1
|
Nayak SS, Panigrahi M, Dutt T. Genome-wide insights into selection signatures for transcription factor binding sites in cattle ROH regions. Mamm Genome 2025:10.1007/s00335-025-10113-3. [PMID: 39984753 DOI: 10.1007/s00335-025-10113-3] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/16/2024] [Accepted: 02/10/2025] [Indexed: 02/23/2025]
Abstract
Runs of Homozygosity (ROH) regions are characterized by homozygous genotypes inherited from a common ancestor, often arising from positive selection for adaptive traits. These homozygous regions may arise due to inbreeding, selective breeding, or demographic events like population bottlenecks. Transcription factor binding sites (TFBS) are short, specific DNA sequences where transcription factors bind to regulate the expression of nearby genes. These sites are essential for controlling biological processes such as development, metabolism, and immune response. TFBS act as key regulatory elements, and their variations can influence gene activity, contributing to phenotypic differences and adaptation. ROH often encompass regulatory elements, including TFBS, suggesting a functional connection between these genomic features. This study investigates TFBS within ROH regions in 297 animals of six cattle breeds: Gir (48), Tharparkar (72), Vrindavani (72), Frieswal (14), Holstein Friesian (63), and Jersey (28). Utilizing genotyped data of these animals, we identified genomic regions enriched with ROH. We focused on the central 10 kb regions of 50 ROH regions common across all breeds. Within these regions, 450 motifs were examined, identifying 168 transcription factors potentially binding to these regions. The results emphasize the role of TFBS in gene regulation and adaptive processes. By linking ROH patterns to regulatory elements, this study enhances our understanding of the genetic architecture underlying phenotypic traits and their adaptation to environmental pressures. These findings provide insights into the molecular mechanisms influencing genetic variation in cattle populations.
Collapse
Affiliation(s)
- Sonali Sonejita Nayak
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| | - Manjit Panigrahi
- Division of Animal Genetics, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India.
| | - Triveni Dutt
- Livestock Production and Management Section, ICAR-Indian Veterinary Research Institute, Izatnagar, Bareilly, 243122, UP, India
| |
Collapse
|
2
|
Chen J, Garfinkel DJ, Bergman CM. Horizontal Transfer and Recombination Fuel Ty4 Retrotransposon Evolution in Saccharomyces. Genome Biol Evol 2025; 17:evaf004. [PMID: 39786570 PMCID: PMC11739139 DOI: 10.1093/gbe/evaf004] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/10/2024] [Revised: 09/26/2024] [Accepted: 12/27/2024] [Indexed: 01/12/2025] Open
Abstract
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes; however, the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two Saccharomyces mikatae strains. We find evidence for multiple independent HTT events introducing the Tsu4 subfamily into specific lineages of Saccharomyces paradoxus, Saccharomyces cerevisiae, Saccharomyces eubayanus, Saccharomyces kudriavzevii and the ancestor of the S. mikatae/Saccharomyces jurei species pair. In both S. mikatae and S. kudriavzevii, we identified novel Ty4 clades that were independently generated through recombination between resident and horizontally transferred subfamilies. Our results reveal that recurrent HTT and lineage-specific extinction events lead to a complex pattern of Ty4 subfamily content across the genus Saccharomyces. Moreover, our results demonstrate how HTT can lead to coexistence of related retrotransposon subfamilies in the same genome that can fuel evolution of new retrotransposon clades via recombination.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, 120 E. Green St., Athens, GA, USA
| | - David J Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, 120 E. Green St., Athens, GA, USA
| | - Casey M Bergman
- Institute of Bioinformatics, University of Georgia, 120 E. Green St., Athens, GA, USA
- Department of Genetics, University of Georgia, 120 E. Green St., Athens, GA, USA
| |
Collapse
|
3
|
Kiyokawa K, Sakuma T, Moriguchi K, Sugiyama M, Akao T, Yamamoto T, Suzuki K. Conversion of polyploid and alloploid Saccharomyces sensu stricto strains to leu2 mutants by genome DNA editing. Appl Microbiol Biotechnol 2024; 108:416. [PMID: 38995331 PMCID: PMC11245423 DOI: 10.1007/s00253-024-13242-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/05/2024] [Revised: 06/06/2024] [Accepted: 06/20/2024] [Indexed: 07/13/2024]
Abstract
A large number of recombinant plasmids for the yeast Saccharomyces cerevisiae have been constructed and accumulated over the past four decades. It is desirable to apply the recombinant plasmid resources to Saccharomyces sensu stricto species group, which contains an increasing number of natural isolate and industrial strains. The application to the group encounters a difficulty. Natural isolates and industrial strains are exclusively prototrophic and polyploid, whereas direct application of most conventional plasmid resources imposes a prerequisite in host yeast strains of an auxotrophic mutation (i.e., leu2) that is rescued by a selection gene (e.g., LEU2) on the recombinant plasmids. To solve the difficulty, we aimed to generate leu2 mutants from yeast strains belonging to the yeast Saccharomyces sensu stricto species group by DNA editing. First, we modified an all-in-one type CRISPR-Cas9 plasmid pML104 by adding an antibiotic-resistance gene and designing guide sequences to target the LEU2 gene and to enable wide application in this yeast group. Then, the resulting CRISPR-Cas9 plasmids were exploited to seven strains belonging to five species of the group, including natural isolate, industrial, and allopolyploid strains. Colonies having the designed mutations in the gene appeared successfully by introducing the plasmids and assisting oligonucleotides to the strains. Most of the plasmids and resultant leu2- mutants produced in this study will be deposited in several repository organizations. KEY POINTS: • All-in-one type CRISPR-Cas9 plasmids targeting LEU2 gene were designed for broad application to Saccharomyces sensu stricto group species strains • Application of the plasmids generated leu2 mutants from strains including natural isolates, industrial, and allopolyploid strains • The easy conversion to leu2 mutants permits free access to recombinant plasmids having a LEU2 gene.
Collapse
Affiliation(s)
- Kazuya Kiyokawa
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 731-5193, Japan
| | - Tetsushi Sakuma
- Program of Mathematical and Life Sciences and Frontier Development Program for Genome Editing, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Kazuki Moriguchi
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
| | - Minetaka Sugiyama
- Department of Food Sciences and Biotechnology, Faculty of Life Sciences, Hiroshima Institute of Technology, Hiroshima City, Hiroshima, 731-5193, Japan
| | - Takeshi Akao
- National Research Institute of Brewing, Higashi-Hiroshima City, Hiroshima, 739-0046, Japan
| | - Takashi Yamamoto
- Program of Mathematical and Life Sciences and Frontier Development Program for Genome Editing, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan
- Genome Editing Innovation Center, Hiroshima University, Higashi-Hiroshima, Hiroshima, 731-5193, Japan
| | - Katsunori Suzuki
- Program of Basic Biology, Graduate School of Integrated Sciences for Life, Hiroshima University, Higashi-Hiroshima, Hiroshima, 739-8526, Japan.
| |
Collapse
|
4
|
Foster ZSL, Tupper AS, Press CM, Grünwald NJ. Krisp: A Python package to aid in the design of CRISPR and amplification-based diagnostic assays from whole genome sequencing data. PLoS Comput Biol 2024; 20:e1012139. [PMID: 38768250 PMCID: PMC11142669 DOI: 10.1371/journal.pcbi.1012139] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 05/31/2024] [Accepted: 05/06/2024] [Indexed: 05/22/2024] Open
Abstract
Recent pandemics like COVID-19 highlighted the importance of rapidly developing diagnostics to detect evolving pathogens. CRISPR-Cas technology has recently been used to develop diagnostic assays for sequence-specific recognition of DNA or RNA. These assays have similar sensitivity to the gold standard qPCR but can be deployed as easy to use and inexpensive test strips. However, the discovery of diagnostic regions of a genome flanked by conserved regions where primers can be designed requires extensive bioinformatic analyses of genome sequences. We developed the Python package krisp to aid in the discovery of primers and diagnostic sequences that differentiate groups of samples from each other, using either unaligned genome sequences or a variant call format (VCF) file as input. Krisp has been optimized to handle large datasets by using efficient algorithms that run in near linear time, use minimal RAM, and leverage parallel processing when available. The validity of krisp results has been demonstrated in the laboratory with the successful design of a CRISPR diagnostic assay to distinguish the sudden oak death pathogen Phytophthora ramorum from closely related Phytophthora species. Krisp is released open source under a permissive license with all the documentation needed to quickly design CRISPR-Cas diagnostic assays.
Collapse
Affiliation(s)
- Zachary S. L. Foster
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Andrew S. Tupper
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Caroline M. Press
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| | - Niklaus J. Grünwald
- Horticultural Crops Disease and Pest Management Research Unit, USDA Agricultural Research Service, Corvallis, Oregon, United States of America
| |
Collapse
|
5
|
Legrand S, Saifudeen A, Bordelet H, Vernerey J, Guille A, Bignaud A, Thierry A, Acquaviva L, Gaudin M, Sanchez A, Johnson D, Friedrich A, Schacherer J, Neale MJ, Borde V, Koszul R, Llorente B. Absence of chromosome axis protein recruitment prevents meiotic recombination chromosome-wide in the budding yeast Lachancea kluyveri. Proc Natl Acad Sci U S A 2024; 121:e2312820121. [PMID: 38478689 PMCID: PMC10962940 DOI: 10.1073/pnas.2312820121] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/26/2023] [Accepted: 01/24/2024] [Indexed: 03/27/2024] Open
Abstract
Meiotic recombination shows broad variations across species and along chromosomes and is often suppressed at and around genomic regions determining sexual compatibility such as mating type loci in fungi. Here, we show that the absence of Spo11-DSBs and meiotic recombination on Lakl0C-left, the chromosome arm containing the sex locus of the Lachancea kluyveri budding yeast, results from the absence of recruitment of the two chromosome axis proteins Red1 and Hop1, essential for proper Spo11-DSBs formation. Furthermore, cytological observation of spread pachytene meiotic chromosomes reveals that Lakl0C-left does not undergo synapsis. However, we show that the behavior of Lakl0C-left is independent of its particularly early replication timing and is not accompanied by any peculiar chromosome structure as detectable by Hi-C in this yet poorly studied yeast. Finally, we observed an accumulation of heterozygous mutations on Lakl0C-left and a sexual dimorphism of the haploid meiotic offspring, supporting a direct effect of this absence of meiotic recombination on L. kluyveri genome evolution and fitness. Because suppression of meiotic recombination on sex chromosomes is widely observed across eukaryotes, the mechanism for recombination suppression described here may apply to other species, with the potential to impact sex chromosome evolution.
Collapse
Affiliation(s)
- Sylvain Legrand
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Asma Saifudeen
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Hélène Bordelet
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Julien Vernerey
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Arnaud Guille
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Amaury Bignaud
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Agnès Thierry
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Laurent Acquaviva
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Maxime Gaudin
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| | - Aurore Sanchez
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Dominic Johnson
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Anne Friedrich
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Joseph Schacherer
- Université de Strasbourg, CNRS, Génétique moléculaire, génomique, microbiologie UMR 7156, Strasbourg67000, France
| | - Matthew J. Neale
- Genome Damage and Stability Centre, School of Life Sciences, University of Sussex, BrightonBN1 9RH, United Kingdom
| | - Valérie Borde
- Institut Curie, Paris Sciences and Lettres University, Sorbonne Université, CNRS UMR 3244, Dynamics of Genetic Information, Paris75005, France
| | - Romain Koszul
- Institut Pasteur, CNRS UMR 3525, Université Paris Cité, Unité Régulation Spatiale des Génomes, Paris75015, France
| | - Bertrand Llorente
- Centre de recherche en cancérologie de Marseille, CNRS UMR 7258, INSERM, Aix Marseille Université, Institut Paoli Calmettes, Marseille13009, France
| |
Collapse
|
6
|
Ward CM, Onetto CA, Van Den Heuvel S, Cuijvers KM, Hale LJ, Borneman AR. Recombination, admixture and genome instability shape the genomic landscape of Saccharomyces cerevisiae derived from spontaneous grape ferments. PLoS Genet 2024; 20:e1011223. [PMID: 38517929 PMCID: PMC10990190 DOI: 10.1371/journal.pgen.1011223] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/28/2023] [Revised: 04/03/2024] [Accepted: 03/12/2024] [Indexed: 03/24/2024] Open
Abstract
Cultural exchange of fermentation techniques has driven the spread of Saccharomyces cerevisiae across the globe, establishing natural populations in many countries. Despite this, Oceania is thought to lack native populations of S. cerevisiae, only being introduced after colonisation. Here we investigate the genomic landscape of 411 S. cerevisiae isolated from spontaneous grape fermentations in Australia across multiple locations, years, and grape cultivars. Spontaneous fermentations contained highly recombined mosaic strains that exhibited high levels of genome instability. Assigning genomic windows to putative ancestral origin revealed that few closely related starter lineages have come to dominate the genetic landscape, contributing most of the genetic variation. Fine-scale phylogenetic analysis of loci not observed in strains of commercial wine origin identified widespread admixture with European derived beer yeast along with three independent admixture events from potentially endemic Oceanic lineages that was associated with genome instability. Finally, we investigated Australian ecological niches for basal isolates, identifying phylogenetically distinct S. cerevisiae of non-European, non-domesticated origin associated with admixture loci. Our results illustrate the effect commercial use of microbes may have on local microorganism genetic diversity and demonstrates the presence of non-domesticated, potentially endemic lineages of S. cerevisiae in Australian niches that are actively admixing.
Collapse
Affiliation(s)
- Chris M. Ward
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Cristobal A. Onetto
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| | | | | | - Laura J. Hale
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
| | - Anthony R. Borneman
- Australian Wine Research Institute, Urrbrae, South Australia, Australia
- University of Adelaide, Adelaide, South Australia, Australia
| |
Collapse
|
7
|
Chen J, Garfinkel DJ, Bergman CM. Horizontal transfer and recombination fuel Ty4 retrotransposon evolution in Saccharomyces. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.20.572574. [PMID: 38187645 PMCID: PMC10769310 DOI: 10.1101/2023.12.20.572574] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 01/09/2024]
Abstract
Horizontal transposon transfer (HTT) plays an important role in the evolution of eukaryotic genomes, however the detailed evolutionary history and impact of most HTT events remain to be elucidated. To better understand the process of HTT in closely-related microbial eukaryotes, we studied Ty4 retrotransposon subfamily content and sequence evolution across the genus Saccharomyces using short- and long-read whole genome sequence data, including new PacBio genome assemblies for two S. mikatae strains. We find evidence for multiple independent HTT events introducing the Tsu4 subfamily into specific lineages of S. paradoxus, S. cerevisiae, S. eubayanus, S. kudriavzevii and the ancestor of the S. mikatae/S. jurei species pair. In both S. mikatae and S. kudriavzevii, we identified novel Ty4 clades that were independently generated through recombination between resident and horizontally-transferred subfamilies. Our results reveal that recurrent HTT and lineage-specific extinction events lead to a complex pattern of Ty4 subfamily content across the genus Saccharomyces. Moreover, our results demonstrate how HTT can lead to coexistence of related retrotransposon subfamilies in the same genome that can fuel evolution of new retrotransposon clades via recombination.
Collapse
Affiliation(s)
- Jingxuan Chen
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
| | - David J. Garfinkel
- Department of Biochemistry and Molecular Biology, University of Georgia, Athens, GA, USA
| | - Casey M. Bergman
- Institute of Bioinformatics, University of Georgia, Athens, GA, USA
- Department of Genetics, University of Georgia, Athens, GA, USA
| |
Collapse
|
8
|
Sampaio JP. Saccharomyces eubayanus-a tale of endless mysteries. FEMS Yeast Res 2022; 22:6874781. [PMID: 36473695 DOI: 10.1093/femsyr/foac058] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/09/2022] [Revised: 10/19/2022] [Accepted: 11/13/2022] [Indexed: 12/12/2022] Open
Affiliation(s)
- José Paulo Sampaio
- UCIBIO, Departamento de Ciências da Vida, Faculdade de Ciências e Tecnologia, Universidade Nova de Lisboa, 2829-516 Caparica, Portugal
| |
Collapse
|
9
|
Parikh SB, Houghton C, Van Oss SB, Wacholder A, Carvunis A. Origins, evolution, and physiological implications of de novo genes in yeast. Yeast 2022; 39:471-481. [PMID: 35959631 PMCID: PMC9544372 DOI: 10.1002/yea.3810] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/20/2022] [Revised: 08/08/2022] [Accepted: 08/09/2022] [Indexed: 12/03/2022] Open
Abstract
De novo gene birth is the process by which new genes emerge in sequences that were previously noncoding. Over the past decade, researchers have taken advantage of the power of yeast as a model and a tool to study the evolutionary mechanisms and physiological implications of de novo gene birth. We summarize the mechanisms that have been proposed to explicate how noncoding sequences can become protein-coding genes, highlighting the discovery of pervasive translation of the yeast transcriptome and its presumed impact on evolutionary innovation. We summarize current best practices for the identification and characterization of de novo genes. Crucially, we explain that the field is still in its nascency, with the physiological roles of most young yeast de novo genes identified thus far still utterly unknown. We hope this review inspires researchers to investigate the true contribution of de novo gene birth to cellular physiology and phenotypic diversity across yeast strains and species.
Collapse
Affiliation(s)
- Saurin B. Parikh
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Carly Houghton
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - S. Branden Van Oss
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Aaron Wacholder
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| | - Anne‐Ruxandra Carvunis
- Department of Computational and Systems Biology, School of Medicine, Pittsburgh Center for Evolutionary Biology and EvolutionUniversity of PittsburghPittsburghPennsylvaniaUSA
| |
Collapse
|
10
|
Isolation and Comprehensive in Silico Characterisation of a New 3-Hydroxy-3-Methylglutaryl-Coenzyme A Reductase 4 (HMGR4) Gene Promoter from Salvia miltiorrhiza: Comparative Analyses of Plant HMGR Promoters. PLANTS 2022; 11:plants11141861. [PMID: 35890495 PMCID: PMC9318348 DOI: 10.3390/plants11141861] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 04/20/2022] [Revised: 06/29/2022] [Accepted: 07/12/2022] [Indexed: 11/17/2022]
Abstract
Salvia miltiorrhiza synthesises tanshinones with multidirectional therapeutic effects. These compounds have a complex biosynthetic pathway, whose first rate limiting enzyme is 3-hydroxy-3-methylglutaryl-coenzyme A reductase (HMGR). In the present study, a new 1646 bp fragment of the S. miltiorrhiza HMGR4 gene consisting of a promoter, 5′ untranslated region and part of a coding sequence was isolated and characterised in silico using bioinformatics tools. The results indicate the presence of a TATA box, tandem repeat and pyrimidine-rich sequence, and the absence of CpG islands. The sequence was rich in motifs recognised by specific transcription factors sensitive mainly to light, salicylic acid, bacterial infection and auxins; it also demonstrated many binding sites for microRNAs. Moreover, our results suggest that HMGR4 expression is possibly regulated during flowering, embryogenesis, organogenesis and the circadian rhythm. The obtained data were verified by comparison with microarray co-expression results obtained for Arabidopsis thaliana. Alignment of the isolated HMGR4 sequence with other plant HMGRs indicated the presence of many common binding sites for transcription factors, including conserved ones. Our findings provide valuable information for understanding the mechanisms that direct transcription of the S. miltiorrhiza HMGR4 gene.
Collapse
|
11
|
Rahmani RS, Decap D, Fostier J, Marchal K. BLSSpeller to discover novel regulatory motifs in maize. DNA Res 2022; 29:6651838. [PMID: 35904558 PMCID: PMC9358016 DOI: 10.1093/dnares/dsac029] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/18/2022] [Indexed: 11/13/2022] Open
Abstract
Abstract
With the decreasing cost of sequencing and availability of larger numbers of sequenced genomes, comparative genomics is becoming increasingly attractive to complement experimental techniques for the task of transcription factor (TF) binding site identification. In this study, we redesigned BLSSpeller, a motif discovery algorithm, to cope with larger sequence datasets. BLSSpeller was used to identify novel motifs in Zea mays in a comparative genomics setting with 16 monocot lineages. We discovered 61 motifs of which 20 matched previously described motif models in Arabidopsis. In addition, novel, yet uncharacterized motifs were detected, several of which are supported by available sequence-based and/or functional data. Instances of the predicted motifs were enriched around transcription start sites and contained signatures of selection. Moreover, the enrichment of the predicted motif instances in open chromatin and TF binding sites indicates their functionality, supported by the fact that genes carrying instances of these motifs were often found to be co-expressed and/or enriched in similar GO functions. Overall, our study unveiled several novel candidate motifs that might help our understanding of the genotype to phenotype association in crops.
Collapse
Affiliation(s)
- Razgar Seyed Rahmani
- Department of Plant Biotechnology and Bioinformatics, Ghent University , Gent, Belgium
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Dries Decap
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Jan Fostier
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
| | - Kathleen Marchal
- Department of Plant Biotechnology and Bioinformatics, Ghent University , Gent, Belgium
- Department of Information Technology, IDLab, Ghent University—imec , Gent, Belgium
- Department of Biochemistry, Genetics and Microbiology, University of Pretoria , Pretoria, South Africa
| |
Collapse
|
12
|
Molecular basis of cycloheximide resistance in the Ophiostomatales revealed. Curr Genet 2022; 68:505-514. [PMID: 35314878 DOI: 10.1007/s00294-022-01235-1] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2022] [Revised: 02/28/2022] [Accepted: 03/02/2022] [Indexed: 11/03/2022]
Abstract
Resistance to the antibiotic Cycloheximide has been reported for a number of fungal taxa. In particular, some yeasts are known to be highly resistant to this antibiotic. Early research showed that this resulted from a transition mutation in one of the 60S ribosomal protein genes. In addition to the yeasts, most genera and species in the Ophiostomatales are highly resistant to this antibiotic, which is widely used to selectively isolate these fungi. Whole-genome sequences are now available for numerous members of the Ophiostomatales providing an opportunity to determine whether the mechanism of resistance in these fungi is the same as that reported for yeast genera such as Kluyveromyces. We examined all the available genomes for the Ophiostomatales and discovered that a transition mutation in the gene coding for ribosomal protein eL42, which results in the substitution of the amino acid Proline to Glutamine, likely confers resistance to this antibiotic. This change across all genera in the Ophiostomatales suggests that the mutation arose early in the evolution of these fungi.
Collapse
|
13
|
Abstract
Here, we report a long-read genome assembly for Saccharomyces uvarum strain CBS 7001 based on PacBio whole-genome shotgun sequence data. Our assembly provides an improved reference genome for an important yeast in the Saccharomyces sensu stricto clade.
Collapse
|
14
|
He PY, Shao XQ, Duan SF, Han DY, Li K, Shi JY, Zhang RP, Han PJ, Wang QM, Bai FY. Highly diverged lineages of Saccharomyces paradoxus in temperate to subtropical climate zones in China. Yeast 2021; 39:69-82. [PMID: 34961959 DOI: 10.1002/yea.3688] [Citation(s) in RCA: 5] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/24/2021] [Revised: 12/19/2021] [Accepted: 12/21/2021] [Indexed: 11/06/2022] Open
Abstract
The wild yeast Saccharomyces paradoxus has become a new model in ecology and evolutionary biology. Different lineages of S. paradoxus have been recognized across the world, but the distribution and genetic diversity of the species remain unknown in China, where the origin of its sibling species S. cerevisiae lies. In this study, we investigated the ecological and geographic distribution of S. paradoxus through an extensive field survey in China and performed population genomic analysis on a set of S. paradoxus strains, including 27 strains, representing different geographic and ecological origins within China, and 59 strains representing all the known lineages of the species recognized in the other regions of the world so far. We found two distinct lineages of S. paradoxus in China. The majority of the Chinese strains studied belong to the Far East lineage, and six strains belong to a novel highly diverged lineage. The distribution of these two lineages overlaps ecologically and geographically in temperate to subtropical climate zones in China. With the addition of the new China lineage, the Eurasian population of S. paradoxus exhibits higher genetic diversity than the American population. We observed more possible lineage-specific introgression events from the Eurasian lineages than from the American lineages. Our results expand the knowledge on ecology, genetic diversity, biogeography, and evolution of S. paradoxus.
Collapse
Affiliation(s)
- Peng-Yu He
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Xu-Qian Shao
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China.,Genetic Engineering Division, China National Intellectual Property Administration (CNIPA), Beijing, China
| | - Shou-Fu Duan
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Da-Yong Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Kuan Li
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Jun-Yan Shi
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Ri-Peng Zhang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| | - Pei-Jie Han
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China
| | - Qi-Ming Wang
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, Institute of Life Sciences and Green Development, Hebei University, Baoding, Hebei, China
| | - Feng-Yan Bai
- State Key Laboratory of Mycology, Institute of Microbiology, Chinese Academy of Sciences, Beijing, China.,College of Life Sciences, University of Chinese Academy of Sciences, Beijing, China
| |
Collapse
|
15
|
Loewenthal G, Rapoport D, Avram O, Moshe A, Wygoda E, Itzkovitch A, Israeli O, Azouri D, Cartwright RA, Mayrose I, Pupko T. A probabilistic model for indel evolution: differentiating insertions from deletions. Mol Biol Evol 2021; 38:5769-5781. [PMID: 34469521 PMCID: PMC8662616 DOI: 10.1093/molbev/msab266] [Citation(s) in RCA: 14] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/27/2022] Open
Abstract
Insertions and deletions (indels) are common molecular evolutionary events. However, probabilistic models for indel evolution are under-developed due to their computational complexity. Here, we introduce several improvements to indel modeling: 1) While previous models for indel evolution assumed that the rates and length distributions of insertions and deletions are equal, here we propose a richer model that explicitly distinguishes between the two; 2) we introduce numerous summary statistics that allow approximate Bayesian computation-based parameter estimation; 3) we develop a method to correct for biases introduced by alignment programs, when inferring indel parameters from empirical data sets; and 4) using a model-selection scheme, we test whether the richer model better fits biological data compared with the simpler model. Our analyses suggest that both our inference scheme and the model-selection procedure achieve high accuracy on simulated data. We further demonstrate that our proposed richer model better fits a large number of empirical data sets and that, for the majority of these data sets, the deletion rate is higher than the insertion rate.
Collapse
Affiliation(s)
- Gil Loewenthal
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dana Rapoport
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Oren Avram
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Asher Moshe
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Elya Wygoda
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Alon Itzkovitch
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Omer Israeli
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Dana Azouri
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel.,School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Reed A Cartwright
- The Biodesign Institute, Arizona State University, Tempe, Arizona, USA.,School of Life Sciences, Arizona State University, Tempe, Arizona, USA
| | - Itay Mayrose
- School of Plant Sciences and Food Security, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| | - Tal Pupko
- The Shmunis School of Biomedicine and Cancer Research, George S. Wise Faculty of Life Sciences, Tel Aviv University, Tel Aviv 69978, Israel
| |
Collapse
|
16
|
Alsammar H, Delneri D. An update on the diversity, ecology and biogeography of the Saccharomyces genus. FEMS Yeast Res 2021; 20:5810663. [PMID: 32196094 PMCID: PMC7150579 DOI: 10.1093/femsyr/foaa013] [Citation(s) in RCA: 40] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/01/2019] [Accepted: 03/19/2020] [Indexed: 12/14/2022] Open
Abstract
Saccharomyces cerevisiae is the most extensively studied yeast and, over the last century, provided insights on the physiology, genetics, cellular biology and molecular mechanisms of eukaryotes. More recently, the increase in the discovery of wild strains, species and hybrids of the genus Saccharomyces has shifted the attention towards studies on genome evolution, ecology and biogeography, with the yeast becoming a model system for population genomic studies. The genus currently comprises eight species, some of clear industrial importance, while others are confined to natural environments, such as wild forests devoid from human domestication activities. To date, numerous studies showed that some Saccharomyces species form genetically diverged populations that are structured by geography, ecology or domestication activity and that the yeast species can also hybridize readily both in natural and domesticated environments. Much emphasis is now placed on the evolutionary process that drives phenotypic diversity between species, hybrids and populations to allow adaptation to different niches. Here, we provide an update of the biodiversity, ecology and population structure of the Saccharomyces species, and recapitulate the current knowledge on the natural history of Saccharomyces genus.
Collapse
Affiliation(s)
- Haya Alsammar
- Department of Biological Sciences, Faculty of Science, Kuwait University, P. O. Box 5969, Safat 13060, Kuwait
| | - Daniela Delneri
- Manchester Institute of Biotechnology, Faculty of Biology Medicine and Health, The University of Manchester, Manchester, M1 7DN, UK
| |
Collapse
|
17
|
Craig RJ, Hasan AR, Ness RW, Keightley PD. Comparative genomics of Chlamydomonas. THE PLANT CELL 2021; 33:1016-1041. [PMID: 33793842 PMCID: PMC8226300 DOI: 10.1093/plcell/koab026] [Citation(s) in RCA: 42] [Impact Index Per Article: 10.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 06/16/2020] [Accepted: 01/22/2021] [Indexed: 05/06/2023]
Abstract
Despite its role as a reference organism in the plant sciences, the green alga Chlamydomonas reinhardtii entirely lacks genomic resources from closely related species. We present highly contiguous and well-annotated genome assemblies for three unicellular C. reinhardtii relatives: Chlamydomonas incerta, Chlamydomonas schloesseri, and the more distantly related Edaphochlamys debaryana. The three Chlamydomonas genomes are highly syntenous with similar gene contents, although the 129.2 Mb C. incerta and 130.2 Mb C. schloesseri assemblies are more repeat-rich than the 111.1 Mb C. reinhardtii genome. We identify the major centromeric repeat in C. reinhardtii as a LINE transposable element homologous to Zepp (the centromeric repeat in Coccomyxa subellipsoidea) and infer that centromere locations and structure are likely conserved in C. incerta and C. schloesseri. We report extensive rearrangements, but limited gene turnover, between the minus mating type loci of these Chlamydomonas species. We produce an eight-species core-Reinhardtinia whole-genome alignment, which we use to identify several hundred false positive and missing genes in the C. reinhardtii annotation and >260,000 evolutionarily conserved elements in the C. reinhardtii genome. In summary, these resources will enable comparative genomics analyses for C. reinhardtii, significantly extending the analytical toolkit for this emerging model system.
Collapse
Affiliation(s)
| | - Ahmed R Hasan
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Rob W Ness
- Department of Biology, University of Toronto Mississauga, Mississauga, Onatrio, Canada L5L 1C6
| | - Peter D Keightley
- School of Biological Sciences, Institute of Evolutionary Biology, University of Edinburgh, EH9 3FL Edinburgh, UK
| |
Collapse
|
18
|
Friedrich P, Forkel SJ, Amiez C, Balsters JH, Coulon O, Fan L, Goulas A, Hadj-Bouziane F, Hecht EE, Heuer K, Jiang T, Latzman RD, Liu X, Loh KK, Patil KR, Lopez-Persem A, Procyk E, Sallet J, Toro R, Vickery S, Weis S, Wilson CRE, Xu T, Zerbi V, Eickoff SB, Margulies DS, Mars RB, Thiebaut de Schotten M. Imaging evolution of the primate brain: the next frontier? Neuroimage 2021; 228:117685. [PMID: 33359344 PMCID: PMC7116589 DOI: 10.1016/j.neuroimage.2020.117685] [Citation(s) in RCA: 48] [Impact Index Per Article: 12.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2020] [Revised: 12/14/2020] [Accepted: 12/16/2020] [Indexed: 11/22/2022] Open
Abstract
Evolution, as we currently understand it, strikes a delicate balance between animals' ancestral history and adaptations to their current niche. Similarities between species are generally considered inherited from a common ancestor whereas observed differences are considered as more recent evolution. Hence comparing species can provide insights into the evolutionary history. Comparative neuroimaging has recently emerged as a novel subdiscipline, which uses magnetic resonance imaging (MRI) to identify similarities and differences in brain structure and function across species. Whereas invasive histological and molecular techniques are superior in spatial resolution, they are laborious, post-mortem, and oftentimes limited to specific species. Neuroimaging, by comparison, has the advantages of being applicable across species and allows for fast, whole-brain, repeatable, and multi-modal measurements of the structure and function in living brains and post-mortem tissue. In this review, we summarise the current state of the art in comparative anatomy and function of the brain and gather together the main scientific questions to be explored in the future of the fascinating new field of brain evolution derived from comparative neuroimaging.
Collapse
Affiliation(s)
- Patrick Friedrich
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany.
| | - Stephanie J Forkel
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France; Centre for Neuroimaging Sciences, Department of Neuroimaging, Institute of Psychiatry, Psychology and Neuroscience, King's College London, London, United Kingdom
| | - Céline Amiez
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Joshua H Balsters
- Department of Psychology, Royal Holloway University of London, United Kingdom
| | - Olivier Coulon
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Lingzhong Fan
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China
| | - Alexandros Goulas
- Institute of Computational Neuroscience, University Medical Center Hamburg-Eppendorf, Hamburg University, Hamburg, Germany
| | - Fadila Hadj-Bouziane
- Lyon Neuroscience Research Center, ImpAct Team, INSERM U1028, CNRS UMR5292, Université Lyon 1, Bron, France
| | - Erin E Hecht
- Department of Human Evolutionary Biology, Harvard University, Cambridge, MA, United States
| | - Katja Heuer
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Max Planck Institute for Human Cognitive and Brain Sciences, Leipzig, Germany
| | - Tianzi Jiang
- Brainnetome Center and National Laboratory of Pattern Recognition, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; CAS Center for Excellence in Brain Science and Intelligence Technology, Institute of Automation, Chinese Academy of Sciences, Beijing 100190, China; The Queensland Brain Institute, University of Queensland, Brisbane QLD 4072, Australia
| | - Robert D Latzman
- Department of Psychology, Georgia State University, Atlanta, United States
| | - Xiaojin Liu
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Kep Kee Loh
- Institut de Neurosciences de la Timone, Aix Marseille Univ, CNRS, UMR 7289, Marseille, France; Institute for Language, Communication, and the Brain, Aix-Marseille University, Marseille, France
| | - Kaustubh R Patil
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Alizée Lopez-Persem
- Frontlab, Institut du Cerveau et de la Moelle épinière (ICM), UPMC UMRS 1127, Inserm U 1127, CNRS UMR 7225, Paris, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Emmanuel Procyk
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Jerome Sallet
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France; Wellcome Centre for Integrative Neuroimaging, Department of Experimental Psychology, University of Oxford, Oxford, United Kingdom
| | - Roberto Toro
- Center for Research and Interdisciplinarity (CRI), Université de Paris, Inserm, Paris 75004, France; Neuroscience department, Institut Pasteur, UMR 3571, CNRS, Université de Paris, Paris 75015, France
| | - Sam Vickery
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Susanne Weis
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Charles R E Wilson
- Univ Lyon, Université Lyon 1, Inserm, Stem Cell and Brain Research Institute, U1208 Bron, France
| | - Ting Xu
- Child Mind Institute, New York, United States
| | - Valerio Zerbi
- Neural Control of Movement Lab, Department of Health Sciences and Technology, ETH Zurich, Zurich, Switzerland
| | - Simon B Eickoff
- Institute of Systems Neuroscience, Medical Faculty, Heinrich-Heine University Düsseldorf, Germany; Institute of Neuroscience and Medicine (Brain & Behaviour, INM-7), Research Center Jülich, Germany
| | - Daniel S Margulies
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Integrative Neuroscience and Cognition Center (UMR 8002), Centre National de la Recherche Scientifique (CNRS) and Université de Paris, 75006, Paris, France
| | - Rogier B Mars
- Wellcome Centre for Integrative Neuroimaging, Centre for Functional MRI of the Brain (FMRIB), Nuffield Department of Clinical Neurosciences, John Radcliffe Hospital, University of Oxford, Oxford, United Kingdom; Donders Institute for Brain, Cognition and Behaviour, Radboud University Nijmegen, Nijmegen, Netherlands
| | - Michel Thiebaut de Schotten
- Brain Connectivity and Behaviour Laboratory, Sorbonne Universities, Paris, France; Groupe d'Imagerie Neurofonctionnelle, Institut des Maladies Neurodégénératives-UMR 5293, CNRS, CEA, University of Bordeaux, Bordeaux, France.
| |
Collapse
|
19
|
Roy B, Granas D, Bragg F, Cher JAY, White MA, Stormo GD. Autoregulation of yeast ribosomal proteins discovered by efficient search for feedback regulation. Commun Biol 2020; 3:761. [PMID: 33311538 PMCID: PMC7732827 DOI: 10.1038/s42003-020-01494-z] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/23/2020] [Accepted: 11/15/2020] [Indexed: 11/13/2022] Open
Abstract
Post-transcriptional autoregulation of gene expression is common in bacteria but many fewer examples are known in eukaryotes. We used the yeast collection of genes fused to GFP as a rapid screen for examples of feedback regulation in ribosomal proteins by overexpressing a non-regulatable version of a gene and observing the effects on the expression of the GFP-fused version. We tested 95 ribosomal protein genes and found a wide continuum of effects, with 30% showing at least a 3-fold reduction in expression. Two genes, RPS22B and RPL1B, showed over a 10-fold repression. In both cases the cis-regulatory segment resides in the 5’ UTR of the gene as shown by placing that segment of the mRNA upstream of GFP alone and demonstrating it is sufficient to cause repression of GFP when the protein is over-expressed. Further analyses showed that the intron in the 5’ UTR of RPS22B is required for regulation, presumably because the protein inhibits splicing that is necessary for translation. The 5’ UTR of RPL1B contains a sequence and structure motif that is conserved in the binding sites of Rpl1 orthologs from bacteria to mammals, and mutations within the motif eliminate repression. Here, the authors screen for feedback regulation of ribosomal proteins by overexpressing a non- regulatable version of a gene and observing its effects on the expression of the GFP-fused version. They find that 30% show at least a 3-fold reduction in expression and two genes show a 10-fold reduction with the regulatory site being in the 5’ untranslated region of the gene.
Collapse
Affiliation(s)
- Basab Roy
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| | - David Granas
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Fredrick Bragg
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Jonathan A Y Cher
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Michael A White
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA
| | - Gary D Stormo
- Department of Genetics and Center for Genome Sciences and Systems Biology, Washington University School of Medicine, St Louis, MO, 63110, USA.
| |
Collapse
|
20
|
Seto K, Mok W, Stone J. Bridging the gap between theory and practice in elucidating modular gene regulatory sequence organisation within genomes. Genome 2020; 63:281-289. [PMID: 32114793 DOI: 10.1139/gen-2019-0150] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
Abstract
Changes to promoter regions probably have been responsible for many morphological evolutionary transitions, especially in animals. This idea is becoming testable, as data from genome projects amass and enable bioinformaticians to conduct comparative sequence analyses and test for correlations between genotypic similarities or differences and phenotypic likeness or disparity. Although such practical pursuits have initiated some theoretical considerations, a conceptual framework for understanding promoter region evolution, potentially effecting morphological evolution, is only starting to emerge, predominantly resulting from computational research. We contribute to this framework by specifying three big problems for promoter region research; reviewing computational research on promoter region evolution; and exemplifying a topic for future promoter region research - module evolution.
Collapse
Affiliation(s)
- Kelly Seto
- Department of Molecular & Medical Genetics, University of Toronto, Toronto, ON M5S 1A8, Canada
| | - Wendy Mok
- Department of Molecular Biology & Biophysics, University of Connecticut Health, Farmington, CT 06032, USA
| | - Jonny Stone
- Department of Biology, McMaster University, Hamilton, ON L8S 4K1, Canada; SHARCNet, McMaster University, Hamilton, ON L8S 4L8, Canada; Origins Institute, McMaster University, Hamilton, ON L8S 4M1, Canada
| |
Collapse
|
21
|
Saccharomyces arboricola and Its Hybrids’ Propensity for Sake Production: Interspecific Hybrids Reveal Increased Fermentation Abilities and a Mosaic Metabolic Profile. FERMENTATION-BASEL 2020. [DOI: 10.3390/fermentation6010014] [Citation(s) in RCA: 7] [Impact Index Per Article: 1.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Abstract
The use of interspecific hybrids during the industrial fermentation process has been well established, positioning the frontier of advancement in brewing to capitalize on the potential of Saccharomyces hybridization. Interspecific yeast hybrids used in modern monoculture inoculations benefit from a wide range of volatile metabolites that broaden the organoleptic complexity. This is the first report of sake brewing by Saccharomyces arboricola and its hybrids. S. arboricola x S. cerevisiae direct-mating generated cryotolerant interspecific hybrids which increased yields of ethanol and ethyl hexanoate compared to parental strains, important flavor attributes of fine Japanese ginjo sake rice wine. Hierarchical clustering heatmapping with principal component analysis for metabolic profiling was used in finding low levels of endogenous amino/organic acids clustered S. arboricola apart from the S. cerevisiae industrial strains. In sake fermentations, hybrid strains showed a mosaic profile of parental strains, while metabolic analysis suggested S. arboricola had a lower amino acid net uptake than S. cerevisiae. Additionally, this research found an increase in ethanolic fermentation from pyruvate and increased sulfur metabolism. Together, these results suggest S. arboricola is poised for in-depth metabolomic exploration in sake fermentation.
Collapse
|
22
|
Wang Z, He W, Tang J, Guo F. Identification of Highest-Affinity Binding Sites of Yeast Transcription Factor Families. J Chem Inf Model 2020; 60:1876-1883. [DOI: 10.1021/acs.jcim.9b01012] [Citation(s) in RCA: 23] [Impact Index Per Article: 4.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022]
Affiliation(s)
- Zongyu Wang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Wenying He
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| | - Jijun Tang
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
- Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, P. R. China
- Department of Computer Science and Engineering, University of South Carolina, Columbia, South Carolina 29208, United States
| | - Fei Guo
- School of Computer Science and Technology, College of Intelligence and Computing, Tianjin University, Tianjin 300350, China
| |
Collapse
|
23
|
Huang YH, Hsieh DK, Sung HM. Influence of gene position on the expression divergence of oxidative response genes in intraspecific yeast. J Evol Biol 2020; 33:505-511. [PMID: 31919900 DOI: 10.1111/jeb.13584] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/17/2019] [Revised: 12/10/2019] [Accepted: 12/29/2019] [Indexed: 11/28/2022]
Abstract
Phenotypic variation can arise from differences in the protein coding sequence and in the regulatory elements. However, little is known about the contribution of regulatory difference to the expression divergence, especially the cis and trans regulatory variation to the expression divergence in intraspecific populations. In this study, we used two different yeast strains, BY4743 and RM11-1a/α, to study the regulatory variation to the expression divergence between BY and RM under oxidative stress condition. Our results indicated that the expression divergence of BY and RM is mainly due to trans regulatory variations under both normal and oxidative stress conditions. However, cis regulatory variation seems to play a very important role in oxidative stress response in yeast because 36% of genes showed an increase in cis regulatory variation effect compared with 13% of genes that showed an increase in trans regulatory variation effect after oxidative stress. Our data also indicated that genes located on the longer arm of the chromosomes are more susceptible to cis variation effect under oxidative stress than genes on the shorter arm of the chromosomes.
Collapse
Affiliation(s)
- Yi-Hsuan Huang
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Dai-Keng Hsieh
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| | - Huang-Mo Sung
- Department of Life Sciences, National Cheng Kung University, Tainan, Taiwan
| |
Collapse
|
24
|
Kuang MC, Kominek J, Alexander WG, Cheng JF, Wrobel RL, Hittinger CT. Repeated Cis-Regulatory Tuning of a Metabolic Bottleneck Gene during Evolution. Mol Biol Evol 2019; 35:1968-1981. [PMID: 29788479 PMCID: PMC6063270 DOI: 10.1093/molbev/msy102] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/19/2022] Open
Abstract
Repeated evolutionary events imply underlying genetic constraints that can make evolutionary mechanisms predictable. Morphological traits are thought to evolve frequently through cis-regulatory changes because these mechanisms bypass constraints in pleiotropic genes that are reused during development. In contrast, the constraints acting on metabolic traits during evolution are less well studied. Here we show how a metabolic bottleneck gene has repeatedly adopted similar cis-regulatory solutions during evolution, likely due to its pleiotropic role integrating flux from multiple metabolic pathways. Specifically, the genes encoding phosphoglucomutase activity (PGM1/PGM2), which connect GALactose catabolism to glycolysis, have gained and lost direct regulation by the transcription factor Gal4 several times during yeast evolution. Through targeted mutations of predicted Gal4-binding sites in yeast genomes, we show this galactose-mediated regulation of PGM1/2 supports vigorous growth on galactose in multiple yeast species, including Saccharomyces uvarum and Lachancea kluyveri. Furthermore, the addition of galactose-inducible PGM1 alone is sufficient to improve the growth on galactose of multiple species that lack this regulation, including Saccharomyces cerevisiae. The strong association between regulation of PGM1/2 by Gal4 even enables remarkably accurate predictions of galactose growth phenotypes between closely related species. This repeated mode of evolution suggests that this specific cis-regulatory connection is a common way that diverse yeasts can govern flux through the pathway, likely due to the constraints imposed by this pleiotropic bottleneck gene. Since metabolic pathways are highly interconnected, we argue that cis-regulatory evolution might be widespread at pleiotropic genes that control metabolic bottlenecks and intersections.
Collapse
Affiliation(s)
- Meihua Christina Kuang
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI
| | - Jacek Kominek
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | - William G Alexander
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | | | - Russell L Wrobel
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| | - Chris Todd Hittinger
- Laboratory of Genetics, Genome Center of Wisconsin, J. F. Crow Institute for the Study of Evolution, Wisconsin Energy Institute, University of Wisconsin-Madison, Madison, WI.,Graduate Program in Cellular and Molecular Biology, University of Wisconsin-Madison, Madison, WI.,DOE Great Lakes Bioenergy Research Center, University of Wisconsin-Madison, Madison, WI
| |
Collapse
|
25
|
Lu Z, Lin Z. Pervasive and dynamic transcription initiation in Saccharomyces cerevisiae. Genome Res 2019; 29:1198-1210. [PMID: 31076411 PMCID: PMC6633255 DOI: 10.1101/gr.245456.118] [Citation(s) in RCA: 44] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/22/2018] [Accepted: 05/07/2019] [Indexed: 12/15/2022]
Abstract
Transcription initiation is finely regulated to ensure proper expression and function of genes. The regulated transcription initiation in response to various environmental stimuli in a classic model organism Saccharomyces cerevisiae has not been systematically investigated. In this study, we generated quantitative maps of transcription start sites (TSSs) at a single-nucleotide resolution for S. cerevisiae grown in nine different conditions using no-amplification nontagging Cap analysis of gene expression (nAnT-iCAGE) sequencing. We mapped ∼1 million well-supported TSSs, suggesting highly pervasive transcription initiation in the compact genome of the budding yeast. The comprehensive TSS maps allowed us to identify core promoters for ∼96% verified protein-coding genes. We corrected misannotation of translation start codon for 122 genes and suggested an alternative start codon for 57 genes. We found that 56% of yeast genes are controlled by multiple core promoters, and alternative core promoter usage by a gene is widespread in response to changing environments. Most core promoter shifts are coupled with altered gene expression, indicating that alternative core promoter usage might play an important role in controlling gene transcriptional activities. Based on their activities in responding to environmental cues, we divided core promoters into constitutive class (55%) and inducible class (45%). The two classes of core promoters display distinctive patterns in transcriptional abundance, chromatin structure, promoter shape, and sequence context. In summary, our study improved the annotation of the yeast genome and demonstrated a much more pervasive and dynamic nature of transcription initiation in yeast than previously recognized.
Collapse
Affiliation(s)
- Zhaolian Lu
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| | - Zhenguo Lin
- Department of Biology, Saint Louis University, St. Louis, Missouri 63104, USA
| |
Collapse
|
26
|
Shalamitskii MY, Naumov GI. Phylogenetic Analysis of Pectinases from Ascomycetous Yeasts. APPL BIOCHEM MICRO+ 2019. [DOI: 10.1134/s0003683818070074] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.2] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/22/2022]
|
27
|
Kayikci Ö, Magwene PM. Divergent Roles for cAMP-PKA Signaling in the Regulation of Filamentous Growth in Saccharomyces cerevisiae and Saccharomyces bayanus. G3 (BETHESDA, MD.) 2018; 8:3529-3538. [PMID: 30213866 PMCID: PMC6222581 DOI: 10.1534/g3.118.200413] [Citation(s) in RCA: 15] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 05/10/2018] [Accepted: 08/27/2018] [Indexed: 01/18/2023]
Abstract
The cyclic AMP - Protein Kinase A (cAMP-PKA) pathway is an evolutionarily conserved eukaryotic signaling network that is essential for growth and development. In the fungi, cAMP-PKA signaling plays a critical role in regulating cellular physiology and morphological switches in response to nutrient availability. We undertook a comparative investigation of the role that cAMP-PKA signaling plays in the regulation of filamentous growth in two closely related budding yeast species, Saccharomyces cerevisiae and Saccharomyces bayanus Using chemical and genetic perturbations of this pathway and its downstream targets we discovered divergent roles for cAMP-PKA signaling in the regulation of filamentous growth. While cAMP-PKA signaling is required for the filamentous growth response in both species, increasing or decreasing the activity of this pathway leads to drastically different phenotypic outcomes. In S. cerevisiae, cAMP-PKA inhibition ameliorates the filamentous growth response while hyper-activation of the pathway leads to increased filamentous growth; the same perturbations in S. bayanus result in the obverse. Divergence in the regulation of filamentous growth between S. cerevisiae and S. bayanus extends to downstream targets of PKA, including several kinases, transcription factors, and effector proteins. Our findings highlight the potential for significant evolutionary divergence in gene network function, even when the constituent parts of such networks are well conserved.
Collapse
Affiliation(s)
- Ömur Kayikci
- Department of Biology, Duke University, Durham, North Carolina
| | - Paul M Magwene
- Department of Biology, Duke University, Durham, North Carolina
| |
Collapse
|
28
|
Bailey SF, Guo Q, Bataillon T. Identifying Drivers of Parallel Evolution: A Regression Model Approach. Genome Biol Evol 2018; 10:2801-2812. [PMID: 30252076 PMCID: PMC6200314 DOI: 10.1093/gbe/evy210] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 09/24/2018] [Indexed: 01/01/2023] Open
Abstract
Parallel evolution, defined as identical changes arising in independent populations, is often attributed to similar selective pressures favoring the fixation of identical genetic changes. However, some level of parallel evolution is also expected if mutation rates are heterogeneous across regions of the genome. Theory suggests that mutation and selection can have equal impacts on patterns of parallel evolution; however, empirical studies have yet to jointly quantify the importance of these two processes. Here, we introduce several statistical models to examine the contributions of mutation and selection heterogeneity to shaping parallel evolutionary changes at the gene-level. Using this framework, we analyze published data from forty experimentally evolved Saccharomyces cerevisiae populations. We can partition the effects of a number of genomic variables into those affecting patterns of parallel evolution via effects on the rate of arising mutations, and those affecting the retention versus loss of the arising mutations (i.e., selection). Our results suggest that gene-to-gene heterogeneity in both mutation and selection, associated with gene length, recombination rate, and number of protein domains drive parallel evolution at both synonymous and nonsynonymous sites. While there are still a number of parallel changes that are not well described, we show that allowing for heterogeneous rates of mutation and selection can provide improved predictions of the prevalence and degree of parallel evolution.
Collapse
Affiliation(s)
- Susan F Bailey
- Bioinformatics Research Centre, Aarhus University, Denmark.,Department of Biology, Clarkson University, Potsdam, NY
| | - Qianyun Guo
- Bioinformatics Research Centre, Aarhus University, Denmark
| | | |
Collapse
|
29
|
Whole Genome Sequencing, de Novo Assembly and Phenotypic Profiling for the New Budding Yeast Species Saccharomyces jurei. G3-GENES GENOMES GENETICS 2018; 8:2967-2977. [PMID: 30097472 PMCID: PMC6118302 DOI: 10.1534/g3.118.200476] [Citation(s) in RCA: 33] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Indexed: 02/08/2023]
Abstract
Saccharomyces sensu stricto complex consist of yeast species, which are not only important in the fermentation industry but are also model systems for genomic and ecological analysis. Here, we present the complete genome assemblies of Saccharomyces jurei, a newly discovered Saccharomyces sensu stricto species from high altitude oaks. Phylogenetic and phenotypic analysis revealed that S. jurei is more closely related to S. mikatae, than S. cerevisiae, and S. paradoxus. The karyotype of S. jurei presents two reciprocal chromosomal translocations between chromosome VI/VII and I/XIII when compared to the S. cerevisiae genome. Interestingly, while the rearrangement I/XIII is unique to S. jurei, the other is in common with S. mikatae strain IFO1815, suggesting shared evolutionary history of this species after the split between S. cerevisiae and S. mikatae. The number of Ty elements differed in the new species, with a higher number of Ty elements present in S. jurei than in S. cerevisiae. Phenotypically, the S. jurei strain NCYC 3962 has relatively higher fitness than the other strain NCYC 3947T under most of the environmental stress conditions tested and showed remarkably increased fitness in higher concentration of acetic acid compared to the other sensu stricto species. Both strains were found to be better adapted to lower temperatures compared to S. cerevisiae.
Collapse
|
30
|
Nguyen HV, Boekhout T. Characterization of Saccharomyces uvarum (Beijerinck, 1898) and related hybrids: assessment of molecular markers that predict the parent and hybrid genomes and a proposal to name yeast hybrids. FEMS Yeast Res 2018; 17:3061370. [PMID: 28334169 DOI: 10.1093/femsyr/fox014] [Citation(s) in RCA: 27] [Impact Index Per Article: 3.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/22/2016] [Accepted: 03/01/2017] [Indexed: 11/15/2022] Open
Abstract
The use of the nuclear DNA reassociation technique has led taxonomists to consider Saccharomyces uvarum a synonym of S. bayanus. The latter, however, is not a species but a hybrid harbouring S. eubayanus (Seu) and S. uvarum (Su) subgenomes with a minor DNA contribution from S. cerevisiae (Sc). To recognize genetically pure lines of S. uvarum and putative interspecies hybrids among so-called S. bayanus strains present in public culture collections, we propose the use of four markers that were defined from the S. bayanus CBS 380T composite genome, namely SeuNTS2 (rDNA), ScMAL31, MTY1 and SuMEL1. Saccharomyces carlsbergensis CBS 1513 was found to be similar to S. bayanus except that it carries the SeuMEL1 allele. Different marker combinations revealed that among 33 strains examined only a few were similar to CBS 380T, but many pure S. uvarum lines and putative Su/Seu-related hybrids occurred. Our results demonstrated that these hybrids were erroneously considered authentic S. bayanus and therefore the varietal state 'Saccharomyces bayanus var. uvarum comb. nov. Naumov' is not valid. Our markers constitute a tool to get insights into the genomic makeup of Saccharomyces interspecies hybrids. We also make a proposal to name those hybrids that may also be applicable to other fungal hybrids.
Collapse
Affiliation(s)
- Huu-Vang Nguyen
- Micalis Institute, INRA, AgroParisTech, Université Paris-Saclay, 78350 Jouy-en-Josas, France
| | - Teun Boekhout
- CBS-KNAW Fungal Biodiversity Centre, PO Box 85167, 3508 AD Utrecht, The Netherlands.,Institute of Biodiversity and Ecosystem Dynamics (IBED), University of Amsterdam, Amsterdam, The Netherlands
| |
Collapse
|
31
|
Horizontal transfer and proliferation of Tsu4 in Saccharomyces paradoxus. Mob DNA 2018; 9:18. [PMID: 29942366 PMCID: PMC5998506 DOI: 10.1186/s13100-018-0122-7] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/02/2018] [Accepted: 05/31/2018] [Indexed: 11/10/2022] Open
Abstract
Background Recent evidence suggests that horizontal transfer plays a significant role in the evolution of of transposable elements (TEs) in eukaryotes. Many cases of horizontal TE transfer (HTT) been reported in animals and plants, however surprisingly few examples of HTT have been reported in fungi. Findings Here I report evidence for a novel HTT event in fungi involving Tsu4 in Saccharomyces paradoxus based on (i) unexpectedly high similarity between Tsu4 elements in S. paradoxus and S. uvarum, (ii) a patchy distribution of Tsu4 in S. paradoxus and general absence from its sister species S. cerevisiae, and (iii) discordance between the phylogenetic history of Tsu4 sequences and species in the Saccharomyces sensu stricto group. Available data suggests the HTT event likely occurred somewhere in the Nearctic, Neotropic or Indo-Australian part of the S. paradoxus species range, and that a lineage related to S. uvarum or S. eubayanus was the likely donor species. The HTT event has led to massive proliferation of Tsu4 in the South American lineage of S. paradoxus, which exhibits partial reproductive isolation with other strains of this species because of multiple reciprocal translocations. Full-length Tsu4 elements are associated with both breakpoints of one of these reciprocal translocations. Conclusions This work shows that comprehensive analysis of TE sequences in essentially-complete genome assemblies derived from long-read sequencing provides new opportunities to detect HTT events in fungi and other organisms. This work also provides support for the hypothesis that HTT and subsequent TE proliferation can induce genome rearrangements that contribute to post-zygotic isolation in yeast. Electronic supplementary material The online version of this article (10.1186/s13100-018-0122-7) contains supplementary material, which is available to authorized users.
Collapse
|
32
|
Erpf PE, Fraser JA. The Long History of the Diverse Roles of Short ORFs: sPEPs in Fungi. Proteomics 2018; 18:e1700219. [PMID: 29465163 DOI: 10.1002/pmic.201700219] [Citation(s) in RCA: 12] [Impact Index Per Article: 1.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/27/2017] [Revised: 01/30/2018] [Indexed: 12/30/2022]
Abstract
Since the completion of the genome sequence of the model eukaryote Saccharomyces cerevisiae, there have been significant advancements in the field of genome annotation, in no small part due to the availability of datasets that make large-scale comparative analyses possible. As a result, since its completion there has been a significant change in annotated ORF size distribution in this first eukaryotic genome, especially in short ORFs (sORFs) predicted to encode polypeptides less than 150 amino acids in length. Due to their small size and the difficulties associated with their study, it is only relatively recently that these genomic features and the sORF-encoded peptides (sPEPs) they encode have become a focus of many researchers. Yet while this class of peptides may seem new and exciting, the study of this part of the proteome is nothing new in S. cerevisiae, a species where the biological importance of sPEPs has been elegantly illustrated over the past 30 years. Here the authors showcase a range of different sORFs found in S. cerevisiae and the diverse biological roles of their encoded sPEPs, and provide an insight into the sORFs found in other fungal species, particularly those pathogenic to humans.
Collapse
Affiliation(s)
- Paige E Erpf
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| | - James A Fraser
- Australian Infectious Diseases Research Centre, St Lucia, Queensland, Australia.,School of Chemistry and Molecular Biosciences, The University of Queensland, Brisbane, Queensland, Australia
| |
Collapse
|
33
|
Stavrou AA, Mixão V, Boekhout T, Gabaldón T. Misidentification of genome assemblies in public databases: The case of Naumovozyma dairenensis and proposal of a protocol to correct misidentifications. Yeast 2018; 35:425-429. [PMID: 29320804 PMCID: PMC6001429 DOI: 10.1002/yea.3303] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/04/2017] [Revised: 11/30/2017] [Accepted: 12/21/2017] [Indexed: 11/05/2022] Open
Abstract
Online sequence databases such as NCBI GenBank serve as a tremendously useful platform for researchers to share and reuse published data. However, submission systems lack control for errors such as organism misidentification, which once entered in the database can be propagated and mislead downstream analyses. Here we present an illustrating case of misidentification of Candida albicans from a clinical sample as Naumovozyma dairenensis based on whole-genome shotgun data. Analyses of phylogenetic markers, read mapping and single nucleotide polymorphisms served to correct the identification. We propose that the routine use of such analyses could help to detect misidentifications arising from unsupervised analyses and correct them before they enter the databases. Finally, we discuss broader implications of such misidentifications and the difficulty of correcting them once they are in the records.
Collapse
Affiliation(s)
- Aimilia A Stavrou
- Westerdijk Fungal Biodiversity Institute, 3584, Utrecht, The Netherlands.,Institute for Biodiversity and ecosystem Dynamics, University of Amsterdam, 1012, WX, Amsterdam, The Netherlands
| | - Verónica Mixão
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain
| | - Teun Boekhout
- Westerdijk Fungal Biodiversity Institute, 3584, Utrecht, The Netherlands.,Institute for Biodiversity and ecosystem Dynamics, University of Amsterdam, 1012, WX, Amsterdam, The Netherlands
| | - Toni Gabaldón
- Centre for Genomic Regulation, The Barcelona Institute of Science and Technology, Dr. Aiguader 88, Barcelona, 08003, Spain.,Universitat Pompeu Fabra, 08003, Barcelona, Spain.,Institució Catalana de Recerca i Estudis Avançats, Pg. Lluís Companys 23, 08010, Barcelona, Spain
| |
Collapse
|
34
|
Yang X, Arines FM, Zhang W, Li M. Sorting of a multi-subunit ubiquitin ligase complex in the endolysosome system. eLife 2018; 7:33116. [PMID: 29355480 PMCID: PMC5811209 DOI: 10.7554/elife.33116] [Citation(s) in RCA: 21] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/27/2017] [Accepted: 01/19/2018] [Indexed: 12/14/2022] Open
Abstract
The yeast Dsc E3 ligase complex has long been recognized as a Golgi-specific protein ubquitination system. It shares a striking sequence similarity to the Hrd1 complex that plays critical roles in the ER-associated degradation pathway. Using biochemical purification and mass spectrometry, we identified two novel Dsc subunits, which we named as Gld1 and Vld1. Surprisingly, Gld1 and Vld1 do not coexist in the same complex. Instead, they compete with each other to form two functionally independent Dsc subcomplexes. The Vld1 subcomplex takes the AP3 pathway to reach the vacuole membrane, whereas the Gld1 subcomplex travels through the VPS pathway and is cycled between Golgi and endosomes by the retromer. Thus, instead of being Golgi-specific, the Dsc complex can regulate protein levels at three distinct organelles, namely Golgi, endosome, and vacuole. Our study provides a novel model of achieving multi-tasking for transmembrane ubiquitin ligases with interchangeable trafficking adaptors. Proteins perform many tasks and, to remain healthy, each cell must ensure that its proteins are in good condition and present at the right levels. Plants, animals and fungi all largely deal with damaged, or otherwise unneeded, proteins by tagging them with a small marker called ubiquitin. The tagged proteins are then rapidly destroyed, which prevents them from harming the cells. Enzymes known as E3 ligases attach ubiquitin to proteins. Yet, the number of E3 ligases is dwarfed by the number of proteins modified with ubiquitin. For instance, humans have approximately 20,000 different proteins, about one third of which are found in or on cell membranes. However, there are only around 600 E3 ligases, and only about 50 of them are associated with cell membranes. This is further complicated by the fact that proteins are also present in distinct compartments within the cell. The Dsc complex, for example, is an E3 ligase from yeast that is found within a compartment of the cell known as the Golgi. It was thus expected to only attach ubiquitin to Golgi proteins. Yet some recent studies showed that the Dsc complex could also tag proteins present in two other compartments of yeast cells: the endosome and vacuole. How can the Dsc complex act on proteins in three distinct compartments? The Dsc complex is actually made from multiple proteins, and Yang et al. now report two new protein components. Biochemical and genetic tools showed that these two proteins do not co-exist in the same Dsc complex. Instead, they compete with each other to form two different kinds of Dsc complexes, which Yang et al. refer to as subcomplexes. Further work showed that the two new proteins determine the route taken by the Dsc complex along the cell’s protein transport pathway. One subcomplex is transported to the vacuole and the other cycles between the Golgi and endosomes. Thus, by changing just one component, the Dsc complex can be sent to different locations within the cell. These findings describe a new mechanism that enables E3 ligases to multi-task on a wide range of proteins, even across distinct compartments of the cell. Future work will determine whether plant and animal cells also use a similar strategy. Since defects in protein quality control contribute to many human diseases, such as Alzheimer's and Parkinson's disease, working out how E3 ligases work is important for the field of biomedicine.
Collapse
Affiliation(s)
- Xi Yang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Felichi Mae Arines
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Weichao Zhang
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| | - Ming Li
- Department of Molecular, Cellular and Developmental Biology, University of Michigan, Ann Arbor, United States
| |
Collapse
|
35
|
Mariño-Ramírez L, Bodenreider O, Kantz N, Jordan IK. Co-Evolutionary Rates of Functionally Related Yeast Genes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200017] [Citation(s) in RCA: 9] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
Evolutionary knowledge is often used to facilitate computational attempts at gene function prediction. One rich source of evolutionary information is the relative rates of gene sequence divergence, and in this report we explore the connection between gene evolutionary rates and function. We performed a genome-scale evaluation of the relationship between evolutionary rates and functional annotations for the yeast Saccharomyces cerevisiae. Non-synonymous ( dN) and synonymous ( dS) substitution rates were calculated for 1,095 orthologous gene sets common to S. cerevisiae and six other closely related yeast species. Differences in evolutionary rates between pairs of genes (Δ dN & Δ dS) were then compared to their functional similarities ( sGO), which were measured using Gene Ontology (GO) annotations. Substantial and statistically significant correlations were found between Δ dN and sGO, whereas there is no apparent relationship between Δ dS and sGO. These results are consistent with a mode of action for natural selection that is based on similar rates of elimination of deleterious protein coding sequence variants for functionally related genes. The connection between gene evolutionary rates and function was stronger than seen for phylogenetic profiles, which have previously been employed to inform functional inference. The co-evolution of functionally related yeast genes points to the relevance of specific function for the efficacy of natural selection and underscores the utility of gene evolutionary rates for functional predictions.
Collapse
Affiliation(s)
- Leonardo Mariño-Ramírez
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, U.S.A
| | - Olivier Bodenreider
- National Library of Medicine, National Institutes of Health, Bethesda, MD 20894, U.S.A
| | - Natalie Kantz
- National Center for Biotechnology Information, National Institutes of Health, Bethesda, MD 20894, U.S.A
| | - I. King Jordan
- School of Biology, Georgia Institute of Technology, Atlanta, GA 30332, U.S.A
| |
Collapse
|
36
|
Lapp H, Bala S, Balhoff JP, Bouck A, Goto N, Holder M, Holland R, Holloway A, Katayama T, Lewis PO, Mackey AJ, Osborne BI, Piel WH, Pond SLK, Poon AF, Qiu WG, Stajich JE, Stoltzfus A, Thierer T, Vilella AJ, Vos RA, Zmasek CM, Zwickl DJ, Vision TJ. The 2006 NESCent Phyloinformatics Hackathon: A Field Report. Evol Bioinform Online 2017. [DOI: 10.1177/117693430700300016] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/15/2022] Open
Abstract
In December, 2006, a group of 26 software developers from some of the most widely used life science programming toolkits and phylogenetic software projects converged on Durham, North Carolina, for a Phyloinformatics Hackathon, an intense five-day collaborative software coding event sponsored by the National Evolutionary Synthesis Center (NESCent). The goal was to help researchers to integrate multiple phylogenetic software tools into automated workflows. Participants addressed deficiencies in interoperability between programs by implementing “glue code” and improving support for phylogenetic data exchange standards (particularly NEXUS) across the toolkits. The work was guided by use-cases compiled in advance by both developers and users, and the code was documented as it was developed. The resulting software is freely available for both users and developers through incorporation into the distributions of several widely-used open-source toolkits. We explain the motivation for the hackathon, how it was organized, and discuss some of the outcomes and lessons learned. We conclude that hackathons are an effective mode of solving problems in software interoperability and usability, and are underutilized in scientific software development.
Collapse
Affiliation(s)
- Hilmar Lapp
- National Evolutionary Synthesis Center, 2024 W. Main St., Suite A200, Durham NC 27705, U.S.A
| | - Sendu Bala
- Dunn Human Nutrition Unit, Medical Research Council, Hills Road, Cambridge CB2 0XY, United Kingdom
| | - James P. Balhoff
- National Evolutionary Synthesis Center, 2024 W. Main St., Suite A200, Durham NC 27705, U.S.A
| | - Amy Bouck
- Department of Biology, CB 3280, University of North Carolina, Chapel Hill, NC 27599
- Department of Biology, Duke University, P.O. Box 90338, Durham, NC 27708, U.S.A
| | - Naohisa Goto
- Genome Information Research Center, Research Institute for Microbial Diseases, Osaka University, 3-1 Yamadaoka, Suita, Osaka 565–0871, Japan
| | - Mark Holder
- School of Computational Science, 150-F Dirac Science Library, Florida State University, Tallahassee, Florida 32306–4120, U.S.A
| | - Richard Holland
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Alisha Holloway
- Section of Evolution and Ecology, Center for Population Biology, 3347 Storer Hall, University of California, Davis, CA 95616, U.S.A
| | - Toshiaki Katayama
- Human Genome Center, Institute of Medical Science, University of Tokyo, 4-6-1 Shirokanedai, Minato-ku, Tokyo 108–0071, Japan
| | - Paul O. Lewis
- Department of Ecology and Evolutionary Biology, University of Connecticut, 75 North Eagleville Road, Unit 3043, Storrs, CT 06269-3043, U.S.A
| | - Aaron J. Mackey
- GlaxoSmithKline, 1250 S. Collegeville Road, Collegeville, PA 19426, U.S.A
| | | | - William H. Piel
- Peabody Museum of Natural History, Yale University, 170 Whitney Ave., New Haven CT 06511, U.S.A
| | - Sergei L. Kosakovsky Pond
- University of California, San Diego, Division of Comparative Pathology and Antiviral Research Center, 150 West Washington Street, San Diego, CA 92103
| | - Art F.Y. Poon
- University of California, San Diego, Division of Comparative Pathology and Antiviral Research Center, 150 West Washington Street, San Diego, CA 92103
| | - Wei-Gang Qiu
- Department of Biological Sciences, Hunter College, City University of New York, 695 Park Ave, New York, NY 10021, U.S.A
| | - Jason E. Stajich
- Department of Plant and Microbial Biology, University of California, Berkeley, CA 94720, U.S.A
| | - Arlin Stoltzfus
- Biochemical Science Division, National Institute of Standards and Technology, 100 Bureau Drive, Mail Stop 8310, Gaithersburg, MD, 20899-8310
| | - Tobias Thierer
- Biomatters Ltd, Level 6, 220 Queen St, Auckland, New Zealand
| | - Albert J. Vilella
- EMBL—European Bioinformatics Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SD, United Kingdom
| | - Rutger A. Vos
- Department of Zoology, University of British Columbia, #2370-6270 University Blvd., Vancouver, B.C. V6T 1Z4, Canada
| | | | - Derrick J. Zwickl
- National Evolutionary Synthesis Center, 2024 W. Main St., Suite A200, Durham NC 27705, U.S.A
| | - Todd J. Vision
- National Evolutionary Synthesis Center, 2024 W. Main St., Suite A200, Durham NC 27705, U.S.A
- Department of Biology, CB 3280, University of North Carolina, Chapel Hill, NC 27599
| |
Collapse
|
37
|
Neumann N, Jeffares DC, Poole AM. Outsourcing the Nucleus: Nuclear Pore Complex Genes are no Longer Encoded in Nucleomorph Genomes. Evol Bioinform Online 2017. [DOI: 10.1177/117693430600200023] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/16/2022] Open
Abstract
The nuclear pore complex (NPC) facilitates transport between nucleus and cytoplasm. The protein constituents of the NPC, termed nucleoporins (Nups), are conserved across a wide diversity of eukaryotes. In apparent exception to this, no nucleoporin genes have been identified in nucleomorph genomes. Nucleomorphs, nuclear remnants of once free-living eukaryotes, took up residence as secondary endosymbionts in cryptomonad and chlorarachniophyte algae. As these genomes are highly reduced, Nup genes may have been lost, or relocated to the host nucleus. However, Nup genes are often poorly conserved between species, so absence may be an artifact of low sequence similarity. We therefore constructed an evolutionary bioinformatic screen to establish whether the apparent absence of Nup genes in nucleomorph genomes is due to genuine absence or the inability of current methods to detect homologues. We searched green plant ( Arabidopsis and rice), green alga ( Chlamydomonas reinhardtii) and red alga ( Cyanidioschyzon merolae) genomes, plus two nucleomorph genomes ( Bigelowiella natans and Guillardia theta) with profile hidden Markov models (HMMs) from curated alignments of known vertebrate/yeast Nups. Since the plant, algal and nucleomorph genomes all belong to the kingdom Plantae, and are evolutionarily distant from the outgroup (vertebrate/yeast) training set, we use the plant and algal genomes as internal positive controls for the sensitivity of the searches in nucleomorph genomes. We find numerous Nup homologues in all plant and free-living algal species, but none in either nucleomorph genome. BLAST searches using identified plant and algal Nups also failed to detect nucleomorph homologues. We conclude that nucleomorph Nup genes have either been lost, being replaced by host Nup genes, or, that nucleomorph Nup genes have been transferred to the host nucleus twice independently; once in the evolution of the red algal nucleomorph and once in the green algal nucleomorph.
Collapse
Affiliation(s)
- Nadja Neumann
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| | - Daniel C. Jeffares
- Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridge, CB10 1SA, U.K
| | - Anthony M. Poole
- Department of Molecular Biology and Functional Genomics, Stockholm University, SE-106 91 Stockholm, Sweden
| |
Collapse
|
38
|
Bosio MC, Fermi B, Spagnoli G, Levati E, Rubbi L, Ferrari R, Pellegrini M, Dieci G. Abf1 and other general regulatory factors control ribosome biogenesis gene expression in budding yeast. Nucleic Acids Res 2017; 45:4493-4506. [PMID: 28158860 PMCID: PMC5416754 DOI: 10.1093/nar/gkx058] [Citation(s) in RCA: 24] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/14/2016] [Accepted: 01/25/2017] [Indexed: 01/21/2023] Open
Abstract
Ribosome biogenesis in Saccharomyces cerevisiae involves a regulon of >200 genes (Ribi genes) coordinately regulated in response to nutrient availability and cellular growth rate. Two cis-acting elements called PAC and RRPE are known to mediate Ribi gene repression in response to nutritional downshift. Here, we show that most Ribi gene promoters also contain binding sites for one or more General Regulatory Factors (GRFs), most frequently Abf1 and Reb1, and that these factors are enriched in vivo at Ribi promoters. Abf1/Reb1/Tbf1 promoter association was required for full Ribi gene expression in rich medium and for its modulation in response to glucose starvation, characterized by a rapid drop followed by slow recovery. Such a response did not entail changes in Abf1 occupancy, but it was paralleled by a quick increase, followed by slow decrease, in Rpd3L histone deacetylase occupancy. Remarkably, Abf1 site disruption also abolished Rpd3L complex recruitment in response to starvation. Extensive mutational analysis of the DBP7 promoter revealed a complex interplay of Tbf1 sites, PAC and RRPE in the transcriptional regulation of this Ribi gene. Our observations point to GRFs as new multifaceted players in Ribi gene regulation both during exponential growth and under repressive conditions.
Collapse
Affiliation(s)
- Maria Cristina Bosio
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Beatrice Fermi
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Gloria Spagnoli
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Elisabetta Levati
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| | - Ludmilla Rubbi
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Roberto Ferrari
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Matteo Pellegrini
- Department of Molecular, Cell and Developmental Biology, University of California Los Angeles, Los Angeles, CA 90095, USA
| | - Giorgio Dieci
- Department of Chemistry, Life Sciences and Environmental Sustainability, University of Parma, Parco Area delle Scienze 23/A, 43124 Parma, Italy
| |
Collapse
|
39
|
The Stress-Sensing TORC2 Complex Activates Yeast AGC-Family Protein Kinase Ypk1 at Multiple Novel Sites. Genetics 2017; 207:179-195. [PMID: 28739659 PMCID: PMC5586371 DOI: 10.1534/genetics.117.1124] [Citation(s) in RCA: 23] [Impact Index Per Article: 2.9] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/21/2017] [Accepted: 07/16/2017] [Indexed: 01/18/2023] Open
Abstract
Yeast (Saccharomyces cerevisiae) target of rapamycin (TOR) complex 2 (TORC2) is a multi-subunit plasma membrane-associated protein kinase and vital growth regulator. Its essential functions are exerted via phosphorylation and stimulation of downstream protein kinase Ypk1 (and its paralog Ypk2). Ypk1 phosphorylates multiple substrates to regulate plasma membrane lipid and protein composition. Ypk1 function requires phosphorylation of Thr504 in its activation loop by eisosome-associated Pkh1 (and its paralog Pkh2). For cell survival under certain stresses, however, Ypk1 activity requires further stimulation by TORC2-mediated phosphorylation at C-terminal sites, dubbed the “turn” (Ser644) and “hydrophobic” (Thr662) motifs. Here we show that four additional C-terminal sites are phosphorylated in a TORC2-dependent manner, collectively defining a minimal consensus. We found that the newly identified sites are as important for Ypk1 activity, stability, and biological function as Ser644 and Thr662. Ala substitutions at the four new sites abrogated the ability of Ypk1 to rescue the phenotypes of Ypk1 deficiency, whereas Glu substitutions had no ill effect. Combining the Ala substitutions with an N-terminal mutation (D242A), which has been demonstrated to bypass the need for TORC2-mediated phosphorylation, restored the ability to complement a Ypk1-deficient cell. These findings provide new insights about the molecular basis for TORC2-dependent activation of Ypk1.
Collapse
|
40
|
Domazet-Lošo T, Carvunis AR, Albà MM, Šestak MS, Bakaric R, Neme R, Tautz D. No Evidence for Phylostratigraphic Bias Impacting Inferences on Patterns of Gene Emergence and Evolution. Mol Biol Evol 2017; 34:843-856. [PMID: 28087778 PMCID: PMC5400388 DOI: 10.1093/molbev/msw284] [Citation(s) in RCA: 36] [Impact Index Per Article: 4.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/05/2022] Open
Abstract
Phylostratigraphy is a computational framework for dating the emergence of DNA and protein sequences in a phylogeny. It has been extensively applied to make inferences on patterns of genome evolution, including patterns of disease gene evolution, ontogeny and de novo gene origination. Phylostratigraphy typically relies on BLAST searches along a species tree, but new simulation studies have raised concerns about the ability of BLAST to detect remote homologues and its impact on phylostratigraphic inferences. Here, we re-assessed these simulations. We found that, even with a possible overall BLAST false negative rate between 11–15%, the large majority of sequences assigned to a recent evolutionary origin by phylostratigraphy is unaffected by technical concerns about BLAST. Where the results of the simulations did cast doubt on previously reported findings, we repeated the original analyses but now excluded all questionable sequences. The originally described patterns remained essentially unchanged. These new analyses strongly support phylostratigraphic inferences, including: genes that emerged after the origin of eukaryotes are more likely to be expressed in the ectoderm than in the endoderm or mesoderm in Drosophila, and the de novo emergence of protein-coding genes from non-genic sequences occurs through proto-gene intermediates in yeast. We conclude that BLAST is an appropriate and sufficiently sensitive tool in phylostratigraphic analysis that does not appear to introduce significant biases into evolutionary pattern inferences.
Collapse
Affiliation(s)
- Tomislav Domazet-Lošo
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruđer Bošković Institute, Zagreb, Croatia.,Catholic University of Croatia, Zagreb, Croatia
| | | | - M Mar Albà
- Evolutionary Genomics Group, Research Programme on Biomedical Informatics, Hospital del Mar Research Institute, Universitat Pompeu Fabra, Barcelona, Spain.,Catalan Institution for Research and Advanced Studies, Barcelona, Spain
| | - Martin Sebastijan Šestak
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruder Boškovic Institute, Zagreb, Croatia
| | - Robert Bakaric
- Laboratory of Evolutionary Genetics, Division of Molecular Biology, Ruder Boškovic Institute, Zagreb, Croatia
| | - Rafik Neme
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| | - Diethard Tautz
- Max-Planck Institute for Evolutionary Biology, Plön, Germany
| |
Collapse
|
41
|
Dujon BA, Louis EJ. Genome Diversity and Evolution in the Budding Yeasts (Saccharomycotina). Genetics 2017; 206:717-750. [PMID: 28592505 PMCID: PMC5499181 DOI: 10.1534/genetics.116.199216] [Citation(s) in RCA: 81] [Impact Index Per Article: 10.1] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 04/03/2017] [Indexed: 12/15/2022] Open
Abstract
Considerable progress in our understanding of yeast genomes and their evolution has been made over the last decade with the sequencing, analysis, and comparisons of numerous species, strains, or isolates of diverse origins. The role played by yeasts in natural environments as well as in artificial manufactures, combined with the importance of some species as model experimental systems sustained this effort. At the same time, their enormous evolutionary diversity (there are yeast species in every subphylum of Dikarya) sparked curiosity but necessitated further efforts to obtain appropriate reference genomes. Today, yeast genomes have been very informative about basic mechanisms of evolution, speciation, hybridization, domestication, as well as about the molecular machineries underlying them. They are also irreplaceable to investigate in detail the complex relationship between genotypes and phenotypes with both theoretical and practical implications. This review examines these questions at two distinct levels offered by the broad evolutionary range of yeasts: inside the best-studied Saccharomyces species complex, and across the entire and diversified subphylum of Saccharomycotina. While obviously revealing evolutionary histories at different scales, data converge to a remarkably coherent picture in which one can estimate the relative importance of intrinsic genome dynamics, including gene birth and loss, vs. horizontal genetic accidents in the making of populations. The facility with which novel yeast genomes can now be studied, combined with the already numerous available reference genomes, offer privileged perspectives to further examine these fundamental biological questions using yeasts both as eukaryotic models and as fungi of practical importance.
Collapse
Affiliation(s)
- Bernard A Dujon
- Department Genomes and Genetics, Institut Pasteur, Centre National de la Recherche Scientifique UMR3525, 75724-CEDEX15 Paris, France
- Université Pierre et Marie Curie UFR927, 75005 Paris, France
| | - Edward J Louis
- Centre for Genetic Architecture of Complex Traits, University of Leicester, LE1 7RH, United Kingdom
- Department of Genetics, University of Leicester, LE1 7RH, United Kingdom
| |
Collapse
|
42
|
Li J, Gu F, Wu R, Yang J, Zhang KQ. Phylogenomic evolutionary surveys of subtilase superfamily genes in fungi. Sci Rep 2017; 7:45456. [PMID: 28358043 PMCID: PMC5371821 DOI: 10.1038/srep45456] [Citation(s) in RCA: 38] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/22/2016] [Accepted: 02/28/2017] [Indexed: 01/10/2023] Open
Abstract
Subtilases belong to a superfamily of serine proteases which are ubiquitous in fungi and are suspected to have developed distinct functional properties to help fungi adapt to different ecological niches. In this study, we conducted a large-scale phylogenomic survey of subtilase protease genes in 83 whole genome sequenced fungal species in order to identify the evolutionary patterns and subsequent functional divergences of different subtilase families among the main lineages of the fungal kingdom. Our comparative genomic analyses of the subtilase superfamily indicated that extensive gene duplications, losses and functional diversifications have occurred in fungi, and that the four families of subtilase enzymes in fungi, including proteinase K-like, Pyrolisin, kexin and S53, have distinct evolutionary histories which may have facilitated the adaptation of fungi to a broad array of life strategies. Our study provides new insights into the evolution of the subtilase superfamily in fungi and expands our understanding of the evolution of fungi with different lifestyles.
Collapse
Affiliation(s)
- Juan Li
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Fei Gu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Runian Wu
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - JinKui Yang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| | - Ke-Qin Zhang
- State Key Laboratory for Conservation and Utilization of Bio-Resources in Yunnan, Yunnan University, Kunming, 650091, P.R. China
| |
Collapse
|
43
|
Differential paralog divergence modulates genome evolution across yeast species. PLoS Genet 2017; 13:e1006585. [PMID: 28196070 PMCID: PMC5308817 DOI: 10.1371/journal.pgen.1006585] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.5] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/08/2016] [Accepted: 01/13/2017] [Indexed: 11/24/2022] Open
Abstract
Evolutionary outcomes depend not only on the selective forces acting upon a species, but also on the genetic background. However, large timescales and uncertain historical selection pressures can make it difficult to discern such important background differences between species. Experimental evolution is one tool to compare evolutionary potential of known genotypes in a controlled environment. Here we utilized a highly reproducible evolutionary adaptation in Saccharomyces cerevisiae to investigate whether experimental evolution of other yeast species would select for similar adaptive mutations. We evolved populations of S. cerevisiae, S. paradoxus, S. mikatae, S. uvarum, and interspecific hybrids between S. uvarum and S. cerevisiae for ~200–500 generations in sulfate-limited continuous culture. Wild-type S. cerevisiae cultures invariably amplify the high affinity sulfate transporter gene, SUL1. However, while amplification of the SUL1 locus was detected in S. paradoxus and S. mikatae populations, S. uvarum cultures instead selected for amplification of the paralog, SUL2. We measured the relative fitness of strains bearing deletions and amplifications of both SUL genes from different species, confirming that, converse to S. cerevisiae, S. uvarum SUL2 contributes more to fitness in sulfate limitation than S. uvarum SUL1. By measuring the fitness and gene expression of chimeric promoter-ORF constructs, we were able to delineate the cause of this differential fitness effect primarily to the promoter of S. uvarum SUL1. Our data show evidence of differential sub-functionalization among the sulfate transporters across Saccharomyces species through recent changes in noncoding sequence. Furthermore, these results show a clear example of how such background differences due to paralog divergence can drive changes in genome evolution. Both comparative genomics and experimental evolution are powerful tools that can be used to make inferences about evolutionary processes. Together, these approaches provide the opportunity to observe evolutionary adaptation over millions of years where selective history is largely unknown, and over short timescales under controlled selective pressures in the laboratory. We have used comparative experimental evolution to observe the evolutionary fate of an adaptive mutation, and determined to what degree the outcome is conditional on the genetic background. We evolved several populations of different yeast species for over 200 generations in sulfate-limited conditions to determine how the differences in genomic context can alter evolutionary routes when challenged with a nutrient limitation selection pressure. We find that the gene encoding a high affinity sulfur transporter becomes amplified in most species of Saccharomyces, except in S. uvarum, in which the amplification of the paralogous sulfate transporter gene SUL2 is recovered. We attribute this change in amplification preference to mutations in the non-coding region of SUL1, likely due to reduced expression of this gene in S. uvarum. We conclude that the adaptive mutations selected for in each organism depend on the genomic context, even when faced with the same environmental condition.
Collapse
|
44
|
Tong H, Schliekelman P, Mrázek J. Unsupervised statistical discovery of spaced motifs in prokaryotic genomes. BMC Genomics 2017; 18:27. [PMID: 28056763 PMCID: PMC5217627 DOI: 10.1186/s12864-016-3400-0] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/02/2016] [Accepted: 12/09/2016] [Indexed: 12/23/2022] Open
Abstract
BACKGROUND DNA sequences contain repetitive motifs which have various functions in the physiology of the organism. A number of methods have been developed for discovery of such sequence motifs with a primary focus on detection of regulatory motifs and particularly transcription factor binding sites. Most motif-finding methods apply probabilistic models to detect motifs characterized by unusually high number of copies of the motif in the analyzed sequences. RESULTS We present a novel method for detection of pairs of motifs separated by spacers of variable nucleotide sequence but conserved length. Unlike existing methods for motif discovery, the motifs themselves are not required to occur at unusually high frequency but only to exhibit a significant preference to occur at a specific distance from each other. In the present implementation of the method, motifs are represented by pentamers and all pairs of pentamers are evaluated for statistically significant preference for a specific distance. An important step of the algorithm eliminates motif pairs where the spacers separating the two motifs exhibit a high degree of sequence similarity; such motif pairs likely arise from duplications of the whole segment including the motifs and the spacer rather than due to selective constraints indicative of a functional importance of the motif pair. The method was used to scan 569 complete prokaryotic genomes for novel sequence motifs. Some motifs detected were previously known but other motifs found in the search appear to be novel. Selected motif pairs were subjected to further investigation and in some cases their possible biological functions were proposed. CONCLUSIONS We present a new motif-finding technique that is applicable to scanning complete genomes for sequence motifs. The results from analysis of 569 genomes suggest that the method detects previously known motifs that are expected to be found as well as new motifs that are unlikely to be discovered by traditional motif-finding methods. We conclude that our approach to detection of significant motif pairs can complement existing motif-finding techniques in discovery of novel functional sequence motifs in complete genomes.
Collapse
Affiliation(s)
- Hao Tong
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Paul Schliekelman
- Department of Statistics, University of Georgia, Athens, GA, 30602, USA
| | - Jan Mrázek
- Department of Microbiology and Institute of Bioinformatics, University of Georgia, Athens, GA, 30602, USA.
| |
Collapse
|
45
|
Karademir Andersson A, Cohn M. Naumovozyma castellii: an alternative model for budding yeast molecular biology. Yeast 2016; 34:95-109. [PMID: 27794167 DOI: 10.1002/yea.3218] [Citation(s) in RCA: 8] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/29/2016] [Accepted: 10/18/2016] [Indexed: 11/11/2022] Open
Abstract
Naumovozyma castellii (Saccharomyces castellii) is a member of the budding yeast family Saccharomycetaceae. It has been extensively used as a model organism for telomere biology research and has gained increasing interest as a budding yeast model for functional analyses owing to its amenability to genetic modifications. Owing to the suitable phylogenetic distance to S. cerevisiae, the whole genome sequence of N. castellii has provided unique data for comparative genomic studies, and it played a key role in the establishment of the timing of the whole genome duplication and the evolutionary events that took place in the subsequent genomic evolution of the Saccharomyces lineage. Here we summarize the historical background of its establishment as a laboratory yeast species, and the development of genetic and molecular tools and strains. We review the research performed on N. castellii, focusing on areas where it has significantly contributed to the discovery of new features of molecular biology and to the advancement of our understanding of molecular evolution. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|
46
|
Karademir Andersson A, Oredsson S, Cohn M. Development of stable haploid strains and molecular genetic tools for Naumovozyma castellii (Saccharomyces castellii). Yeast 2016; 33:633-646. [PMID: 27669110 DOI: 10.1002/yea.3213] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/04/2016] [Revised: 09/16/2016] [Accepted: 09/16/2016] [Indexed: 11/09/2022] Open
Abstract
The budding yeast Naumovozyma castellii (syn. Saccharomyces castellii) has been included in comparative genomics studies and functional analyses of centromere DNA elements, and has been shown to possess beneficial traits for telomere biology research. To provide useful tools for molecular genetic approaches, we produced stable haploid heterothallic strains from an early ancestral strain derived from the N. castellii collection strain CBS 4310. To this end, we deleted the gene encoding the Ho endonuclease, which is essential for the mating type switching. Gene replacement of HO with the kanMX3 resistance cassette was performed in diploid strains, followed by sporulation and tetrad microdissection of the haploid spores. The mating type (MATa or MATα) was determined for each hoΔ mutant, and was stable under sporulation-inducing conditions, showing that the switching system was totally non-functional. The hoΔstrains showed wild-type growth rates and were successfully transformed with linear DNA using the general protocol. Opposite mating types of the hoΔstrains were mated, resulting in diploid cells that efficiently formed asci and generated viable spores when microdissected. By introduction of a point mutation in the URA3 gene, we created a uracil auxotrophic strain, and by exchanging the kanMX3 cassette for the hphMX4 cassette we show that hygromycin B resistance can be used as a selection marker in N. castellii. These haploid strains containing genetic markers will be useful tools for performing genetic analyses in N. castellii. Moreover, we demonstrate that homology regions of 200-230 bp can be successfully used for target site-specific integration into genomic loci. Copyright © 2016 John Wiley & Sons, Ltd.
Collapse
Affiliation(s)
| | - Stina Oredsson
- Department of Biology, Functional zoology, Lund University, Lund, Sweden
| | - Marita Cohn
- Department of Biology, Genetics group, Lund University, Lund, Sweden
| |
Collapse
|
47
|
|
48
|
Testa AC, Oliver RP, Hane JK. OcculterCut: A Comprehensive Survey of AT-Rich Regions in Fungal Genomes. Genome Biol Evol 2016; 8:2044-64. [PMID: 27289099 PMCID: PMC4943192 DOI: 10.1093/gbe/evw121] [Citation(s) in RCA: 89] [Impact Index Per Article: 9.9] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 05/14/2016] [Indexed: 12/03/2022] Open
Abstract
We present a novel method to measure the local GC-content bias in genomes and a survey of published fungal species. The method, enacted as "OcculterCut" (https://sourceforge.net/projects/occultercut, last accessed April 30, 2016), identified species containing distinct AT-rich regions. In most fungal taxa, AT-rich regions are a signature of repeat-induced point mutation (RIP), which targets repetitive DNA and decreases GC-content though the conversion of cytosine to thymine bases. RIP has in turn been identified as a driver of fungal genome evolution, as RIP mutations can also occur in single-copy genes neighboring repeat-rich regions. Over time RIP perpetuates "two speeds" of gene evolution in the GC-equilibrated and AT-rich regions of fungal genomes. In this study, genomes showing evidence of this process are found to be common, particularly among the Pezizomycotina. Further analysis highlighted differences in amino acid composition and putative functions of genes from these regions, supporting the hypothesis that these regions play an important role in fungal evolution. OcculterCut can also be used to identify genes undergoing RIP-assisted diversifying selection, such as small, secreted effector proteins that mediate host-microbe disease interactions.
Collapse
Affiliation(s)
- Alison C Testa
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - Richard P Oliver
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia
| | - James K Hane
- Department of Environment & Agriculture, Centre for Crop and Disease Management, Curtin University, Perth, Australia Curtin Institute for Computation, Curtin University, Perth, Australia
| |
Collapse
|
49
|
Sabir F, Loureiro-Dias MC, Prista C. Comparative analysis of sequences, polymorphisms and topology of yeasts aquaporins and aquaglyceroporins. FEMS Yeast Res 2016; 16:fow025. [DOI: 10.1093/femsyr/fow025] [Citation(s) in RCA: 10] [Impact Index Per Article: 1.1] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 03/11/2016] [Indexed: 12/16/2022] Open
|
50
|
Lis M, Walther D. The orientation of transcription factor binding site motifs in gene promoter regions: does it matter? BMC Genomics 2016; 17:185. [PMID: 26939991 PMCID: PMC4778318 DOI: 10.1186/s12864-016-2549-x] [Citation(s) in RCA: 28] [Impact Index Per Article: 3.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/19/2015] [Accepted: 02/27/2016] [Indexed: 12/23/2022] Open
Abstract
Background Gene expression is to large degree regulated by the specific binding of protein transcription factors to cis-regulatory transcription factor binding sites in gene promoter regions. Despite the identification of hundreds of binding site sequence motifs, the question as to whether motif orientation matters with regard to the gene expression regulation of the respective downstream genes appears surprisingly underinvestigated. Results We pursued a statistical approach by probing 293 reported non-palindromic transcription factor binding site and ten core promoter motifs in Arabidopsis thaliana for evidence of any relevance of motif orientation based on mapping statistics and effects on the co-regulation of gene expression of the respective downstream genes. Although positional intervals closer to the transcription start site (TSS) were found with increased frequencies of motifs exhibiting orientation preference, a corresponding effect with regard to gene expression regulation as evidenced by increased co-expression of genes harboring the favored orientation in their upstream sequence could not be established. Furthermore, we identified an intrinsic orientational asymmetry of sequence regions close to the TSS as the likely source of the identified motif orientation preferences. By contrast, motif presence irrespective of orientation was found associated with pronounced effects on gene expression co-regulation validating the pursued approach. Inspecting motif pairs revealed statistically preferred orientational arrangements, but no consistent effect with regard to arrangement-dependent gene expression regulation was evident. Conclusions Our results suggest that for the motifs considered here, either no specific orientation rendering them functional across all their instances exists with orientational requirements instead depending on gene-locus specific additional factors, or that the binding orientation of transcription factors may generally not be relevant, but rather the event of binding itself. Electronic supplementary material The online version of this article (doi:10.1186/s12864-016-2549-x) contains supplementary material, which is available to authorized users.
Collapse
Affiliation(s)
- Monika Lis
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| | - Dirk Walther
- Max Planck Institute for Molecular Plant Physiology, Am Mühlenberg 1, 14476, Potsdam-Golm, Germany.
| |
Collapse
|