokyo University of Pharmacy and Life Sciences, 1432-1, Horinouchi, Hachioji, Tokyo 192-0392, Japan
| | - Takashi Mikouchi
- The University Museum, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-0033, Japan
| | - Takafumi Niihara
- Department of Systems Innovation, School of Engineering, The University of Tokyo, 7-3-1 Hongo, Bunkyo-ku, Tokyo 113-8656, Japan
| | - Shingo Matsuyama
- Aeronautical Technology Directorate, Japan Aerospace Exploration Agency, 7-44-1, Jindaijihigasi-machi, Chofu, Tokyo 182-8522, Japan
| | - Kazuhisa Fujita
- Institute of Space and Astronomical Science, Japan Aerospace Exploration Agency, 3-1-1, Yoshinodai, Chuo-ku, Sagamihara, Kanagawa 252-5210, Japan
| |
Collapse
|
9
|
Daly L, Lee MR, Piazolo S, Griffin S, Bazargan M, Campanale F, Chung P, Cohen BE, Pickersgill AE, Hallis LJ, Trimby PW, Baumgartner R, Forman LV, Benedix GK. Boom boom pow: Shock-facilitated aqueous alteration and evidence for two shock events in the Martian nakhlite meteorites. SCIENCE ADVANCES 2019; 5:eaaw5549. [PMID: 31517047 PMCID: PMC6726442 DOI: 10.1126/sciadv.aaw5549] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 03/12/2019] [Accepted: 08/06/2019] [Indexed: 06/10/2023]
Abstract
Nakhlite meteorites are ~1.4 to 1.3 Ga old igneous rocks, aqueously altered on Mars ~630 Ma ago. We test the theory that water-rock interaction was impact driven. Electron backscatter diffraction demonstrates that the meteorites Miller Range 03346 and Lafayette were heterogeneously deformed, leading to localized regions of brecciation, plastic deformation, and mechanical twinning of augite. Numerical modeling shows that the pattern of deformation is consistent with shock-generated compressive and tensile stresses. Mesostasis within shocked areas was aqueously altered to phyllosilicates, carbonates, and oxides, suggesting a genetic link between the two processes. We propose that an impact ~630 Ma ago simultaneously deformed the nakhlite parent rocks and generated liquid water by melting of permafrost. Ensuing water-rock interaction focused on shocked mesostasis with a high density of reactive sites. The nakhlite source location must have two spatially correlated craters, one ~630 Ma old and another, ejecting the meteorites, ~11 Ma ago.
Collapse
Affiliation(s)
- L. Daly
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Australian Centre for Microscopy and Microanalysis, The University of Sydney, NSW 2006, Australia
| | - M. R. Lee
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - S. Piazolo
- School of Earth and Environment, University of Leeds, Leeds LS2 9JT, UK
| | - S. Griffin
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - M. Bazargan
- Department of Earth Sciences, Uppsala University, Uppsala, Sweden
| | - F. Campanale
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
- Dipartimento di Scienze della Terra, Università di Pisa, via Santa Maria 53, 56126, Pisa, Italy
| | - P. Chung
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - B. E. Cohen
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - A. E. Pickersgill
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - L. J. Hallis
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow G12 8QQ, UK
| | - P. W. Trimby
- Oxford Instruments Nanoanalysis, High Wycombe HP12 3SE, UK
| | - R. Baumgartner
- Australian Centre for Astrobiology, University of New South Wales, Sydney, NSW 2052, Australia
| | - L. V. Forman
- Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
| | - G. K. Benedix
- Space Science and Technology Centre, School of Earth and Planetary Sciences, Curtin University, GPO Box U1987, Perth, WA 6845, Australia
- Department of Earth and Planetary Sciences, Western Australia Museum, Locked Bag 49, Welshpool, WA 6986, Australia
- Planetary Science Institute, 1700 East Fort Lowell, Suite 106, Tucson, AZ 85719-2395, USA
| |
Collapse
|
10
|
Cohen BE, Mark DF, Cassata WS, Lee MR, Tomkinson T, Smith CL. Taking the pulse of Mars via dating of a plume-fed volcano. Nat Commun 2017; 8:640. [PMID: 28974682 PMCID: PMC5626741 DOI: 10.1038/s41467-017-00513-8] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/10/2017] [Accepted: 07/04/2017] [Indexed: 11/09/2022] Open
Abstract
Mars hosts the solar system’s largest volcanoes. Although their size and impact crater density indicate continued activity over billions of years, their formation rates are poorly understood. Here we quantify the growth rate of a Martian volcano by 40Ar/39Ar and cosmogenic exposure dating of six nakhlites, meteorites that were ejected from Mars by a single impact event at 10.7 ± 0.8 Ma (2σ). We find that the nakhlites sample a layered volcanic sequence with at least four discrete eruptive events spanning 93 ± 12 Ma (1416 ± 7 Ma to 1322 ± 10 Ma (2σ)). A non-radiogenic trapped 40Ar/36Ar value of 1511 ± 74 (2σ) provides a precise and robust constraint for the mid-Amazonian Martian atmosphere. Our data show that the nakhlite-source volcano grew at a rate of ca. 0.4–0.7 m Ma−1—three orders of magnitude slower than comparable volcanoes on Earth, and necessitating that Mars was far more volcanically active earlier in its history. Mars hosts the solar system’s largest volcanoes, but their formation rates remain poorly constrained. Here, the authors have measured the crystallization and ejection ages of meteorites from a Martian volcano and find that its growth rate was much slower than analogous volcanoes on Earth.
Collapse
Affiliation(s)
- Benjamin E Cohen
- Isotope Geoscience Unit, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride, G75 0QF, UK. .,School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK.
| | - Darren F Mark
- Isotope Geoscience Unit, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride, G75 0QF, UK.,Department of Earth & Environmental Science, University of St Andrews, St Andrews, KY16 9AJ, UK
| | - William S Cassata
- Nuclear & Chemical Sciences Division, Lawrence Livermore National Laboratory, 7000 East Avenue (L-231), Livermore, CA, 94550, USA
| | - Martin R Lee
- School of Geographical and Earth Sciences, University of Glasgow, Glasgow, G12 8QQ, UK
| | - Tim Tomkinson
- Isotope Geoscience Unit, Scottish Universities Environmental Research Centre (SUERC), Rankine Avenue, East Kilbride, G75 0QF, UK
| | - Caroline L Smith
- Department of Earth Sciences, The Natural History Museum, London, SW7 5BD, UK
| |
Collapse
|
11
|
Kereszturi A, Chatzitheodoridis E. Searching for the Source Crater of Nakhlite Meteorites. ORIGINS LIFE EVOL B 2016; 46:455-471. [PMID: 27021613 DOI: 10.1007/s11084-016-9498-x] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/15/2015] [Accepted: 03/16/2016] [Indexed: 11/24/2022]
Abstract
We surveyed the Martian surface in order to identify possible source craters of the nakhlite Martian meteorites. We investigated rayed craters that are assumed to be younger than 11 Ma, on lava surfaces with a solidification age around 1.2 Ga. An area of 17.3 million km2 Amazonian lava plains was surveyed and 53 rayed craters were identified. Although most of them are smaller than the threshold limit that is estimated as minimum of launching fragments to possible Earth crossing trajectories, their observed size frequency distribution agrees with the expected areal density from cratering models characteristic for craters that are less than few tens of Ma old. We identified 6 craters larger than 3 km diameter constituting the potentially best source craters for nakhlites. These larger candidates are located mostly on a smooth lava surface, and in some cases, on the earlier fluvial-like channels. In three cases they are associated with fluidized ejecta lobes and rays - although the rays are faint in these craters, thus might be older than the other craters with more obvious rays. More work is therefore required to accurately estimate ages based on ray system for this purpose. A more detailed search should further link remote sensing Martian data with the in-situ laboratory analyses of Martian meteorites, especially in case of high altitude, steep terrains, where the crater rays seems to rarely survive several Ma.
Collapse
Affiliation(s)
- A Kereszturi
- Research Centre for Astronomy and Earth Sciences, Budapest, Hungary.
| | | |
Collapse
|
12
|
Chappaz L, Melosh HJ, Vaquero M, Howell KC. Transfer of impact ejecta material from the surface of Mars to Phobos and Deimos. ASTROBIOLOGY 2013; 13:963-980. [PMID: 24131246 PMCID: PMC3807532 DOI: 10.1089/ast.2012.0942] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/19/2012] [Accepted: 08/24/2013] [Indexed: 05/31/2023]
Abstract
The Russian Phobos-Grunt spacecraft originally planned to return a 200 g sample of surface material from Phobos to Earth. Although it was anticipated that this material would mainly be from the body of Phobos, there is a possibility that such a sample may also contain material ejected from the surface of Mars by large impacts. An analysis of this possibility is completed by using current knowledge of aspects of impact cratering on the surface of Mars and the production of high-speed ejecta that might reach Phobos or Deimos.
Collapse
Affiliation(s)
- Loïc Chappaz
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana
| | - Henry J. Melosh
- Department of Earth, Atmospheric, and Planetary Sciences, Purdue University, West Lafayette, Indiana
| | - Mar Vaquero
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana
| | - Kathleen C. Howell
- School of Aeronautics and Astronautics, Purdue University, West Lafayette, Indiana
| |
Collapse
|
13
|
Solving the Martian meteorite age conundrum using micro-baddeleyite and launch-generated zircon. Nature 2013; 499:454-7. [PMID: 23887429 DOI: 10.1038/nature12341] [Citation(s) in RCA: 70] [Impact Index Per Article: 5.8] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/27/2013] [Accepted: 05/24/2013] [Indexed: 11/08/2022]
|
14
|
Baziotis IP, Liu Y, DeCarli PS, Jay Melosh H, McSween HY, Bodnar RJ, Taylor LA. The Tissint Martian meteorite as evidence for the largest impact excavation. Nat Commun 2013; 4:1404. [DOI: 10.1038/ncomms2414] [Citation(s) in RCA: 88] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/17/2012] [Accepted: 12/20/2012] [Indexed: 11/09/2022] Open
|
15
|
McCoy TJ, Corrigan CM, Herd CDK. Combining meteorites and missions to explore Mars. Proc Natl Acad Sci U S A 2011; 108:19159-64. [PMID: 21969535 PMCID: PMC3228422 DOI: 10.1073/pnas.1013478108] [Citation(s) in RCA: 4] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/18/2022] Open
Abstract
Laboratory studies of meteorites and robotic exploration of Mars reveal scant atmosphere, no evidence of plate tectonics, past evidence for abundant water, and a protracted igneous evolution. Despite indirect hints, direct evidence of a martian origin came with the discovery of trapped atmospheric gases in one meteorite. Since then, the study of martian meteorites and findings from missions have been linked. Although the meteorite source locations are unknown, impact ejection modeling and spectral mapping of Mars suggest derivation from small craters in terrains of Amazonian to Hesperian age. Whereas most martian meteorites are young (< 1.3 Ga), the spread of whole rock isotopic compositions results from crystallization of a magma ocean > 4.5 Ga and formation of enriched and depleted reservoirs. However, the history inferred from martian meteorites conflicts with results from recent Mars missions, calling into doubt whether the igneous histor y inferred from the meteorites is applicable to Mars as a whole. Allan Hills 84001 dates to 4.09 Ga and contains fluid-deposited carbonates. Accompanying debate about the mechanism and temperature of origin of the carbonates came several features suggestive of past microbial life in the carbonates. Although highly disputed, the suggestion spurred interest in habitable extreme environments on Earth and throughout the Solar System. A flotilla of subsequent spacecraft has redefined Mars from a volcanic planet to a hydrologically active planet that may have harbored life. Understanding the history and habitability of Mars depends on understanding the coupling of the atmosphere, surface, and subsurface. Sample return that brings back direct evidence from these diverse reservoirs is essential.
Collapse
Affiliation(s)
- Timothy J McCoy
- Department of Mineral Sciences, National Museum of Natural History, Smithsonian Institution, 10th and Constitution Avenues NW, Washington, DC 20560-0119, USA.
| | | | | |
Collapse
|
16
|
Fajardo-Cavazos P, Langenhorst F, Melosh HJ, Nicholson WL. Bacterial spores in granite survive hypervelocity launch by spallation: implications for lithopanspermia. ASTROBIOLOGY 2009; 9:647-57. [PMID: 19778276 DOI: 10.1089/ast.2008.0326] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
Bacterial spores are considered good candidates for endolithic life-forms that could survive interplanetary transport by natural impact processes, i.e., lithopanspermia. Organisms within rock can only embark on an interplanetary journey if they survive ejection from the surface of the donor planet and the associated extremes of compressional shock, heating, and acceleration. Previous simulation experiments have measured each of these three stresses more or less in isolation of one another, and results to date indicate that spores of the model organism Bacillus subtilis can survive each stress applied singly. Few simulations, however, have combined all three stresses simultaneously. Because considerable experimental and theoretical evidence supports a spallation mechanism for launch, we devised an experimental simulation of launch by spallation using the Ames Vertical Gun Range (AVGR). B. subtilis spores were applied to the surface of a granite target that was impacted from above by an aluminum projectile fired at 5.4 km/s. Granite spall fragments were captured in a foam recovery fixture and then recovered and assayed for shock damage by transmission electron microscopy and for spore survival by viability assays. Peak shock pressure at the impact site was calculated to be 57.1 GPa, though recovered spall fragments were only very lightly shocked at pressures of 5-7 GPa. Spore survival was calculated to be on the order of 10(-5), which is in agreement with results of previous static compressional shock experiments. These results demonstrate that endolithic spores can survive launch by spallation from a hypervelocity impact, which lends further evidence in favor of lithopanspermia theory.
Collapse
Affiliation(s)
- Patricia Fajardo-Cavazos
- Department of Microbiology and Cell Science, University of Florida , Space Life Sciences Laboratory, Kennedy Space Center, Florida 32899, USA
| | | | | | | |
Collapse
|
17
|
Nicholson WL. Ancient micronauts: interplanetary transport of microbes by cosmic impacts. Trends Microbiol 2009; 17:243-50. [PMID: 19464895 DOI: 10.1016/j.tim.2009.03.004] [Citation(s) in RCA: 74] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/15/2009] [Revised: 03/17/2009] [Accepted: 03/23/2009] [Indexed: 10/20/2022]
Abstract
Recent developments in microbiology, geophysics and planetary sciences raise the possibility that the planets in our solar system might not be biologically isolated. Hence, the possibility of lithopanspermia (the interplanetary transport of microbial passengers inside rocks) is presently being re-evaluated, with implications for the origin and evolution of life on Earth and within our solar system. Here, I summarize our current understanding of the physics of impacts, space transport of meteorites, and the potentiality of microorganisms to undergo and survive interplanetary transfer.
Collapse
Affiliation(s)
- Wayne L Nicholson
- Department of Microbiology and Cell Science, University of Florida, Space Life Sciences Laboratory, Building M6-1025, Room 201-B, Kennedy Space Center, FL 32899, USA.
| |
Collapse
|
18
|
Horneck G, Stöffler D, Ott S, Hornemann U, Cockell CS, Moeller R, Meyer C, de Vera JP, Fritz J, Schade S, Artemieva NA. Microbial rock inhabitants survive hypervelocity impacts on Mars-like host planets: first phase of lithopanspermia experimentally tested. ASTROBIOLOGY 2008; 8:17-44. [PMID: 18237257 DOI: 10.1089/ast.2007.0134] [Citation(s) in RCA: 41] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/12/2023]
Abstract
The scenario of lithopanspermia describes the viable transport of microorganisms via meteorites. To test the first step of lithopanspermia, i.e., the impact ejection from a planet, systematic shock recovery experiments within a pressure range observed in martian meteorites (5-50 GPa) were performed with dry layers of microorganisms (spores of Bacillus subtilis, cells of the endolithic cyanobacterium Chroococcidiopsis, and thalli and ascocarps of the lichen Xanthoria elegans) sandwiched between gabbro discs (martian analogue rock). Actual shock pressures were determined by refractive index measurements and Raman spectroscopy, and shock temperature profiles were calculated. Pressure-effect curves were constructed for survival of B. subtilis spores and Chroococcidiopsis cells from the number of colony-forming units, and for vitality of the photobiont and mycobiont of Xanthoria elegans from confocal laser scanning microscopy after live/dead staining (FUN-I). A vital launch window for the transport of rock-colonizing microorganisms from a Mars-like planet was inferred, which encompasses shock pressures in the range of 5 to about 40 GPa for the bacterial endospores and the lichens, and a more limited shock pressure range for the cyanobacterium (from 5-10 GPa). The results support concepts of viable impact ejections from Mars-like planets and the possibility of reseeding early Earth after asteroid cataclysms.
Collapse
Affiliation(s)
- Gerda Horneck
- German Aerospace Center DLR, Institute of Aerospace Medicine, Köln, Germany.
| | | | | | | | | | | | | | | | | | | | | |
Collapse
|
19
|
|
20
|
Preblich BS, McEwen AS, Studer DM. Mapping rays and secondary craters from the Martian crater Zunil. ACTA ACUST UNITED AC 2007. [DOI: 10.1029/2006je002817] [Citation(s) in RCA: 52] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
21
|
Perry RS, Hartmann WK. Mars primordial crust: unique sites for investigating proto-biologic properties. ORIGINS LIFE EVOL B 2006; 36:533-40. [PMID: 17131091 DOI: 10.1007/s11084-006-9037-2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 10/23/2022]
Abstract
The Martian meteorite collection suggests that intact outcrops or boulder-scale fragments of the 4.5 Ga Martian crust exist within tens of meters of the present day surface of Mars. Mars may be the only planet where such primordial crust samples, representing the first 100 Ma of a planet's environment, are available. The primordial crust has been destroyed on Earth by plate tectonics and other geological phenomena and is buried on the Moon under hundreds or thousands of meters of megaregoltih. Early Mars appears to have been remarkably similar to early Earth, and samples of rock from the first few Ma or first 100 Ma may reveal "missing link" proto-biological forms that could shed light on the transition from abiotic organic chemistry to living cells. Such organic snapshots of nascent life are unlikely to be found on Earth.
Collapse
Affiliation(s)
- Randall S Perry
- Department of Earth Science and Engineering, South Kensington Campus, Impacts and Astromaterials Research Centre, Imperial College, London, UK.
| | | |
Collapse
|
22
|
Tornabene LL, Moersch JE, McSween HY, McEwen AS, Piatek JL, Milam KA, Christensen PR. Identification of large (2–10 km) rayed craters on Mars in THEMIS thermal infrared images: Implications for possible Martian meteorite source regions. ACTA ACUST UNITED AC 2006. [DOI: 10.1029/2005je002600] [Citation(s) in RCA: 85] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
23
|
Gladman B, Dones L, Levison HF, Burns JA. Impact seeding and reseeding in the inner solar system. ASTROBIOLOGY 2005; 5:483-96. [PMID: 16078867 DOI: 10.1089/ast.2005.5.483] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/03/2023]
Abstract
Assuming that asteroidal and cometary impacts onto Earth can liberate material containing viable microorganisms, we studied the subsequent distribution of the escaping impact ejecta throughout the inner Solar System on time scales of 30,000 years. Our calculations of the delivery rates of this terrestrial material to Mars and Venus, as well as back to Earth, indicate that transport to great heliocentric distances may occur in just a few years and that the departure speed is significant. This material would have been efficiently and quickly dispersed throughout the Solar System. Our study considers the fate of all the ejected mass (not just the slowly moving material), and tabulates impact rates onto Venus and Mars in addition to Earth itself. Expressed as a fraction of the ejected particles, roughly 0.1% and 0.001% of the ejecta particles would have reached Venus and Mars, respectively, in 30,000 years, making the biological seeding of those planets viable if the target planet supported a receptive environment at the time. In terms of possibly safeguarding terrestrial life by allowing its survival in space while our planet cools after a major killing thermal pulse, we show via our 30,000- year integrations that efficient return to Earth continues for this duration. Our calculations indicate that roughly 1% of the launched mass returns to Earth after a major impact regardless of the impactor speed; although a larger mass is ejected following impacts at higher speeds, a smaller fraction of these ejecta is returned. Early bacterial life on Earth could have been safeguarded from any purported impact-induced extinction by temporary refuge in space.
Collapse
Affiliation(s)
- Brett Gladman
- Department of Physics and Astronomy, University of British Columbia, Vancouver, British Columbia, Canada.
| | | | | | | |
Collapse
|
24
|
Beck P, Gillet P, El Goresy A, Mostefaoui S. Timescales of shock processes in chondritic and martian meteorites. Nature 2005; 435:1071-4. [PMID: 15973403 DOI: 10.1038/nature03616] [Citation(s) in RCA: 18] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2004] [Accepted: 03/24/2005] [Indexed: 11/09/2022]
Abstract
The accretion of the terrestrial planets from asteroid collisions and the delivery to the Earth of martian and lunar meteorites has been modelled extensively. Meteorites that have experienced shock waves from such collisions can potentially be used to reveal the accretion process at different stages of evolution within the Solar System. Here we have determined the peak pressure experienced and the duration of impact in a chondrite and a martian meteorite, and have combined the data with impact scaling laws to infer the sizes of the impactors and the associated craters on the meteorite parent bodies. The duration of shock events is inferred from trace element distributions between coexisting high-pressure minerals in the shear melt veins of the meteorites. The shock duration and the associated sizes of the impactor are found to be much greater in the chondrite (approximately 1 s and 5 km, respectively) than in the martian meteorite (approximately 10 ms and 100 m). The latter result compares well with numerical modelling studies of cratering on Mars, and we suggest that martian meteorites with similar, recent ejection ages (10(5) to 10(7) years ago) may have originated from the same few square kilometres on Mars.
Collapse
Affiliation(s)
- P Beck
- Laboratoire de Sciences de la Terre, CNRS UMR 5570, Ecole Normale Supérieure de Lyon et Université Lyon I, 46 allée d'Italie, 69364 Lyon Cedex 7, France.
| | | | | | | |
Collapse
|
25
|
Belleguic V, Lognonné P, Wieczorek M. Constraints on the Martian lithosphere from gravity and topography data. ACTA ACUST UNITED AC 2005. [DOI: 10.1029/2005je002437] [Citation(s) in RCA: 103] [Impact Index Per Article: 5.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
|
26
|
Wadhwa M. Treasure Hunting to the Ends of the Earth. Science 2004. [DOI: 10.1126/science.1091923] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/02/2022]
Abstract
Meteorites, Ice, and Antarctica
A Personal Account. by William A. Cassidy. Cambridge University Press, New York, 2003. 363 pp. $25, £19.95. ISBN 0-521-25872-3.
Cassidy offers a firsthand account of his 15 years of work collecting meteorites in the Antarctic and of the contributions Antarctic meteorites have made (and may yet make) to our understanding of the Moon, Mars, and the asteroids.
Collapse
Affiliation(s)
- Meenakshi Wadhwa
- The reviewer is in the Department of Geology, The Field Museum, 1400 South Lake Shore Drive, Chicago, IL 60605-2496, USA
| |
Collapse
|
27
|
Wieczorek MA. Thickness of the Martian crust: Improved constraints from geoid-to-topography ratios. ACTA ACUST UNITED AC 2004. [DOI: 10.1029/2003je002153] [Citation(s) in RCA: 182] [Impact Index Per Article: 8.7] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/10/2022]
|
28
|
McSween HY, Grove TL, Wyatt MB. Constraints on the composition and petrogenesis of the Martian crust. ACTA ACUST UNITED AC 2003. [DOI: 10.1029/2003je002175] [Citation(s) in RCA: 116] [Impact Index Per Article: 5.3] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/09/2022]
Affiliation(s)
- Harry Y. McSween
- Department of Earth and Planetary Sciences; University of Tennessee; Knoxville Tennessee USA
| | - Timothy L. Grove
- Department of Earth, Atmospheric and Planetary Sciences; Massachusetts Institute of Technology; Cambridge Massachusetts USA
| | - Michael B. Wyatt
- Department of Geological Sciences; Arizona State University; Tempe Arizona USA
| |
Collapse
|
29
|
Abstract
It is now generally accepted that meteorite-size fragments of rock can be ejected from planetary bodies. Numerical studies of the orbital evolution of such planetary ejecta are consistent with the observed cosmic ray exposure times and infall rates of these meteorites. All of these numerical studies agree that a substantial fraction (up to one-third) of the ejecta from any planet in our Solar System is eventually thrown out of the Solar System during encounters with the giant planets Jupiter and Saturn. In this paper I examine the probability that such interstellar meteorites might be captured into a distant solar system and fall onto a terrestrial planet in that system within a given interval of time. The overall conclusion is that it is very unlikely that even a single meteorite originating on a terrestrial planet in our solar system has fallen onto a terrestrial planet in another stellar system, over the entire period of our Solar System's existence. Although viable microorganisms may be readily exchanged between planets in our solar system through the interplanetary transfer of meteoritic material, it seems that the origin of life on Earth must be sought within the confines of the Solar System, not abroad in the galaxy.
Collapse
Affiliation(s)
- H J Melosh
- Lunar and Planetary Laboratory, University of Arizona, Tucson 85721, USA.
| |
Collapse
|
30
|
Benardini JN, Sawyer J, Venkateswaran K, Nicholson WL. Spore UV and acceleration resistance of endolithic Bacillus pumilus and Bacillus subtilis isolates obtained from Sonoran desert basalt: implications for lithopanspermia. ASTROBIOLOGY 2003; 3:709-717. [PMID: 14987476 DOI: 10.1089/153110703322736033] [Citation(s) in RCA: 38] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/24/2023]
Abstract
Bacterial spores have been used as model systems for studying the theory of interplanetary transport of life by natural processes such as asteroidal or cometary impacts (i.e., lithopanspermia). Because current spallation theory predicts that near-surface rocks are ideal candidates for planetary ejection and surface basalts are widely distributed throughout the rocky planets, we isolated spore-forming bacteria from the interior of near-subsurface basalt rocks collected in the Sonoran desert near Tucson, Arizona. Spores were found to inhabit basalt at very low concentrations (</=28 colony-forming units/g) in these samples. Six isolates identified as being most closely related to Bacillus pumilus and one Bacillus subtilis isolate were recovered from near-subsurface basalt samples. Populations of purified spores prepared from the isolated strains were subjected to 254-nm UV and ballistics tests in order to assess their resistance to UV radiation and to extreme acceleration shock, two proposed lethal factors for spores during interplanetary transfer. Specific natural isolates of B. pumilus were found to be substantially more resistant to UV and extreme acceleration than were reference laboratory strains of B. subtilis, the benchmark organism, suggesting that spores of environmental B. pumilus isolates may be more likely to survive the rigors of interplanetary transfer.
Collapse
Affiliation(s)
- James N Benardini
- Department of Veterinary Science and Microbiology, University of Arizona, Tucson, Arizona, USA
| | | | | | | |
Collapse
|