1
|
Converso C, Pierrakeas L, Chan L, Chowdhury S, de Onis E, Kuznetsov VI, Denu JM, Luk E. H2A.Z deposition by the SWR complex is stimulated by polyadenine DNA sequences in nucleosomes. PLoS Biol 2025; 23:e3003059. [PMID: 40354500 PMCID: PMC12068740 DOI: 10.1371/journal.pbio.3003059] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/21/2024] [Accepted: 02/07/2025] [Indexed: 05/14/2025] Open
Abstract
The variant histone H2A.Z is deposited into nucleosomes immediately downstream of promoters, where it plays a critical role in transcription. The site-specific deposition of H2A.Z is catalyzed by the SWR complex, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome-depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR to a library of canonical nucleosomes isolated from yeast and analyzed the preferred substrates. Our results revealed that SWR preferentially deposited H2A.Z into a subset of endogenous H2A.Z sites, which are overrepresented by polyadenine tracts on the top strands of the DNA duplex at the nucleosomal entry-exit sites. Insertion of polyadenine sequences into recombinant nucleosomes near the outgoing H2A-H2B dimer enhanced SWR's affinity for the nucleosomal substrate and increased its H2A.Z insertion activity. These findings suggest that the genome encodes sequence-based information that facilitates remodeler-mediated targeting of H2A.Z.
Collapse
Affiliation(s)
- Cynthia Converso
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Leonidas Pierrakeas
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Lirong Chan
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
| | - Shalvi Chowdhury
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Emily de Onis
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| | - Vyacheslav I. Kuznetsov
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - John M. Denu
- Department of Biomolecular Chemistry, School of Medicine and Public Health, University of Wisconsin, Madison, Wisconsin, United States of America
- Wisconsin Institute for Discovery, University of Wisconsin, Madison, Wisconsin, United States of America
| | - Ed Luk
- Department of Biochemistry and Cell Biology, Stony Brook University, Stony Brook, New York, United States of America
- Renaissance School of Medicine, Stony Brook University, Stony Brook, New York, United States of America
| |
Collapse
|
2
|
Yu Z, Liang Y, Xiang M, Xu K, Xu X, Ran D, Luo Y, Chen B, Bo X, Chen H. Identifying associations between short tandem repeat sequences and gene expression in yeast reveals specific repeated motifs encoding transcriptional regulatory proteins. Comput Struct Biotechnol J 2025; 27:705-716. [PMID: 40092660 PMCID: PMC11908461 DOI: 10.1016/j.csbj.2025.02.003] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/27/2024] [Revised: 02/05/2025] [Accepted: 02/07/2025] [Indexed: 03/19/2025] Open
Abstract
Tandem repeat sequences (TRs), a class of repetitive genomic elements, are broadly distributed in both coding and non-coding regions. Investigating the relationship between sequences and function is essential for understanding the genome. Saccharomyces cerevisiae serves as a vital model organism and is widely used as an engineered strain. Although the transcriptional regulatory functions of TRs in the promoters of S.cerevisiae have been elucidated, our understanding of their roles within coding sequences (CDS) remains limited. In this study, we integrate RNA-seq, ChIP-seq, ATAC-seq, Hi-C, and Micro-C data from S.cerevisiae to analyze the types and distribution of TRs, and their impact on gene expression. Our results indicate that genes containing short tandem repeats (STRs) in their CDS exhibit lower expression levels. Epigenetic analysis reveals that these regions are characterized by high levels of repressive histone modifications and low levels of activating marks, with reduced chromatin accessibility and fewer chromatin interactions. Furthermore, trinucleotide and hexanucleotide repeated motifs of STR are found primarily enriched in genes encoding transcriptional regulatory proteins. This study provides new insights into the functions and characteristics of STRs in the CDS of S.cerevisiae. The identification of key STR motifs offers potential targets for the design of transcriptional regulatory elements.
Collapse
Affiliation(s)
- Zongyuan Yu
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Academy of Military Medical Science, Beijing 100850, China
| | - Yating Liang
- Academy of Military Medical Science, Beijing 100850, China
| | - Meida Xiang
- Academy of Military Medical Science, Beijing 100850, China
| | - Kang Xu
- School of Software, Shandong University, China
| | - Xiang Xu
- Academy of Military Medical Science, Beijing 100850, China
| | - Dongyang Ran
- School of Basic Medical Sciences, Henan University, Kaifeng, China
| | - Yawen Luo
- Academy of Military Medical Science, Beijing 100850, China
| | - Bijia Chen
- Academy of Military Medical Science, Beijing 100850, China
| | - Xiaochen Bo
- Academy of Military Medical Science, Beijing 100850, China
| | - Hebing Chen
- School of Basic Medical Sciences, Anhui Medical University, Hefei 230032, China
- Academy of Military Medical Science, Beijing 100850, China
| |
Collapse
|
3
|
Hungyo K, Audit B, Vaillant C, Morozov AV. Thermodynamics of nucleosome breathing and positioning. J Chem Phys 2025; 162:025101. [PMID: 39774893 DOI: 10.1063/5.0245457] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/26/2024] [Accepted: 12/20/2024] [Indexed: 01/11/2025] Open
Abstract
Nucleosomes are fundamental units of chromatin in which a length of genomic DNA is wrapped around a histone octamer spool in a left-handed superhelix. Large-scale nucleosome maps show a wide distribution of DNA wrapping lengths, which in some cases are tens of base pairs (bp) shorter than the 147 bp canonical wrapping length observed in nucleosome crystal structures. Here, we develop a thermodynamic model that assumes a constant free energy cost of unwrapping a nucleosomal bp. Our model also incorporates linker DNA-short DNA segments between neighboring nucleosomes imposed by the folding of nucleosome arrays into chromatin fibers and other higher-order chromatin structures. We use this model to study nucleosome positioning and occupancy in the presence of nucleosome "breathing"-partial unwrapping and rewrapping of nucleosomal DNA due to interactions with the neighboring particles. We find that, as the unwrapping cost per bp and the chemical potential are varied, the nucleosome arrays are characterized by three distinct states, with low, intermediate, and high densities. The transition between the latter two states proceeds through an equiprobable state in which all nucleosome wrapping lengths are equally likely. We study the equiprobable state theoretically using a mean-field approach, obtaining an excellent agreement with numerical simulations. Finally, we use our model to reproduce S. cerevisiae nucleosome occupancy profiles observed in the vicinity of transcription start sites, as well as genome-wide distributions of nucleosome wrapping lengths. Overall, our results highlight the key role of partial nucleosome unwrapping in shaping the genome-wide patterns of nucleosome positioning and occupancy.
Collapse
Affiliation(s)
- Kharerin Hungyo
- CNRS, ENS de Lyon, LPENSL, UMR5672, F-69342 Lyon Cedex 07, France
- School of Biosciences and Bioengineering, IIT Mandi, Kamand, HP 175005, India
| | - Benjamin Audit
- CNRS, ENS de Lyon, LPENSL, UMR5672, F-69342 Lyon Cedex 07, France
| | - Cédric Vaillant
- CNRS, ENS de Lyon, LPENSL, UMR5672, F-69342 Lyon Cedex 07, France
| | - Alexandre V Morozov
- Department of Physics and Astronomy and Center for Quantitative Biology, Rutgers University, Piscataway, New Jersey 08854, USA
| |
Collapse
|
4
|
Liu X, Wei H, Zhang Q, Zhang N, Wu Q, Xu C. Footprint-C reveals transcription factor modes in local clusters and long-range chromatin interactions. Nat Commun 2024; 15:10922. [PMID: 39738122 PMCID: PMC11686180 DOI: 10.1038/s41467-024-55403-7] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/19/2024] [Accepted: 12/10/2024] [Indexed: 01/01/2025] Open
Abstract
The proximity ligation-based Hi-C and derivative methods are the mainstream tools to study genome-wide chromatin interactions. These methods often fragment the genome using enzymes functionally irrelevant to the interactions per se, restraining the efficiency in identifying structural features and the underlying regulatory elements. Here we present Footprint-C, which yields high-resolution chromatin contact maps built upon intact and genuine footprints protected by transcription factor (TF) binding. When analyzed at one-dimensional level, the billions of chromatin contacts from Footprint-C enable genome-wide analysis at single footprint resolution, and reveal preferential modes of local TF co-occupancy. At pairwise contact level, Footprint-C exhibits higher efficiency in identifying chromatin structural features when compared with other Hi-C methods, segregates chromatin interactions emanating from adjacent TF footprints, and uncovers multiway interactions involving different TFs. Altogether, Footprint-C results suggest that rich regulatory modes of TF may underlie both local residence and distal chromatin interactions, in terms of TF identity, valency, and conformational configuration.
Collapse
Affiliation(s)
- Xiaokun Liu
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Hanhan Wei
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Qifan Zhang
- China National Center for Bioinformation, Beijing, China
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China
- University of Chinese Academy of Sciences, Beijing, China
| | - Na Zhang
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Qingqing Wu
- Department of Ultrasound, Beijing Obstetrics and Gynecology Hospital, Capital Medical University, Beijing Maternal and Child Health Care Hospital, Beijing, China
| | - Chenhuan Xu
- China National Center for Bioinformation, Beijing, China.
- Beijing Institute of Genomics, Chinese Academy of Sciences, Beijing, China.
- University of Chinese Academy of Sciences, Beijing, China.
| |
Collapse
|
5
|
Haseltine WA, Hazel K, Patarca R. RNA Structure: Past, Future, and Gene Therapy Applications. Int J Mol Sci 2024; 26:110. [PMID: 39795966 PMCID: PMC11719923 DOI: 10.3390/ijms26010110] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/30/2024] [Revised: 12/21/2024] [Accepted: 12/25/2024] [Indexed: 01/13/2025] Open
Abstract
First believed to be a simple intermediary between the information encoded in deoxyribonucleic acid and that functionally displayed in proteins, ribonucleic acid (RNA) is now known to have many functions through its abundance and intricate, ubiquitous, diverse, and dynamic structure. About 70-90% of the human genome is transcribed into protein-coding and noncoding RNAs as main determinants along with regulatory sequences of cellular to populational biological diversity. From the nucleotide sequence or primary structure, through Watson-Crick pairing self-folding or secondary structure, to compaction via longer distance Watson-Crick and non-Watson-Crick interactions or tertiary structure, and interactions with RNA or other biopolymers or quaternary structure, or with metabolites and biomolecules or quinary structure, RNA structure plays a critical role in RNA's lifecycle from transcription to decay and many cellular processes. In contrast to the success of 3-dimensional protein structure prediction using AlphaFold, RNA tertiary and beyond structures prediction remains challenging. However, approaches involving machine learning and artificial intelligence, sequencing of RNA and its modifications, and structural analyses at the single-cell and intact tissue levels, among others, provide an optimistic outlook for the continued development and refinement of RNA-based applications. Here, we highlight those in gene therapy.
Collapse
Affiliation(s)
- William A. Haseltine
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| | - Kim Hazel
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
| | - Roberto Patarca
- ACCESS Health International, 384 West Lane, Ridgefield, CT 06877, USA; (K.H.); (R.P.)
- Feinstein Institutes for Medical Research, 350 Community Dr., Manhasset, NY 11030, USA
| |
Collapse
|
6
|
Zhou X, Zhang N, Gong J, Zhang K, Chen P, Cheng X, Ye BC, Zhao G, Jing X, Li X. In vivo assembly of complete eukaryotic nucleosomes and (H3-H4)-only non-canonical nucleosomal particles in the model bacterium Escherichia coli. Commun Biol 2024; 7:1510. [PMID: 39543208 PMCID: PMC11564532 DOI: 10.1038/s42003-024-07211-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/24/2024] [Accepted: 11/04/2024] [Indexed: 11/17/2024] Open
Abstract
As a fundamental unit for packaging genomic DNA into chromatin, the eukaryotic nucleosome core comprises a canonical octamer with two copies for each histone, H2A, H2B, H3, and H4, wrapped around with 147 base pairs of DNA. While H3 and H4 share structure-fold with archaeal histone-like proteins, the eukaryotic nucleosome core and the complete nucleosome (the core plus H1 histone) are unique to eukaryotes. To explore whether the eukaryotic nucleosome can assemble in prokaryotes and to reconstruct the possible route for its emergence in eukaryogenesis, we developed an in vivo system for assembly of nucleosomes in the model bacterium, Escherichia coli, and successfully reconstituted the core nucleosome, the complete nucleosome, and unexpectedly the non-canonical (H3-H4)4 octasome. The core and complete nucleosomes assembled in E. coli exhibited footprints typical of eukaryotic hosts after in situ micrococcal nuclease digestion. Additionally, they caused condensation of E. coli nucleoid. We also demonstrated the stable formation of non-canonical (H3-H4)2 tetrasome and (H3-H4)4 octasomes in vivo, which are suggested to be 'fossil complex' that marks the intermediate in the progressive development of eukaryotic nucleosome. The study presents a unique platform in a bacterium for in vivo assembly and studying the properties of non-canonical variants of nucleosome.
Collapse
Affiliation(s)
- Xiaojuan Zhou
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Niubing Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Jie Gong
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Kaixiang Zhang
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Ping Chen
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
| | - Xiang Cheng
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China
- University of Chinese Academy of Sciences, 100039, Beijing, China
| | - Bang-Ce Ye
- State Key Laboratory of Bioreactor Engineering, East China University of Science and Technology, Shanghai, 200237, China
| | - Guoping Zhao
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- Key Laboratory of Systems Health Science of Zhejiang Province, School of Life Science, Hangzhou Institute for Advanced Study, University of Chinese Academy of Sciences, Hangzhou, China.
- Department of Microbiology and Microbial Engineering, School of Life Sciences, Fudan University, Shanghai, China.
| | - Xinyun Jing
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
| | - Xuan Li
- Key Laboratory of Synthetic Biology, Key Laboratory of Plant Design, CAS Center for Excellence in Molecular Plant Sciences, Chinese Academy of Sciences, Shanghai, 200032, China.
- University of Chinese Academy of Sciences, 100039, Beijing, China.
| |
Collapse
|
7
|
Bueno PC, Viana GS, Thomaz LL, Chagas-Paula DA, Hippler M, Cavalheiro AJ. Seasonal and circadian rhythms of clerodane diterpenes and glycosylated flavonoids in two varieties of Casearia sylvestris Sw. (Salicaceae). Heliyon 2024; 10:e39488. [PMID: 39469675 PMCID: PMC11513561 DOI: 10.1016/j.heliyon.2024.e39488] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2024] [Revised: 09/02/2024] [Accepted: 10/15/2024] [Indexed: 10/30/2024] Open
Abstract
Casearia sylvestris Sw. (Salicaceae) is noted for its morphological and chemical plasticity and pharmacological properties. The present study investigates two of its varieties: C. sylvestris var. sylvestris, predominant in dense and humid forests and ecotones and characterized by clerodane diterpenes; and C. sylvestris var. lingua, mainly found in xeric and open savannah areas and containing phenolic compounds. Despite their comprehensive chemical profiles, the dynamics of clerodane diterpenes and glycosylated flavonoids remain unknown. This study thus aimed to describe seasonal and circadian variations in their content in the leaves of the two varieties. The relative contents of five diterpenes and three glycosylated flavonoids were monitored monthly, every 3 h for 48 h, over 1 year via high-performance liquid chromatography coupled to diode array detection (HPLC-UV-DAD). The differential expression of photosynthetic proteins (Rubisco and photosystem II) was analyzed by Western blotting. The contents of both chemical classes decreased during the reproductive stage, though the prevalence of diterpenes in var. sylvestris and flavonoids in var. lingua remained unchanged; furthermore, even when the plants are grown under the same geographic and environmental conditions, Rubisco expression in var. lingua is twice that of var. sylvestris. In var. lingua, photosystem II proteins are 10 % less expressed. The study reveals the circadian and seasonal fluctuations and, thus, prevalence of the two main compound classes in the examined varieties. The expression of the investigated photosynthetic proteins provides insights into the two varieties, supporting the prevalence of var. lingua in Cerrado areas and var. sylvestris in Atlantic Forest areas.
Collapse
Affiliation(s)
- Paula C.P. Bueno
- Institute of Chemistry, São Paulo State University, UNESP, Francisco Degni 55, 14800-900, Araraquara, SP, Brazil
- Institute of Chemistry, Federal University of Alfenas, UNIFAL, Gabriel Monteiro da Silva 700, 37130-001, Alfenas, MG, Brazil
- Leibniz Institute of Vegetable and Ornamental Crops, IGZ, Theodor-Echtermeyer-Weg 1, 14979, Großbeeren, Germany
| | - Gabriel S. Viana
- Institute of Chemistry, Federal University of Alfenas, UNIFAL, Gabriel Monteiro da Silva 700, 37130-001, Alfenas, MG, Brazil
| | - Livia L. Thomaz
- Institute of Chemistry, São Paulo State University, UNESP, Francisco Degni 55, 14800-900, Araraquara, SP, Brazil
| | - Daniela A. Chagas-Paula
- Institute of Chemistry, Federal University of Alfenas, UNIFAL, Gabriel Monteiro da Silva 700, 37130-001, Alfenas, MG, Brazil
| | - Michael Hippler
- Institut für Biologie und Biotechnologie der Pflanzen (IBBP), Westfälische Wilhelms-Universität Münster, Schlossplatz 8, 48143, Münster, Germany
| | - Alberto J. Cavalheiro
- Institute of Chemistry, São Paulo State University, UNESP, Francisco Degni 55, 14800-900, Araraquara, SP, Brazil
| |
Collapse
|
8
|
Sala A, Labrador M, Buitrago D, De Jorge P, Battistini F, Heath I, Orozco M. An integrated machine-learning model to predict nucleosome architecture. Nucleic Acids Res 2024; 52:10132-10143. [PMID: 39162225 PMCID: PMC11417389 DOI: 10.1093/nar/gkae689] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2023] [Revised: 07/17/2024] [Accepted: 07/29/2024] [Indexed: 08/21/2024] Open
Abstract
We demonstrate that nucleosomes placed in the gene body can be accurately located from signal decay theory assuming two emitters located at the beginning and at the end of genes. These generated wave signals can be in phase (leading to well defined nucleosome arrays) or in antiphase (leading to fuzzy nucleosome architectures). We found that the first (+1) and the last (-last) nucleosomes are contiguous to regions signaled by transcription factor binding sites and unusual DNA physical properties that hinder nucleosome wrapping. Based on these analyses, we developed a method that combines Machine Learning and signal transmission theory able to predict the basal locations of the nucleosomes with an accuracy similar to that of experimental MNase-seq based methods.
Collapse
Affiliation(s)
- Alba Sala
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Mireia Labrador
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Diana Buitrago
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Pau De Jorge
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Federica Battistini
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Universitat de Barcelona, Barcelona, Spain
| | - Isabelle Brun Heath
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
| | - Modesto Orozco
- Institute for Research in Biomedicine (IRB Barcelona), The Barcelona Institute of Science and Technology, Barcelona, Spain
- Departament de Bioquímica i Biomedicina, Universitat de Barcelona, Barcelona, Spain
| |
Collapse
|
9
|
Ji L, Xu S, Zhang Y, Cheng H. Screening of broad-host expression promoters for shuttle expression vectors in non-conventional yeasts and bacteria. Microb Cell Fact 2024; 23:230. [PMID: 39152436 PMCID: PMC11330142 DOI: 10.1186/s12934-024-02506-x] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/07/2024] [Accepted: 08/09/2024] [Indexed: 08/19/2024] Open
Abstract
BACKGROUND Non-conventional yeasts and bacteria gain significance in synthetic biology for their unique metabolic capabilities in converting low-cost renewable feedstocks into valuable products. Improving metabolic pathways and increasing bioproduct yields remain dependent on the strategically use of various promoters in these microbes. The development of broad-spectrum promoter libraries with varying strengths for different hosts is attractive for biosynthetic engineers. RESULTS In this study, five Yarrowia lipolytica constitutive promoters (yl.hp4d, yl.FBA1in, yl.TEF1, yl.TDH1, yl.EXP1) and five Kluyveromyces marxianus constitutive promoters (km.PDC1, km.FBA1, km.TEF1, km.TDH3, km.ENO1) were selected to construct promoter-reporter vectors, utilizing α-amylase and red fluorescent protein (RFP) as reporter genes. The promoters' strengths were systematically characterized across Y. lipolytica, K. marxianus, Pichia pastoris, Escherichia coli, and Corynebacterium glutamicum. We discovered that five K. marxianus promoters can all express genes in Y. lipolytica and that five Y. lipolytica promoters can all express genes in K. marxianus with variable expression strengths. Significantly, the yl.TEF1 and km.TEF1 yeast promoters exhibited their adaptability in P. pastoris, E. coli, and C. glutamicum. In yeast P. pastoris, the yl.TEF1 promoter exhibited substantial expression of both amylase and RFP. In bacteria E. coli and C. glutamicum, the eukaryotic km.TEF1 promoter demonstrated robust expression of RFP. Significantly, in E. coli, The RFP expression strength of the km.TEF1 promoter reached ∼20% of the T7 promoter. CONCLUSION Non-conventional yeast promoters with diverse and cross-domain applicability have great potential for developing innovative and dynamic regulated systems that can effectively manage carbon flux and enhance target bioproduct synthesis across diverse microbial hosts.
Collapse
Affiliation(s)
- Liyun Ji
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Shuo Xu
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Yue Zhang
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China
| | - Hairong Cheng
- State Key Laboratory of Microbial Metabolism, and School of Life Sciences and Biotechnology, Shanghai Jiao Tong University, Shanghai, China.
| |
Collapse
|
10
|
Segura J, Díaz-Ingelmo O, Martínez-García B, Ayats-Fraile A, Nikolaou C, Roca J. Nucleosomal DNA has topological memory. Nat Commun 2024; 15:4526. [PMID: 38806488 PMCID: PMC11133463 DOI: 10.1038/s41467-024-49023-4] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/22/2023] [Accepted: 05/21/2024] [Indexed: 05/30/2024] Open
Abstract
One elusive aspect of the chromosome architecture is how it constrains the DNA topology. Nucleosomes stabilise negative DNA supercoils by restraining a DNA linking number difference (∆Lk) of about -1.26. However, whether this capacity is uniform across the genome is unknown. Here, we calculate the ∆Lk restrained by over 4000 nucleosomes in yeast cells. To achieve this, we insert each nucleosome in a circular minichromosome and perform Topo-seq, a high-throughput procedure to inspect the topology of circular DNA libraries in one gel electrophoresis. We show that nucleosomes inherently restrain distinct ∆Lk values depending on their genomic origin. Nucleosome DNA topologies differ at gene bodies (∆Lk = -1.29), intergenic regions (∆Lk = -1.23), rDNA genes (∆Lk = -1.24) and telomeric regions (∆Lk = -1.07). Nucleosomes near the transcription start and termination sites also exhibit singular DNA topologies. Our findings demonstrate that nucleosome DNA topology is imprinted by its native chromatin context and persists when the nucleosome is relocated.
Collapse
Affiliation(s)
- Joana Segura
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
- Centro de Biología Molecular Severo Ochoa (CSIC/UAM), Madrid, Spain
| | - Ofelia Díaz-Ingelmo
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Belén Martínez-García
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | - Alba Ayats-Fraile
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain
| | | | - Joaquim Roca
- DNA Topology Lab, Molecular Biology Institute of Barcelona (IBMB-CSIC), Barcelona, Spain.
| |
Collapse
|
11
|
Dennis AF, Xu Z, Clark DJ. Examining chromatin heterogeneity through PacBio long-read sequencing of M.EcoGII methylated genomes: an m6A detection efficiency and calling bias correcting pipeline. Nucleic Acids Res 2024; 52:e45. [PMID: 38634798 PMCID: PMC11109960 DOI: 10.1093/nar/gkae288] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/22/2024] [Revised: 03/23/2024] [Accepted: 04/04/2024] [Indexed: 04/19/2024] Open
Abstract
Recent studies have combined DNA methyltransferase footprinting of genomic DNA in nuclei with long-read sequencing, resulting in detailed chromatin maps for multi-kilobase stretches of genomic DNA from one cell. Theoretically, nucleosome footprints and nucleosome-depleted regions can be identified using M.EcoGII, which methylates adenines in any sequence context, providing a high-resolution map of accessible regions in each DNA molecule. Here, we report PacBio long-read sequence data for budding yeast nuclei treated with M.EcoGII and a bioinformatic pipeline which corrects for three key challenges undermining this promising method. First, detection of m6A in individual DNA molecules by the PacBio software is inefficient, resulting in false footprints predicted by random gaps of seemingly unmethylated adenines. Second, there is a strong bias against m6A base calling as AT content increases. Third, occasional methylation occurs within nucleosomes, breaking up their footprints. After correcting for these issues, our pipeline calculates a correlation coefficient-based score indicating the extent of chromatin heterogeneity within the cell population for every gene. Although the population average is consistent with that derived using other techniques, we observe a wide range of heterogeneity in nucleosome positions at the single-molecule level, probably reflecting cellular chromatin dynamics.
Collapse
Affiliation(s)
- Allison F Dennis
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - Zhuwei Xu
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| | - David J Clark
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, MD 20892, USA
| |
Collapse
|
12
|
Oberbeckmann E, Oudelaar AM. Genome organization across scales: mechanistic insights from in vitro reconstitution studies. Biochem Soc Trans 2024; 52:793-802. [PMID: 38451192 PMCID: PMC11088924 DOI: 10.1042/bst20230883] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/12/2024] [Revised: 02/19/2024] [Accepted: 02/27/2024] [Indexed: 03/08/2024]
Abstract
Eukaryotic genomes are compacted and organized into distinct three-dimensional (3D) structures, which range from small-scale nucleosome arrays to large-scale chromatin domains. These chromatin structures play an important role in the regulation of transcription and other nuclear processes. The molecular mechanisms that drive the formation of chromatin structures across scales and the relationship between chromatin structure and function remain incompletely understood. Because the processes involved are complex and interconnected, it is often challenging to dissect the underlying principles in the nuclear environment. Therefore, in vitro reconstitution systems provide a valuable approach to gain insight into the molecular mechanisms by which chromatin structures are formed and to determine the cause-consequence relationships between the processes involved. In this review, we give an overview of in vitro approaches that have been used to study chromatin structures across scales and how they have increased our understanding of the formation and function of these structures. We start by discussing in vitro studies that have given insight into the mechanisms of nucleosome positioning. Next, we discuss recent efforts to reconstitute larger-scale chromatin domains and loops and the resulting insights into the principles of genome organization. We conclude with an outlook on potential future applications of chromatin reconstitution systems and how they may contribute to answering open questions concerning chromatin architecture.
Collapse
Affiliation(s)
- Elisa Oberbeckmann
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| | - A. Marieke Oudelaar
- Genome Organization and Regulation, Max Planck Institute for Multidisciplinary Sciences, Am Fassberg 11, 37077 Göttingen, Germany
| |
Collapse
|
13
|
Eustermann S, Patel AB, Hopfner KP, He Y, Korber P. Energy-driven genome regulation by ATP-dependent chromatin remodellers. Nat Rev Mol Cell Biol 2024; 25:309-332. [PMID: 38081975 DOI: 10.1038/s41580-023-00683-y] [Citation(s) in RCA: 16] [Impact Index Per Article: 16.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Accepted: 10/24/2023] [Indexed: 03/28/2024]
Abstract
The packaging of DNA into chromatin in eukaryotes regulates gene transcription, DNA replication and DNA repair. ATP-dependent chromatin remodelling enzymes (re)arrange nucleosomes at the first level of chromatin organization. Their Snf2-type motor ATPases alter histone-DNA interactions through a common DNA translocation mechanism. Whether remodeller activities mainly catalyse nucleosome dynamics or accurately co-determine nucleosome organization remained unclear. In this Review, we discuss the emerging mechanisms of chromatin remodelling: dynamic remodeller architectures and their interactions, the inner workings of the ATPase cycle, allosteric regulation and pathological dysregulation. Recent mechanistic insights argue for a decisive role of remodellers in the energy-driven self-organization of chromatin, which enables both stability and plasticity of genome regulation - for example, during development and stress. Different remodellers, such as members of the SWI/SNF, ISWI, CHD and INO80 families, process (epi)genetic information through specific mechanisms into distinct functional outputs. Combinatorial assembly of remodellers and their interplay with histone modifications, histone variants, DNA sequence or DNA-bound transcription factors regulate nucleosome mobilization or eviction or histone exchange. Such input-output relationships determine specific nucleosome positions and compositions with distinct DNA accessibilities and mediate differential genome regulation. Finally, remodeller genes are often mutated in diseases characterized by genome dysregulation, notably in cancer, and we discuss their physiological relevance.
Collapse
Affiliation(s)
- Sebastian Eustermann
- Structural and Computational Biology Unit, European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Avinash B Patel
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA
| | - Karl-Peter Hopfner
- Gene Center and Department of Biochemistry, Faculty of Chemistry and Pharmacy, LMU Munich, Munich, Germany
| | - Yuan He
- Department of Molecular Biosciences, Robert H. Lurie Comprehensive Cancer Center, Chemistry of Life Processes Institute, Northwestern University, Evanston, IL, USA.
| | - Philipp Korber
- Biomedical Center (BMC), Molecular Biology, Faculty of Medicine, LMU Munich, Martinsried, Germany.
| |
Collapse
|
14
|
Wang H, Yin C, Zhang G, Yang M, Zhu B, Jiang J, Zeng Z. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modification and nucleosome depletion in Arabidopsis. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 118:549-564. [PMID: 38184780 DOI: 10.1111/tpj.16624] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/14/2022] [Revised: 12/19/2023] [Accepted: 12/26/2023] [Indexed: 01/08/2024]
Abstract
Epigenetic regulation of gene expression plays a crucial role in plant development and environmental adaptation. The H3K4me3 and H3K27me3 have not only been discovered in the regulation of gene expression in multiple biological processes but also in responses to abiotic stresses in plants. However, evidence for the presence of both H3K4me3 and H3K27me3 on the same nucleosome is sporadic. Cold-induced deposition of bivalent H3K4me3-H3K27me3 modifications and nucleosome depletion over a considerable number of active genes is documented in potato tubers and provides clues on an additional role of the bivalent modifications. Limited by the available information of genes encoding PcG/TrxG proteins as well as their corresponding mutants in potatoes, the molecular mechanism underlying the cold-induced deposition of the bivalent mark remains elusive. In this study, we found a similar deposition of the bivalent H3K4me3-H3K27me3 mark over 2129 active genes in cold-treated Arabidopsis Col-0 seedlings. The expression levels of the bivalent mark-associated genes tend to be independent of bivalent modification levels. However, these genes were associated with greater chromatin accessibility, presumably to provide a distinct chromatin environment for gene expression. In mutants clf28 and lhp1, failure to deposit H3K27me3 in active genes upon cold treatment implies that the CLF is potentially involved in cold-induced deposition of H3K27me3, with assistance from LHP1. Failure to deposit H3K4me3 during cold treatment in atx1-2 suggests a regulatory role of ATX1 in the deposition of H3K4me3. In addition, we observed a cold-induced global reduction in nucleosome occupancy, which is potentially mediated by LHP1 in an H3K27me3-dependent manner.
Collapse
Affiliation(s)
- Hao Wang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Chang Yin
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Guoyan Zhang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Miao Yang
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Bo Zhu
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| | - Jiming Jiang
- Department of Plant Biology, Department of Horticulture, Michigan State University AgBioResearch, Michigan State University, East Lansing, Michigan, 48824, USA
| | - Zixian Zeng
- Department of Biological Science, College of Life Sciences, Sichuan Normal University, Chengdu, 610101, Sichuan, China
- Plant Functional Genomics and Bioinformatics Research Center, Sichuan Normal University, Chengdu, 610101, Sichuan, China
| |
Collapse
|
15
|
Atanasoff-Kardjalieff AK, Berger H, Steinert K, Janevska S, Ponts N, Humpf HU, Kalinina S, Studt-Reinhold L. Incorporation of the histone variant H2A.Z counteracts gene silencing mediated by H3K27 trimethylation in Fusarium fujikuroi. Epigenetics Chromatin 2024; 17:7. [PMID: 38509556 PMCID: PMC10953111 DOI: 10.1186/s13072-024-00532-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2023] [Accepted: 02/15/2024] [Indexed: 03/22/2024] Open
Abstract
BACKGROUND Fusarium fujikuroi is a pathogen of rice causing diverse disease symptoms such as 'bakanae' or stunting, most likely due to the production of various natural products (NPs) during infection. Fusaria have the genetic potential to synthesize a plethora of these compounds with often diverse bioactivity. The capability to synthesize NPs exceeds the number of those being produced by far, implying a gene regulatory network decisive to induce production. One such regulatory layer is the chromatin structure and chromatin-based modifications associated with it. One prominent example is the exchange of histones against histone variants such as the H2A variant H2A.Z. Though H2A.Z already is well studied in several model organisms, its regulatory functions are not well understood. Here, we used F. fujikuroi as a model to explore the role of the prominent histone variant FfH2A.Z in gene expression within euchromatin and facultative heterochromatin. RESULTS Through the combination of diverse '-omics' methods, we show the global distribution of FfH2A.Z and analyze putative crosstalks between the histone variant and two prominent histone marks, i.e., H3K4me3 and H3K27me3, important for active gene transcription and silencing, respectively. We demonstrate that, if FfH2A.Z is positioned at the + 1-nucleosome, it poises chromatin for gene transcription, also within facultative heterochromatin. Lastly, functional characterization of FfH2A.Z overexpression and depletion mutants revealed that FfH2A.Z is important for wild type-like fungal development and secondary metabolism. CONCLUSION In this study, we show that the histone variant FfH2A.Z is a mark of positive gene transcription and acts independently of the chromatin state most likely through the stabilization of the + 1-nucleosome. Furthermore, we demonstrate that FfH2A.Z depletion does not influence the establishment of both H3K27me3 and H3K4me3, thus indicating no crosstalk between FfH2A.Z and both histone marks. These results highlight the manifold functions of the histone variant FfH2A.Z in the phytopathogen F. fujikuroi, which are distinct regarding gene transcription and crosstalk with the two prominent histone marks H3K27me3 and H3K4me3, as proposed for other model organisms.
Collapse
Affiliation(s)
- Anna K Atanasoff-Kardjalieff
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Harald Berger
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria
| | - Katharina Steinert
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Slavica Janevska
- (Epi-)Genetic Regulation of Fungal Virulence, Leibniz Institute for Natural Product Research and Infection Biology-Hans Knöll Institute, 07745, Jena, Germany
| | - Nadia Ponts
- INRAE, UR1264 Mycology and Food Safety (MycSA), Villenave d'Ornon, 33882, France
| | - Hans-Ulrich Humpf
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Svetlana Kalinina
- Institute of Food Chemistry, University of Münster, Corrensstraße 45, 48149, Münster, Germany
| | - Lena Studt-Reinhold
- Department of Applied Genetics and Cell Biology, Institute of Microbial Genetics, University of Natural Resources and Life Sciences, Vienna, Konrad-Lorenz Strasse 24, Tulln an der Donau, 3430, Austria.
| |
Collapse
|
16
|
Kim JM, Carcamo CC, Jazani S, Xie Z, Feng XA, Yamadi M, Poyton M, Holland KL, Grimm JB, Lavis LD, Ha T, Wu C. Dynamic 1D search and processive nucleosome translocations by RSC and ISW2 chromatin remodelers. eLife 2024; 12:RP91433. [PMID: 38497611 PMCID: PMC10948146 DOI: 10.7554/elife.91433] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 03/19/2024] Open
Abstract
Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement, and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and two-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding, respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/s on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Sina Jazani
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Zepei Xie
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xinyu A Feng
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
| | - Maryam Yamadi
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Matthew Poyton
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Katie L Holland
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Jonathan B Grimm
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Luke D Lavis
- Janelia Research Campus, Howard Hughes Medical InstituteAshburnUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of MedicineBaltimoreUnited States
- Howard Hughes Medical InstituteBostonUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
- Department of Molecular Biology and Genetics, Johns Hopkins School of MedicineBaltimoreUnited States
| |
Collapse
|
17
|
Yu J, Sui F, Gu F, Li W, Yu Z, Wang Q, He S, Wang L, Xu Y. Structural insights into histone exchange by human SRCAP complex. Cell Discov 2024; 10:15. [PMID: 38331872 PMCID: PMC10853557 DOI: 10.1038/s41421-023-00640-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/13/2023] [Accepted: 12/18/2023] [Indexed: 02/10/2024] Open
Abstract
Histone variant H2A.Z is found at promoters and regulates transcription. The ATP-dependent chromatin remodeler SRCAP complex (SRCAP-C) promotes the replacement of canonical histone H2A-H2B dimer with H2A.Z-H2B dimer. Here, we determined structures of human SRCAP-C bound to H2A-containing nucleosome at near-atomic resolution. The SRCAP subunit integrates a 6-subunit actin-related protein (ARP) module and an ATPase-containing motor module. The ATPase-associated ARP module encircles half of the nucleosome along the DNA and may restrain net DNA translocation, a unique feature of SRCAP-C. The motor module adopts distinct nucleosome binding modes in the apo (nucleotide-free), ADP-bound, and ADP-BeFx-bound states, suggesting that ATPase-driven movement destabilizes H2A-H2B by unwrapping the entry DNA and pulls H2A-H2B out of nucleosome through the ZNHIT1 subunit. Structure-guided chromatin immunoprecipitation sequencing analysis confirmed the requirement of H2A-contacting ZNHIT1 in maintaining H2A.Z occupancy on the genome. Our study provides structural insights into the mechanism of H2A-H2A.Z exchange mediated by SRCAP-C.
Collapse
Affiliation(s)
- Jiali Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China
| | - Fengrui Sui
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Feng Gu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Wanjun Li
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Zishuo Yu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Qianmin Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Shuang He
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China
| | - Li Wang
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| | - Yanhui Xu
- Fudan University Shanghai Cancer Center, Institutes of Biomedical Sciences, New Cornerstone Science Laboratory, State Key Laboratory of Genetic Engineering and Shanghai Key Laboratory of Medical Epigenetics, Shanghai Medical College of Fudan University, Shanghai, China.
- The International Co-laboratory of Medical Epigenetics and Metabolism, Ministry of Science and Technology of China, Department of Systems Biology for Medicine, School of Basic Medical Sciences, Shanghai Medical College of Fudan University, Shanghai, China.
- Greater Bay Area Institute of Precision Medicine, Fudan University, Nansha District, Guangzhou, Guangdong, China.
| |
Collapse
|
18
|
Kim JM, Carcamo CC, Jazani S, Xie Z, Feng XA, Yamadi M, Poyton M, Holland KL, Grimm JB, Lavis LD, Ha T, Wu C. Dynamic 1D Search and Processive Nucleosome Translocations by RSC and ISW2 Chromatin Remodelers. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2024:2023.06.13.544671. [PMID: 38293098 PMCID: PMC10827135 DOI: 10.1101/2023.06.13.544671] [Citation(s) in RCA: 1] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 02/01/2024]
Abstract
Eukaryotic gene expression is linked to chromatin structure and nucleosome positioning by ATP-dependent chromatin remodelers that establish and maintain nucleosome-depleted regions (NDRs) near transcription start-sites. Conserved yeast RSC and ISW2 remodelers exert antagonistic effects on nucleosomes flanking NDRs, but the temporal dynamics of remodeler search, engagement and directional nucleosome mobilization for promoter accessibility are unknown. Using optical tweezers and 2-color single-particle imaging, we investigated the Brownian diffusion of RSC and ISW2 on free DNA and sparse nucleosome arrays. RSC and ISW2 rapidly scan DNA by one-dimensional hopping and sliding respectively, with dynamic collisions between remodelers followed by recoil or apparent co-diffusion. Static nucleosomes block remodeler diffusion resulting in remodeler recoil or sequestration. Remarkably, both RSC and ISW2 use ATP hydrolysis to translocate mono-nucleosomes processively at ~30 bp/sec on extended linear DNA under tension. Processivity and opposing push-pull directionalities of nucleosome translocation shown by RSC and ISW2 shape the distinctive landscape of promoter chromatin.
Collapse
Affiliation(s)
- Jee Min Kim
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Claudia C. Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Sina Jazani
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Zepei Xie
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Xinyu A. Feng
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
| | - Maryam Yamadi
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Matthew Poyton
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
| | - Katie L. Holland
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Jonathan B. Grimm
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Luke D. Lavis
- Janelia Research Campus, Howard Hughes Medical Institute, Ashburn, United States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins University School of Medicine, Baltimore, MD, USA
- Howard Hughes Medical Institute, Boston, Massachusetts, USA
| | - Carl Wu
- Department of Biology, Johns Hopkins University, Baltimore, MD 21218, USA
- Department of Molecular Biology and Genetics, Johns Hopkins School of Medicine, Baltimore, MD 21287, USA
| |
Collapse
|
19
|
Boltengagen M, Verhagen D, Wolff MR, Oberbeckmann E, Hanke M, Gerland U, Korber P, Mueller-Planitz F. A single fiber view of the nucleosome organization in eukaryotic chromatin. Nucleic Acids Res 2024; 52:166-185. [PMID: 37994698 PMCID: PMC10783498 DOI: 10.1093/nar/gkad1098] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2023] [Revised: 10/13/2023] [Accepted: 10/31/2023] [Indexed: 11/24/2023] Open
Abstract
Eukaryotic cells are thought to arrange nucleosomes into extended arrays with evenly spaced nucleosomes phased at genomic landmarks. Here we tested to what extent this stereotypic organization describes the nucleosome organization in Saccharomyces cerevisiae using Fiber-Seq, a long-read sequencing technique that maps entire nucleosome arrays on individual chromatin fibers in a high throughput manner. With each fiber coming from a different cell, Fiber-Seq uncovers cell-to-cell heterogeneity. The long reads reveal the nucleosome architecture even over repetitive DNA such as the ribosomal DNA repeats. The absolute nucleosome occupancy, a parameter that is difficult to obtain with conventional sequencing approaches, is a direct readout of Fiber-Seq. We document substantial deviations from the stereotypical nucleosome organization with unexpectedly long linker DNAs between nucleosomes, gene bodies missing entire nucleosomes, cell-to-cell heterogeneity in nucleosome occupancy, heterogeneous phasing of arrays and irregular nucleosome spacing. Nucleosome array structures are indistinguishable throughout the gene body and with respect to the direction of transcription arguing against transcription promoting array formation. Acute nucleosome depletion destroyed most of the array organization indicating that nucleosome remodelers cannot efficiently pack nucleosomes under those conditions. Given that nucleosomes are cis-regulatory elements, the cell-to-cell heterogeneity uncovered by Fiber-Seq provides much needed information to understand chromatin structure and function.
Collapse
Affiliation(s)
- Mark Boltengagen
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| | - Daan Verhagen
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Michael Roland Wolff
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, Garching, Germany
| | - Elisa Oberbeckmann
- Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Matthias Hanke
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, Garching, Germany
| | - Ulrich Gerland
- Physics of Complex Biosystems, Physics Department, Technical University of Munich, Garching, Germany
| | - Philipp Korber
- Molecular Biology, Biomedical Center (BMC), Faculty of Medicine, Ludwig-Maximilians-Universität München, 82152 Planegg-Martinsried, Germany
| | - Felix Mueller-Planitz
- Institute of Physiological Chemistry, Faculty of Medicine Carl Gustav Carus, Technische Universität Dresden, Fetscherstraße 74, 01307 Dresden, Germany
| |
Collapse
|
20
|
Nishimura M, Fujii T, Tanaka H, Maehara K, Morishima K, Shimizu M, Kobayashi Y, Nozawa K, Takizawa Y, Sugiyama M, Ohkawa Y, Kurumizaka H. Genome-wide mapping and cryo-EM structural analyses of the overlapping tri-nucleosome composed of hexasome-hexasome-octasome moieties. Commun Biol 2024; 7:61. [PMID: 38191828 PMCID: PMC10774305 DOI: 10.1038/s42003-023-05694-1] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/26/2023] [Accepted: 12/11/2023] [Indexed: 01/10/2024] Open
Abstract
The nucleosome is a fundamental unit of chromatin in which about 150 base pairs of DNA are wrapped around a histone octamer. The overlapping di-nucleosome has been proposed as a product of chromatin remodeling around the transcription start site, and previously found as a chromatin unit, in which about 250 base pairs of DNA continuously bind to the histone core composed of a hexamer and an octamer. In the present study, our genome-wide analysis of human cells suggests another higher nucleosome stacking structure, the overlapping tri-nucleosome, which wraps about 300-350 base-pairs of DNA in the region downstream of certain transcription start sites of actively transcribed genes. We determine the cryo-electron microscopy (cryo-EM) structure of the overlapping tri-nucleosome, in which three subnucleosome moieties, hexasome, hexasome, and octasome, are associated by short connecting DNA segments. Small angle X-ray scattering and coarse-grained molecular dynamics simulation analyses reveal that the cryo-EM structure of the overlapping tri-nucleosome may reflect its structure in solution. Our findings suggest that nucleosome stacking structures composed of hexasome and octasome moieties may be formed by nucleosome remodeling factors around transcription start sites for gene regulation.
Collapse
Affiliation(s)
- Masahiro Nishimura
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Epigenetics and Stem Cell Biology Laboratory, National Institute of Environmental Health Sciences, 111 TW, Alexander Drive, Research Triangle Park, NC, 27707, USA
| | - Takeru Fujii
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Hiroki Tanaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- Department of Structural Virology, National Center for Global Health and Medicine, 1-21-1 Toyama, Shinjuku-ku, Tokyo, 162-8655, Japan
| | - Kazumitsu Maehara
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan
| | - Ken Morishima
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Masahiro Shimizu
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yuki Kobayashi
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Kayo Nozawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
- School of Life Science and Technology, Tokyo Institute of Technology, 4259 Nagatsuta-cho, Midori-ku, Yokohama, Kanagawa, 226-8501, Japan
| | - Yoshimasa Takizawa
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan
| | - Masaaki Sugiyama
- Institute for Integrated Radiation and Nuclear Science, Kyoto University, Kumatori, Sennan-gun, Osaka, 590-0494, Japan
| | - Yasuyuki Ohkawa
- Division of Transcriptomics, Medical Institute of Bioregulation, Kyushu University, 3-1-1 Maidashi, Higashi, Fukuoka, 812-0054, Japan.
| | - Hitoshi Kurumizaka
- Laboratory of Chromatin Structure and Function, Institute for Quantitative Biosciences, The University of Tokyo, 1-1-1 Yayoi, Bunkyo-ku, Tokyo, 113-0032, Japan.
| |
Collapse
|
21
|
Watkins C, Willyerd KL, Liao CP, Ruhl DR, Chen C. MNase-Seq Analysis for Identifying Stress-Altered Nucleosome Occupancy in Plants. Methods Mol Biol 2024; 2832:33-46. [PMID: 38869785 DOI: 10.1007/978-1-0716-3973-3_2] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 06/14/2024]
Abstract
Nucleosome occupancy plays an important role in chromatin compaction, affecting biological processes by hampering the binding of cis-acting elements such as transcription factors, RNA polymerase machinery, and coregulatory. Accessible regions allow for cis-acting elements to bind DNA and regulate transcription. Here, we detail our protocol to profile nucleosome occupancy and chromatin structure dynamics under drought stress at the genome-wide scale using micrococcal nuclease (MNase) digestion. Combining variable MNase concentration treatments and high-throughput sequencing, we investigate the changes in the overall chromatin state using bread wheat samples from an exemplary drought experiment.
Collapse
Affiliation(s)
- Caleb Watkins
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Karyn L Willyerd
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Chi-Ping Liao
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Donald R Ruhl
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA
| | - Charles Chen
- Department of Biochemistry and Molecular Biology, Oklahoma State University, Stillwater, OK, USA.
| |
Collapse
|
22
|
Manosalva Pérez N, Ferrari C, Engelhorn J, Depuydt T, Nelissen H, Hartwig T, Vandepoele K. MINI-AC: inference of plant gene regulatory networks using bulk or single-cell accessible chromatin profiles. THE PLANT JOURNAL : FOR CELL AND MOLECULAR BIOLOGY 2024; 117:280-301. [PMID: 37788349 DOI: 10.1111/tpj.16483] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 05/23/2023] [Revised: 09/13/2023] [Accepted: 09/16/2023] [Indexed: 10/05/2023]
Abstract
Gene regulatory networks (GRNs) represent the interactions between transcription factors (TF) and their target genes. Plant GRNs control transcriptional programs involved in growth, development, and stress responses, ultimately affecting diverse agricultural traits. While recent developments in accessible chromatin (AC) profiling technologies make it possible to identify context-specific regulatory DNA, learning the underlying GRNs remains a major challenge. We developed MINI-AC (Motif-Informed Network Inference based on Accessible Chromatin), a method that combines AC data from bulk or single-cell experiments with TF binding site (TFBS) information to learn GRNs in plants. We benchmarked MINI-AC using bulk AC datasets from different Arabidopsis thaliana tissues and showed that it outperforms other methods to identify correct TFBS. In maize, a crop with a complex genome and abundant distal AC regions, MINI-AC successfully inferred leaf GRNs with experimentally confirmed, both proximal and distal, TF-target gene interactions. Furthermore, we showed that both AC regions and footprints are valid alternatives to infer AC-based GRNs with MINI-AC. Finally, we combined MINI-AC predictions from bulk and single-cell AC datasets to identify general and cell-type specific maize leaf regulators. Focusing on C4 metabolism, we identified diverse regulatory interactions in specialized cell types for this photosynthetic pathway. MINI-AC represents a powerful tool for inferring accurate AC-derived GRNs in plants and identifying known and novel candidate regulators, improving our understanding of gene regulation in plants.
Collapse
Affiliation(s)
- Nicolás Manosalva Pérez
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Camilla Ferrari
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Julia Engelhorn
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
| | - Thomas Depuydt
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Hilde Nelissen
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
| | - Thomas Hartwig
- Molecular Physiology Department, Heinrich-Heine University, 40225, Düsseldorf, Germany
- Max Planck Institute for Plant Breeding Research, 50829, Cologne, Germany
- Cluster of Excellence on Plant Sciences, Düsseldorf, Germany
| | - Klaas Vandepoele
- Department of Plant Biotechnology and Bioinformatics, Ghent University, 9052, Ghent, Belgium
- Center for Plant Systems Biology, VIB, 9052, Ghent, Belgium
- Bioinformatics Institute Ghent, Ghent University, 9052, Ghent, Belgium
| |
Collapse
|
23
|
Converso C, Pierrakeas L, Chan L, Chowdhury S, Kuznetsov VI, Denu JM, Luk E. Nucleic acid sequence contributes to remodeler-mediated targeting of histone H2A.Z. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.12.06.570360. [PMID: 38106078 PMCID: PMC10723385 DOI: 10.1101/2023.12.06.570360] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 12/19/2023]
Abstract
The variant histone H2A.Z is inserted into nucleosomes immediately downstream of promoters and is important for transcription. The site-specific deposition of H2A.Z is catalyzed by SWR, a conserved chromatin remodeler with affinity for promoter-proximal nucleosome depleted regions (NDRs) and histone acetylation. By comparing the genomic distribution of H2A.Z in wild-type and SWR-deficient cells, we found that SWR is also responsible for depositing H2A.Z at thousands of non-canonical sites not directly linked to NDRs or histone acetylation. To understand the targeting mechanism of H2A.Z, we presented SWR with a library of nucleosomes isolated from yeast and characterized those preferred by SWR. We found that SWR prefers nucleosomes associated with intergenic over coding regions, especially when polyadenine tracks are present. Insertion of polyadenine sequences into recombinant nucleosomes near the H2A-H2B binding site stimulated the H2A.Z insertion activity of SWR. Therefore, the genome is encoded with information contributing to remodeler-mediated targeting of H2A.Z.
Collapse
|
24
|
Lee CSK, Weiβ M, Hamperl S. Where and when to start: Regulating DNA replication origin activity in eukaryotic genomes. Nucleus 2023; 14:2229642. [PMID: 37469113 PMCID: PMC10361152 DOI: 10.1080/19491034.2023.2229642] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/18/2023] [Revised: 06/20/2023] [Accepted: 06/21/2023] [Indexed: 07/21/2023] Open
Abstract
In eukaryotic genomes, hundreds to thousands of potential start sites of DNA replication named origins are dispersed across each of the linear chromosomes. During S-phase, only a subset of origins is selected in a stochastic manner to assemble bidirectional replication forks and initiate DNA synthesis. Despite substantial progress in our understanding of this complex process, a comprehensive 'identity code' that defines origins based on specific nucleotide sequences, DNA structural features, the local chromatin environment, or 3D genome architecture is still missing. In this article, we review the genetic and epigenetic features of replication origins in yeast and metazoan chromosomes and highlight recent insights into how this flexibility in origin usage contributes to nuclear organization, cell growth, differentiation, and genome stability.
Collapse
Affiliation(s)
- Clare S K Lee
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Matthias Weiβ
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| | - Stephan Hamperl
- Chromosome Dynamics and Genome Stability, Institute of Epigenetics and Stem Cells, Helmholtz Zentrum München, Munich, Germany
| |
Collapse
|
25
|
Dennis AF, Xu Z, Clark DJ. Examining chromatin heterogeneity through PacBio long-read sequencing of M.EcoGII methylated genomes: an m 6A detection efficiency and calling bias correcting pipeline. BIORXIV : THE PREPRINT SERVER FOR BIOLOGY 2023:2023.11.28.569045. [PMID: 38076871 PMCID: PMC10705563 DOI: 10.1101/2023.11.28.569045] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Indexed: 12/20/2023]
Abstract
Recent studies have combined DNA methyltransferase footprinting of genomic DNA in nuclei with long-read sequencing, resulting in detailed chromatin maps for multi-kilobase stretches of genomic DNA from one cell. Theoretically, nucleosome footprints and nucleosome-depleted regions can be identified using M.EcoGII, which methylates adenines in any sequence context, providing a high-resolution map of accessible regions in each DNA molecule. Here we report PacBio long-read sequence data for budding yeast nuclei treated with M.EcoGII and a bioinformatic pipeline which corrects for three key challenges undermining this promising method. First, detection of m6A in individual DNA molecules by the PacBio software is inefficient, resulting in false footprints predicted by random gaps of seemingly unmethylated adenines. Second, there is a strong bias against m6A base calling as AT content increases. Third, occasional methylation occurs within nucleosomes, breaking up their footprints. After correcting for these issues, our pipeline calculates a correlation coefficient-based score indicating the extent of chromatin heterogeneity within the cell population for every gene. Although the population average is consistent with that derived using other techniques, we observe a wide range of heterogeneity in nucleosome positions at the single-molecule level, probably reflecting cellular chromatin dynamics.
Collapse
Affiliation(s)
| | | | - David J. Clark
- Division of Developmental Biology, Eunice Kennedy-Shriver National Institute of Child Health and Human Development, National Institutes of Health, Bethesda MD 20892, USA
| |
Collapse
|
26
|
Chen Y, Paramo MI, Zhang Y, Yao L, Shah SR, Jin Y, Zhang J, Pan X, Yu H. Finding Needles in the Haystack: Strategies for Uncovering Noncoding Regulatory Variants. Annu Rev Genet 2023; 57:201-222. [PMID: 37562413 DOI: 10.1146/annurev-genet-030723-120717] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 08/12/2023]
Abstract
Despite accumulating evidence implicating noncoding variants in human diseases, unraveling their functionality remains a significant challenge. Systematic annotations of the regulatory landscape and the growth of sequence variant data sets have fueled the development of tools and methods to identify causal noncoding variants and evaluate their regulatory effects. Here, we review the latest advances in the field and discuss potential future research avenues to gain a more in-depth understanding of noncoding regulatory variants.
Collapse
Affiliation(s)
- You Chen
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
| | - Mauricio I Paramo
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
| | - Yingying Zhang
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
| | - Li Yao
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Sagar R Shah
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
| | - Yiyang Jin
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
| | - Junke Zhang
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| | - Xiuqi Pan
- Department of Molecular Biology and Genetics, Cornell University, Ithaca, New York, USA
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
| | - Haiyuan Yu
- Weill Institute for Cell and Molecular Biology, Cornell University, Ithaca, New York, USA;
- Department of Computational Biology, Cornell University, Ithaca, New York, USA
| |
Collapse
|
27
|
Beati P, Massimino Stepñicka M, Vilchez Larrea SC, Smircich P, Alonso GD, Ocampo J. Improving genome-wide mapping of nucleosomes in Trypanosome cruzi. PLoS One 2023; 18:e0293809. [PMID: 37988351 PMCID: PMC10662739 DOI: 10.1371/journal.pone.0293809] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/04/2023] [Accepted: 10/19/2023] [Indexed: 11/23/2023] Open
Abstract
In Trypanosoma cruzi DNA is packaged into chromatin by octamers of histone proteins that form nucleosomes. Transcription of protein coding genes in trypanosomes is constitutive producing polycistronic units and gene expression is primarily regulated post-transcriptionally. However, chromatin organization influences DNA dependent processes. Hence, determining nucleosome position is of uppermost importance to understand the peculiarities found in trypanosomes. To map nucleosomes genome-wide in several organisms, digestion of chromatin with micrococcal nuclease followed by deep sequencing has been applied. Nonetheless, the special requirements for cell manipulation and the uniqueness of the chromatin organization in trypanosomes entails a customized analytical approach. In this work, we adjusted this broadly used method to the hybrid reference strain, CL Brener. Particularly, we implemented an exhaustive and thorough computational workflow to overcome the difficulties imposed by this complex genome. We tested the performance of two aligners, Bowtie2 and HISAT2, and discuss their advantages and caveats. Specifically, we highlight the relevance of using the whole genome as a reference instead of the commonly used Esmeraldo-like haplotype to avoid spurious alignments. Additionally, we show that using the whole genome refines the average nucleosome representation, but also the quality of mapping for every region represented. Moreover, we show that the average nucleosome organization around trans-splicing acceptor site described before, is not just an average since the same chromatin pattern is detected for most of the represented regions. In addition, we extended the study to a non-hybrid strain applying the experimental and analytical approach to Sylvio-X10 strain. Furthermore, we provide a source code for the construction of 2D plots and heatmaps which are easy to adapt to any T. cruzi strain.
Collapse
Affiliation(s)
- Paula Beati
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Milena Massimino Stepñicka
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| | - Salomé C. Vilchez Larrea
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Pablo Smircich
- Laboratorio de Bioinformática, Departamento de Genómica, Instituto de Investigaciones Biológicas Clemente Estable (IIBCE), Montevideo, Uruguay
- Sección Genómica Funcional, Facultad de Ciencias, Universidad de la República (UdelaR), Montevideo, Uruguay
| | - Guillermo D. Alonso
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
- Departamento de Fisiología, Biología Molecular y Celular, Facultad de Ciencias Exactas y Naturales, Universidad de Buenos Aires, Buenos Aires, Argentina
| | - Josefina Ocampo
- Instituto de Investigaciones en Ingeniería Genética y Biología Molecular, Consejo Nacional de Investigaciones Científicas y Técnicas, Buenos Aires, Argentina
| |
Collapse
|
28
|
Poulet A, Kratkiewicz AJ, Li D, van Wolfswinkel JC. Chromatin analysis of adult pluripotent stem cells reveals a unique stemness maintenance strategy. SCIENCE ADVANCES 2023; 9:eadh4887. [PMID: 37801496 PMCID: PMC10558129 DOI: 10.1126/sciadv.adh4887] [Citation(s) in RCA: 7] [Impact Index Per Article: 3.5] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 03/07/2023] [Accepted: 09/05/2023] [Indexed: 10/08/2023]
Abstract
Many highly regenerative organisms maintain adult pluripotent stem cells throughout their life, but how the long-term maintenance of pluripotency is accomplished is unclear. To decipher the regulatory logic of adult pluripotent stem cells, we analyzed the chromatin organization of stem cell genes in the planarian Schmidtea mediterranea. We identify a special chromatin state of stem cell genes, which is distinct from that of tissue-specific genes and resembles constitutive genes. Where tissue-specific promoters have detectable transcription factor binding sites, the promoters of stem cell-specific genes instead have sequence features that broadly decrease nucleosome binding affinity. This genic organization makes pluripotency-related gene expression the default state in these cells, which is maintained by the activity of chromatin remodelers ISWI and SNF2 in the stem cells.
Collapse
Affiliation(s)
- Axel Poulet
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Arcadia J. Kratkiewicz
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Danyan Li
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
| | - Josien C. van Wolfswinkel
- Department of Molecular Cellular and Developmental Biology, Yale University, New Haven, CT 06511, USA
- Yale Stem Cell Center, Yale School of Medicine, New Haven, CT 06511, USA
- Yale Center for RNA Science and Medicine, Yale School of Medicine, New Haven, CT 06511, USA
| |
Collapse
|
29
|
Biernat E, Khan U, Govind CK. Measuring occupancies of the nucleosome and nucleosome-interacting factors in vivo in Saccharomyces cerevisiae genome-wide. Methods 2023; 218:167-175. [PMID: 37598811 PMCID: PMC10529416 DOI: 10.1016/j.ymeth.2023.08.007] [Citation(s) in RCA: 2] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/26/2023] [Revised: 07/26/2023] [Accepted: 08/11/2023] [Indexed: 08/22/2023] Open
Abstract
Nucleosomes are the repeating units of chromatin. The presence of nucleosomes poses a major impediment to all DNA-dependent processes. As a result, access to DNA in chromatin is dynamically regulated by many factors, including ATP-dependent chromatin remodeling complexes. Digestion of chromatin by micrococcal nuclease (MNase) followed by chromatin immunoprecipitation (ChIP) and sequencing can be leveraged to determine nucleosome occupancy, positioning, and the ability of chromatin interacting factors to alter chromatin accessibility. Here we describe the procedure for performing MNase and MNase ChIP-seq in detail.
Collapse
Affiliation(s)
- Emily Biernat
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Uzair Khan
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA
| | - Chhabi K Govind
- Department of Biological Sciences, Oakland University, Rochester, MI 48309, USA.
| |
Collapse
|
30
|
Yadav M, Zuiddam M, Schiessel H. The role of transcript regions and amino acid choice in nucleosome positioning. NAR Genom Bioinform 2023; 5:lqad080. [PMID: 37705829 PMCID: PMC10495542 DOI: 10.1093/nargab/lqad080] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2023] [Revised: 07/19/2023] [Accepted: 08/30/2023] [Indexed: 09/15/2023] Open
Abstract
Eukaryotic DNA is organized and compacted in a string of nucleosomes, DNA-wrapped protein cylinders. The positions of nucleosomes along DNA are not random but show well-known base pair sequence preferences that result from the sequence-dependent elastic and geometric properties of the DNA double helix. Here, we focus on DNA around transcription start sites, which are known to typically attract nucleosomes in multicellular life forms through their high GC content. We aim to understand how these GC signals, as observed in genome-wide averages, are produced and encoded through different genomic regions (mainly 5' UTRs, coding exons, and introns). Our study uses a bioinformatics approach to decompose the genome-wide GC signal into between-region and within-region signals. We find large differences in GC signal contributions between vertebrates and plants and, remarkably, even between closely related species. Introns contribute most to the GC signal in vertebrates, while in plants the exons dominate. Further, we find signal strengths stronger on DNA than on mRNA, suggesting a biological function of GC signals along the DNA itself, as is the case for nucleosome positioning. Finally, we make the surprising discovery that both the choice of synonymous codons and amino acids contribute to the nucleosome positioning signal.
Collapse
Affiliation(s)
- Manish Yadav
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
| | - Martijn Zuiddam
- Institute Lorentz for Theoretical Physics, Leiden University, Leiden, the Netherlands
| | - Helmut Schiessel
- Cluster of Excellence Physics of Life, TU Dresden, 01062 Dresden, Germany
- Institut für Theoretische Physik, Technische Universität Dresden, 01062 Dresden, Germany
| |
Collapse
|
31
|
Kleinschmidt H, Xu C, Bai L. Using Synthetic DNA Libraries to Investigate Chromatin and Gene Regulation. Chromosoma 2023; 132:167-189. [PMID: 37184694 PMCID: PMC10542970 DOI: 10.1007/s00412-023-00796-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/05/2023] [Revised: 04/25/2023] [Accepted: 04/26/2023] [Indexed: 05/16/2023]
Abstract
Despite the recent explosion in genome-wide studies in chromatin and gene regulation, we are still far from extracting a set of genetic rules that can predict the function of the regulatory genome. One major reason for this deficiency is that gene regulation is a multi-layered process that involves an enormous variable space, which cannot be fully explored using native genomes. This problem can be partially solved by introducing synthetic DNA libraries into cells, a method that can test the regulatory roles of thousands to millions of sequences with limited variables. Here, we review recent applications of this method to study transcription factor (TF) binding, nucleosome positioning, and transcriptional activity. We discuss the design principles, experimental procedures, and major findings from these studies and compare the pros and cons of different approaches.
Collapse
Affiliation(s)
- Holly Kleinschmidt
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Cheng Xu
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA
| | - Lu Bai
- Department of Biochemistry and Molecular Biology, The Pennsylvania State University, University Park, PA, 16802, USA.
- Center for Eukaryotic Gene Regulation, The Pennsylvania State University, University Park, PA, 16802, USA.
- Department of Physics, The Pennsylvania State University, University Park, PA, 16802, USA.
| |
Collapse
|
32
|
Korsakova A, Phan AT. Prediction of G4 formation in live cells with epigenetic data: a deep learning approach. NAR Genom Bioinform 2023; 5:lqad071. [PMID: 37636021 PMCID: PMC10448861 DOI: 10.1093/nargab/lqad071] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/16/2023] [Revised: 05/25/2023] [Accepted: 07/26/2023] [Indexed: 08/29/2023] Open
Abstract
G-quadruplexes (G4s) are secondary structures abundant in DNA that may play regulatory roles in cells. Despite the ubiquity of the putative G-quadruplex-forming sequences (PQS) in the human genome, only a small fraction forms G4 structures in cells. Folded G4, histone methylation and chromatin accessibility are all parts of the complex cis regulatory landscape. We propose an approach for prediction of G4 formation in cells that incorporates epigenetic and chromatin accessibility data. The novel approach termed epiG4NN efficiently predicts cell-specific G4 formation in live cells based on a local epigenomic snapshot. Our results confirm the close relationship between H3K4me3 histone methylation, chromatin accessibility and G4 structure formation. Trained on A549 cell data, epiG4NN was then able to predict G4 formation in HEK293T and K562 cell lines. We observe the dependency of model performance with different epigenetic features on the underlying experimental condition of G4 detection. We expect that this approach will contribute to the systematic understanding of correlations between structural and epigenomic feature landscape.
Collapse
Affiliation(s)
- Anna Korsakova
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
| | - Anh Tuân Phan
- School of Physical and Mathematical Sciences, Nanyang Technological University, 637371, Singapore
- NTU Institute of Structural Biology, Nanyang Technological University, 636921, Singapore
| |
Collapse
|
33
|
Gvozdenov Z, Barcutean Z, Struhl K. Functional analysis of a random-sequence chromosome reveals a high level and the molecular nature of transcriptional noise in yeast cells. Mol Cell 2023; 83:1786-1797.e5. [PMID: 37137302 PMCID: PMC10247422 DOI: 10.1016/j.molcel.2023.04.010] [Citation(s) in RCA: 6] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/18/2022] [Revised: 02/18/2023] [Accepted: 04/10/2023] [Indexed: 05/05/2023]
Abstract
We measure transcriptional noise in yeast by analyzing chromatin structure and transcription of an 18-kb region of DNA whose sequence was randomly generated. Nucleosomes fully occupy random-sequence DNA, but nucleosome-depleted regions (NDRs) are much less frequent, and there are fewer well-positioned nucleosomes and shorter nucleosome arrays. Steady-state levels of random-sequence RNAs are comparable to yeast mRNAs, although transcription and decay rates are higher. Transcriptional initiation from random-sequence DNA occurs at numerous sites, indicating very low intrinsic specificity of the RNA Pol II machinery. In contrast, poly(A) profiles of random-sequence RNAs are roughly comparable to those of yeast mRNAs, suggesting limited evolutionary restraints on poly(A) site choice. Random-sequence RNAs show higher cell-to-cell variability than yeast mRNAs, suggesting that functional elements limit variability. These observations indicate that transcriptional noise occurs at high levels in yeast, and they provide insight into how chromatin and transcription patterns arise from the evolved yeast genome.
Collapse
Affiliation(s)
- Zlata Gvozdenov
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Zeno Barcutean
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA
| | - Kevin Struhl
- Department of Biological Chemistry and Molecular Pharmacology, Harvard Medical School, Boston, MA 02115, USA.
| |
Collapse
|
34
|
Nucleosome Remodeling at the Yeast PHO8 and PHO84 Promoters without the Putatively Essential SWI/SNF Remodeler. Int J Mol Sci 2023; 24:ijms24054949. [PMID: 36902382 PMCID: PMC10003099 DOI: 10.3390/ijms24054949] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 02/14/2023] [Accepted: 02/19/2023] [Indexed: 03/08/2023] Open
Abstract
Chromatin remodeling by ATP-dependent remodeling enzymes is crucial for all genomic processes, like transcription or replication. Eukaryotes harbor many remodeler types, and it is unclear why a given chromatin transition requires more or less stringently one or several remodelers. As a classical example, removal of budding yeast PHO8 and PHO84 promoter nucleosomes upon physiological gene induction by phosphate starvation essentially requires the SWI/SNF remodeling complex. This dependency on SWI/SNF may indicate specificity in remodeler recruitment, in recognition of nucleosomes as remodeling substrate or in remodeling outcome. By in vivo chromatin analyses of wild type and mutant yeast under various PHO regulon induction conditions, we found that overexpression of the remodeler-recruiting transactivator Pho4 allowed removal of PHO8 promoter nucleosomes without SWI/SNF. For PHO84 promoter nucleosome removal in the absence of SWI/SNF, an intranucleosomal Pho4 site, which likely altered the remodeling outcome via factor binding competition, was required in addition to such overexpression. Therefore, an essential remodeler requirement under physiological conditions need not reflect substrate specificity, but may reflect specific recruitment and/or remodeling outcomes.
Collapse
|
35
|
Flury V, Reverón-Gómez N, Alcaraz N, Stewart-Morgan KR, Wenger A, Klose RJ, Groth A. Recycling of modified H2A-H2B provides short-term memory of chromatin states. Cell 2023; 186:1050-1065.e19. [PMID: 36750094 PMCID: PMC9994263 DOI: 10.1016/j.cell.2023.01.007] [Citation(s) in RCA: 49] [Impact Index Per Article: 24.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/23/2022] [Revised: 11/11/2022] [Accepted: 01/06/2023] [Indexed: 02/08/2023]
Abstract
Chromatin landscapes are disrupted during DNA replication and must be restored faithfully to maintain genome regulation and cell identity. The histone H3-H4 modification landscape is restored by parental histone recycling and modification of new histones. How DNA replication impacts on histone H2A-H2B is currently unknown. Here, we measure H2A-H2B modifications and H2A.Z during DNA replication and across the cell cycle using quantitative genomics. We show that H2AK119ub1, H2BK120ub1, and H2A.Z are recycled accurately during DNA replication. Modified H2A-H2B are segregated symmetrically to daughter strands via POLA1 on the lagging strand, but independent of H3-H4 recycling. Post-replication, H2A-H2B modification and variant landscapes are quickly restored, and H2AK119ub1 guides accurate restoration of H3K27me3. This work reveals epigenetic transmission of parental H2A-H2B during DNA replication and identifies cross talk between H3-H4 and H2A-H2B modifications in epigenome propagation. We propose that rapid short-term memory of recycled H2A-H2B modifications facilitates restoration of stable H3-H4 chromatin states.
Collapse
Affiliation(s)
- Valentin Flury
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nazaret Reverón-Gómez
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Nicolas Alcaraz
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Kathleen R Stewart-Morgan
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Alice Wenger
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark
| | - Robert J Klose
- Department of Biochemistry, University of Oxford, Oxford OX1 3QU, UK
| | - Anja Groth
- Novo Nordisk Foundation Center for Protein Research, University of Copenhagen, 2200 Copenhagen, Denmark; Biotech Research and Innovation Centre, University of Copenhagen, 2200 Copenhagen, Denmark.
| |
Collapse
|
36
|
Wang H, Schilbach S, Ninov M, Urlaub H, Cramer P. Structures of transcription preinitiation complex engaged with the +1 nucleosome. Nat Struct Mol Biol 2023; 30:226-232. [PMID: 36411341 PMCID: PMC9935396 DOI: 10.1038/s41594-022-00865-w] [Citation(s) in RCA: 25] [Impact Index Per Article: 12.5] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/09/2022] [Accepted: 10/07/2022] [Indexed: 11/22/2022]
Abstract
The preinitiation complex (PIC) assembles on promoters of protein-coding genes to position RNA polymerase II (Pol II) for transcription initiation. Previous structural studies revealed the PIC on different promoters, but did not address how the PIC assembles within chromatin. In the yeast Saccharomyces cerevisiae, PIC assembly occurs adjacent to the +1 nucleosome that is located downstream of the core promoter. Here we present cryo-EM structures of the yeast PIC bound to promoter DNA and the +1 nucleosome located at three different positions. The general transcription factor TFIIH engages with the incoming downstream nucleosome and its translocase subunit Ssl2 (XPB in human TFIIH) drives the rotation of the +1 nucleosome leading to partial detachment of nucleosomal DNA and intimate interactions between TFIIH and the nucleosome. The structures provide insights into how transcription initiation can be influenced by the +1 nucleosome and may explain why the transcription start site is often located roughly 60 base pairs upstream of the dyad of the +1 nucleosome in yeast.
Collapse
Affiliation(s)
- Haibo Wang
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Cancer Institute of the Second Affiliated Hospital and Institute of Translational Medicine, Zhejiang University School of Medicine, Hangzhou, China
| | - Sandra Schilbach
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Momchil Ninov
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany
| | - Henning Urlaub
- Bioanalytical Mass Spectrometry, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.,Institute of Clinical Chemistry, Bioanalytics Group, University Medical Center Göttingen, Göttingen, Germany
| | - Patrick Cramer
- Department of Molecular Biology, Max Planck Institute for Multidisciplinary Sciences, Göttingen, Germany.
| |
Collapse
|
37
|
Effects of Defective Unloading and Recycling of PCNA Revealed by the Analysis of ELG1 Mutants. Int J Mol Sci 2023; 24:ijms24021568. [PMID: 36675081 PMCID: PMC9863317 DOI: 10.3390/ijms24021568] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/05/2022] [Revised: 01/10/2023] [Accepted: 01/11/2023] [Indexed: 01/15/2023] Open
Abstract
Timely and complete replication of the genome is essential for life. The PCNA ring plays an essential role in DNA replication and repair by contributing to the processivity of DNA polymerases and by recruiting proteins that act in DNA replication-associated processes. The ELG1 gene encodes a protein that works, together with the Rfc2-5 subunits (shared by the replication factor C complex), to unload PCNA from chromatin. While ELG1 is not essential for life, deletion of the gene has strong consequences for the stability of the genome, and elg1 mutants exhibit sensitivity to DNA damaging agents, defects in genomic silencing, high mutation rates, and other striking phenotypes. Here, we sought to understand whether all the roles attributed to Elg1 in genome stability maintenance are due to its effects on PCNA unloading, or whether they are due to additional functions of the protein. By using a battery of mutants that affect PCNA accumulation at various degrees, we show that all the phenotypes measured correlate with the amount of PCNA left at the chromatin. Our results thus demonstrate the importance of Elg1 and of PCNA unloading in promoting proper chromatin structure and in maintaining a stable genome.
Collapse
|
38
|
Micale V, Di Bartolomeo M, Di Martino S, Stark T, Dell'Osso B, Drago F, D'Addario C. Are the epigenetic changes predictive of therapeutic efficacy for psychiatric disorders? A translational approach towards novel drug targets. Pharmacol Ther 2023; 241:108279. [PMID: 36103902 DOI: 10.1016/j.pharmthera.2022.108279] [Citation(s) in RCA: 20] [Impact Index Per Article: 10.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/01/2022] [Accepted: 09/01/2022] [Indexed: 02/06/2023]
Abstract
The etiopathogenesis of mental disorders is not fully understood and accumulating evidence support that clinical symptomatology cannot be assigned to a single gene mutation, but it involves several genetic factors. More specifically, a tight association between genes and environmental risk factors, which could be mediated by epigenetic mechanisms, may play a role in the development of mental disorders. Several data suggest that epigenetic modifications such as DNA methylation, post-translational histone modification and interference of microRNA (miRNA) or long non-coding RNA (lncRNA) may modify the severity of the disease and the outcome of the therapy. Indeed, the study of these mechanisms may help to identify patients particularly vulnerable to mental disorders and may have potential utility as biomarkers to facilitate diagnosis and treatment of psychiatric disorders. This article summarizes the most relevant preclinical and human data showing how epigenetic modifications can be central to the therapeutic efficacy of antidepressant and/or antipsychotic agents, as possible predictor of drugs response.
Collapse
Affiliation(s)
- Vincenzo Micale
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Martina Di Bartolomeo
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy
| | - Serena Di Martino
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy
| | - Tibor Stark
- Department of Pharmacology, Faculty of Medicine, Masaryk University, Brno, Czech Republic; Scientific Core Unit Neuroimaging, Max Planck Institute of Psychiatry, Munich, Germany
| | - Bernardo Dell'Osso
- Department of Biomedical and Clinical Sciences 'Luigi Sacco', University of Milan, Milan, Italy, Department of Mental Health, ASST Fatebenefratelli-Sacco, Milan, Italy; "Aldo Ravelli" Research Center for Neurotechnology and Experimental Brain Therapeutics, Department of Health Sciences, University of Milan Medical School, Milan, Italy; Department of Psychiatry and Behavioral Sciences, Stanford University, CA, USA
| | - Filippo Drago
- Department of Biomedical and Biotechnological Sciences, Section of Pharmacology, University of Catania, Catania, Italy.
| | - Claudio D'Addario
- Faculty of Bioscience and Technology for Food, Agriculture and Environment, University of Teramo, Teramo, Italy; Department of Clinical Neuroscience, Karolinska Institutet, Stockholm, Sweden
| |
Collapse
|
39
|
Kunert F, Metzner FJ, Jung J, Höpfler M, Woike S, Schall K, Kostrewa D, Moldt M, Chen JX, Bantele S, Pfander B, Eustermann S, Hopfner KP. Structural mechanism of extranucleosomal DNA readout by the INO80 complex. SCIENCE ADVANCES 2022; 8:eadd3189. [PMID: 36490333 PMCID: PMC9733932 DOI: 10.1126/sciadv.add3189] [Citation(s) in RCA: 23] [Impact Index Per Article: 7.7] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/13/2023]
Abstract
The nucleosomal landscape of chromatin depends on the concerted action of chromatin remodelers. The INO80 remodeler specifically places nucleosomes at the boundary of gene regulatory elements, which is proposed to be the result of an ATP-dependent nucleosome sliding activity that is regulated by extranucleosomal DNA features. Here, we use cryo-electron microscopy and functional assays to reveal how INO80 binds and is regulated by extranucleosomal DNA. Structures of the regulatory A-module bound to DNA clarify the mechanism of linker DNA binding. The A-module is connected to the motor unit via an HSA/post-HSA lever element to chemomechanically couple the motor and linker DNA sensing. Two notable sites of curved DNA recognition by coordinated action of the four actin/actin-related proteins and the motor suggest how sliding by INO80 can be regulated by extranucleosomal DNA features. Last, the structures clarify the recruitment of YY1/Ies4 subunits and reveal deep architectural similarities between the regulatory modules of INO80 and SWI/SNF complexes.
Collapse
Affiliation(s)
- Franziska Kunert
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Felix J. Metzner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - James Jung
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Markus Höpfler
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Stephan Woike
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Kevin Schall
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Dirk Kostrewa
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Manuela Moldt
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
| | - Jia-Xuan Chen
- Institute of Molecular Biology (IMB), Mainz, Germany
| | - Susanne Bantele
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Boris Pfander
- DNA Replication and Genome Integrity, Max Planck Institute of Biochemistry, Martinsried, Germany
| | - Sebastian Eustermann
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- European Molecular Biology Laboratory (EMBL), Heidelberg, Germany
| | - Karl-Peter Hopfner
- Gene Center, Department of Biochemistry, Ludwig-Maximilians-Universität München, Munich, Germany
- Corresponding author.
| |
Collapse
|
40
|
Identification and analysis of putative tRNA genes in baculovirus genomes. Virus Res 2022; 322:198949. [PMID: 36181979 DOI: 10.1016/j.virusres.2022.198949] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/20/2022] [Revised: 09/26/2022] [Accepted: 09/27/2022] [Indexed: 12/24/2022]
Abstract
Transfer RNAs (tRNAs) genes are both coded for and arranged along some viral genomes representing the entire virosphere and seem to play different biological functions during infection, other than transferring the correct amino acid to a growing peptide chain. Baculovirus genome description and annotation has focused mostly on protein-coding genes, microRNA, and homologous regions. Here we carried out a large-scale in silico search for putative tRNA genes in baculovirus genomes. Ninety-six of 257 baculovirus genomes analyzed was found to contain at least one putative tRNA gene. We found great diversity in primary and secondary structure, in location within the genome, in intron presence and size, and in anti-codon identity. In some cases, genes of tRNA-containing genomes were found to have a bias for the codons specified by the tRNAs present in such genomes. Moreover, analysis revealed that most of the putative tRNA genes possessed conserved motifs for tRNA type 2 promoters, including the A-box and B-box motifs with few mismatches from the eukaryotic canonical motifs. From publicly available small RNA deep sequencing datasets of baculovirus-infected insect cells, we found evidence that a putative Autographa californica multiple nucleopolyhedrovirus Gln-tRNA gene was transcribed and modified with the addition of the non-templated 3'-CCA tail found at the end of all tRNAs. Further research is needed to determine the expression and functionality of these viral tRNAs.
Collapse
|
41
|
Makhnovskii PA, Gusev OA, Bokov RO, Gazizova GR, Vepkhvadze TF, Lysenko EA, Vinogradova OL, Kolpakov FA, Popov DV. Alternative transcription start sites contribute to acute-stress-induced transcriptome response in human skeletal muscle. Hum Genomics 2022; 16:24. [PMID: 35869513 PMCID: PMC9308330 DOI: 10.1186/s40246-022-00399-8] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Accepted: 07/14/2022] [Indexed: 11/18/2022] Open
Abstract
Background More than half of human protein-coding genes have an alternative transcription start site (TSS). We aimed to investigate the contribution of alternative TSSs to the acute-stress-induced transcriptome response in human tissue (skeletal muscle) using the cap analysis of gene expression approach. TSSs were examined at baseline and during recovery after acute stress (a cycling exercise). Results We identified 44,680 CAGE TSS clusters (including 3764 first defined) belonging to 12,268 genes and annotated for the first time 290 TSSs belonging to 163 genes. The transcriptome dynamically changes during the first hours after acute stress; the change in the expression of 10% of genes was associated with the activation of alternative TSSs, indicating differential TSSs usage. The majority of the alternative TSSs do not increase proteome complexity suggesting that the function of thousands of alternative TSSs is associated with the fine regulation of mRNA isoform expression from a gene due to the transcription factor-specific activation of various alternative TSSs. We identified individual muscle promoter regions for each TSS using muscle open chromatin data (ATAC-seq and DNase-seq). Then, using the positional weight matrix approach we predicted time course activation of “classic” transcription factors involved in response of skeletal muscle to contractile activity, as well as diversity of less/un-investigated factors. Conclusions Transcriptome response induced by acute stress related to activation of the alternative TSSs indicates that differential TSSs usage is an essential mechanism of fine regulation of gene response to stress stimulus. A comprehensive resource of accurate TSSs and individual promoter regions for each TSS in muscle was created. This resource together with the positional weight matrix approach can be used to accurate prediction of TFs in any gene(s) of interest involved in the response to various stimuli, interventions or pathological conditions in human skeletal muscle. Supplementary Information The online version contains supplementary material available at 10.1186/s40246-022-00399-8.
Collapse
|
42
|
Carter JL, Kempton CE, Hales EDS, Johnson SM. Manipulating chromatin architecture in C. elegans. Epigenetics Chromatin 2022; 15:38. [PMID: 36443798 PMCID: PMC9706983 DOI: 10.1186/s13072-022-00472-5] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2022] [Accepted: 11/14/2022] [Indexed: 11/30/2022] Open
Abstract
BACKGROUND Nucleosome-mediated chromatin compaction has a direct effect on the accessibility of trans-acting activators and repressors to DNA targets and serves as a primary regulatory agent of genetic expression. Understanding the nature and dynamics of chromatin is fundamental to elucidating the mechanisms and factors that epigenetically regulate gene expression. Previous work has shown that there are three types of canonical sequences that strongly regulate nucleosome positioning and thus chromatin accessibility: putative nucleosome-positioning elements, putative nucleosome-repelling sequences, and homopolymeric runs of A/T. It is postulated that these elements can be used to remodel chromatin in C. elegans. Here we show the utility of such elements in vivo, and the extreme efficacy of a newly discovered repelling sequence, PRS-322. RESULTS In this work, we show that it is possible to manipulate nucleosome positioning in C. elegans solely using canonical and putative positioning sequences. We have not only tested previously described sequences such as the Widom 601, but also have tested additional nucleosome-positioning sequences: the Trifonov sequence, putative repelling sequence-322 (PRS-322), and various homopolymeric runs of A and T nucleotides. CONCLUSIONS Using each of these types of putative nucleosome-positioning sequences, we demonstrate their ability to alter the nucleosome profile in C. elegans as evidenced by altered nucleosome occupancy and positioning in vivo. Additionally, we show the effect that PRS-322 has on nucleosome-repelling and chromatin remodeling.
Collapse
Affiliation(s)
- John L. Carter
- grid.253294.b0000 0004 1936 9115Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602 USA
| | - Colton E. Kempton
- grid.253294.b0000 0004 1936 9115Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602 USA
| | - Emily D. S. Hales
- grid.253294.b0000 0004 1936 9115Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602 USA
| | - Steven M. Johnson
- grid.253294.b0000 0004 1936 9115Department of Microbiology and Molecular Biology, College of Life Sciences, Brigham Young University, Provo, UT 84602 USA
| |
Collapse
|
43
|
Mota A, Berezicki S, Wernersson E, Harbers L, Li-Wang X, Gradin K, Peuckert C, Crosetto N, Bienko M. FRET-FISH probes chromatin compaction at individual genomic loci in single cells. Nat Commun 2022; 13:6680. [PMID: 36335096 PMCID: PMC9637210 DOI: 10.1038/s41467-022-34183-y] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/01/2021] [Accepted: 10/14/2022] [Indexed: 11/07/2022] Open
Abstract
Chromatin compaction is a key biophysical property that influences multiple DNA transactions. Lack of chromatin accessibility is frequently used as proxy for chromatin compaction. However, we currently lack tools for directly probing chromatin compaction at individual genomic loci. To fill this gap, here we present FRET-FISH, a method combining fluorescence resonance energy transfer (FRET) with DNA fluorescence in situ hybridization (FISH) to probe chromatin compaction at select loci in single cells. We first validate FRET-FISH by comparing it with ATAC-seq, demonstrating that local compaction and accessibility are strongly correlated. FRET-FISH also detects expected differences in compaction upon treatment with drugs perturbing global chromatin condensation. We then leverage FRET-FISH to study local chromatin compaction on the active and inactive X chromosome, along the nuclear radius, in different cell cycle phases, and during increasing passage number. FRET-FISH is a robust tool for probing local chromatin compaction in single cells.
Collapse
Affiliation(s)
- Ana Mota
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Szymon Berezicki
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Erik Wernersson
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Luuk Harbers
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Xiaoze Li-Wang
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Katarina Gradin
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
| | - Christiane Peuckert
- Stockholm University, The Department of Molecular Biosciences, The Wenner-Gren Institute, Stockholm, Sweden
| | - Nicola Crosetto
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy
| | - Magda Bienko
- Department of Microbiology, Tumor and Cell Biology, Karolinska Institutet, Stockholm, SE-17165, Sweden.
- Science for Life Laboratory, Tomtebodavägen 23A, Solna, SE-17165, Sweden.
- Human Technopole, Viale Rita Levi-Montalcini 1, 20157, Milan, Italy.
| |
Collapse
|
44
|
Stavropoulou A, Tassios E, Kalyva M, Georgoulopoulos M, Vakirlis N, Iliopoulos I, Nikolaou C. Distinct chromosomal “niches” in the genome of Saccharomyces cerevisiae provide the background for genomic innovation and shape the fate of gene duplicates. NAR Genom Bioinform 2022; 4:lqac086. [PMID: 36381424 PMCID: PMC9661399 DOI: 10.1093/nargab/lqac086] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/19/2022] [Revised: 10/20/2022] [Accepted: 10/25/2022] [Indexed: 11/15/2022] Open
Abstract
Nearly one third of Saccharomyces cerevisiae protein coding sequences correspond to duplicate genes, equally split between small-scale duplicates (SSD) and whole-genome duplicates (WGD). While duplicate genes have distinct properties compared to singletons, to date, there has been no systematic analysis of their positional preferences. In this work, we show that SSD and WGD genes are organized in distinct gene clusters that occupy different genomic regions, with SSD being more peripheral and WGD more centrally positioned close to centromeric chromatin. Duplicate gene clusters differ from the rest of the genome in terms of gene size and spacing, gene expression variability and regulatory complexity, properties that are also shared by singleton genes residing within them. Singletons within duplicate gene clusters have longer promoters, more complex structure and a higher number of protein–protein interactions. Particular chromatin architectures appear to be important for gene evolution, as we find SSD gene-pair co-expression to be strongly associated with the similarity of nucleosome positioning patterns. We propose that specific regions of the yeast genome provide a favourable environment for the generation and maintenance of small-scale gene duplicates, segregating them from WGD-enriched genomic domains. Our findings provide a valuable framework linking genomic innovation with positional genomic preferences.
Collapse
Affiliation(s)
- Athanasia Stavropoulou
- Medical School, University of Crete , Heraklion 70013, Greece
- Computational Genomics Group, Biomedical Sciences Research Center “Alexander Fleming” , Athens 16672, Greece
| | - Emilios Tassios
- Medical School, University of Crete , Heraklion 70013, Greece
- Computational Genomics Group, Biomedical Sciences Research Center “Alexander Fleming” , Athens 16672, Greece
| | - Maria Kalyva
- European Bioinformatics Institute, EMBL-EBI, Wellcome Genome Campus , Hinxton, Cambridgeshire, CB10 1SD, UK
| | | | - Nikolaos Vakirlis
- Computational Genomics Group, Biomedical Sciences Research Center “Alexander Fleming” , Athens 16672, Greece
| | | | - Christoforos Nikolaou
- Computational Genomics Group, Biomedical Sciences Research Center “Alexander Fleming” , Athens 16672, Greece
- Hellenic Open University , Patras 26335, Greece
| |
Collapse
|
45
|
Diego-Martin B, Pérez-Alemany J, Candela-Ferre J, Corbalán-Acedo A, Pereyra J, Alabadí D, Jami-Alahmadi Y, Wohlschlegel J, Gallego-Bartolomé J. The TRIPLE PHD FINGERS proteins are required for SWI/SNF complex-mediated +1 nucleosome positioning and transcription start site determination in Arabidopsis. Nucleic Acids Res 2022; 50:10399-10417. [PMID: 36189880 PMCID: PMC9561266 DOI: 10.1093/nar/gkac826] [Citation(s) in RCA: 21] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/05/2022] [Revised: 09/08/2022] [Accepted: 09/16/2022] [Indexed: 11/14/2022] Open
Abstract
Eukaryotes have evolved multiple ATP-dependent chromatin remodelers to shape the nucleosome landscape. We recently uncovered an evolutionarily conserved SWItch/Sucrose Non-Fermentable (SWI/SNF) chromatin remodeler complex in plants reminiscent of the mammalian BAF subclass, which specifically incorporates the MINUSCULE (MINU) catalytic subunits and the TRIPLE PHD FINGERS (TPF) signature subunits. Here we report experimental evidence that establishes the functional relevance of TPF proteins for the complex activity. Our results show that depletion of TPF triggers similar pleiotropic phenotypes and molecular defects to those found in minu mutants. Moreover, we report the genomic location of MINU2 and TPF proteins as representative members of this SWI/SNF complex and their impact on nucleosome positioning and transcription. These analyses unravel the binding of the complex to thousands of genes where it modulates the position of the +1 nucleosome. These targets tend to produce 5′-shifted transcripts in the tpf and minu mutants pointing to the participation of the complex in alternative transcription start site usage. Interestingly, there is a remarkable correlation between +1 nucleosome shift and 5′ transcript length change suggesting their functional connection. In summary, this study unravels the function of a plant SWI/SNF complex involved in +1 nucleosome positioning and transcription start site determination.
Collapse
Affiliation(s)
- Borja Diego-Martin
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Jaime Pérez-Alemany
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Joan Candela-Ferre
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Antonio Corbalán-Acedo
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Juan Pereyra
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - David Alabadí
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| | - Yasaman Jami-Alahmadi
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - James Wohlschlegel
- Department of Biological Chemistry, David Geffen School of Medicine, University of California, Los Angeles, CA, 90095, USA
| | - Javier Gallego-Bartolomé
- Instituto de Biología Molecular y Celular de Plantas (IBMCP), CSIC-Universitat Politècnica de València, Valencia, 46022, Spain
| |
Collapse
|
46
|
Liu ZW, Simmons CH, Zhong X. Linking transcriptional silencing with chromatin remodeling, folding, and positioning in the nucleus. CURRENT OPINION IN PLANT BIOLOGY 2022; 69:102261. [PMID: 35841650 PMCID: PMC10014033 DOI: 10.1016/j.pbi.2022.102261] [Citation(s) in RCA: 3] [Impact Index Per Article: 1.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 03/25/2022] [Revised: 06/03/2022] [Accepted: 06/13/2022] [Indexed: 06/15/2023]
Abstract
Chromatin organization is important for many DNA-templated processes in eukaryotic cells such as replication and transcription. Recent studies have uncovered the capacity of epigenetic modifications, phase separation, and nuclear architecture and spatial positioning to regulate chromatin organization in both plants and animals. Here, we provide an overview of the recent progress made in understanding how chromatin is organized within the nucleus at both the local and global levels with respect to the regulation of transcriptional silencing in plants. To be concise while covering important mechanisms across a range of scales, we focus on how epigenetic modifications and chromatin remodelers alter local chromatin structure, how liquid-liquid phase separation physically separates broader chromatin domains into distinct droplets, and how nuclear positioning affects global chromatin organization.
Collapse
Affiliation(s)
- Zhang-Wei Liu
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Carl H Simmons
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA
| | - Xuehua Zhong
- Laboratory of Genetics & Wisconsin Institute for Discovery, University of Wisconsin-Madison, Madison, WI 53706, USA.
| |
Collapse
|
47
|
Peil K, Värv S, Ilves I, Kristjuhan K, Jürgens H, Kristjuhan A. Transcriptional regulator Taf14 binds DNA and is required for the function of transcription factor TFIID in the absence of histone H2A.Z. J Biol Chem 2022; 298:102369. [PMID: 35970389 PMCID: PMC9478928 DOI: 10.1016/j.jbc.2022.102369] [Citation(s) in RCA: 4] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/05/2022] [Revised: 08/05/2022] [Accepted: 08/07/2022] [Indexed: 11/16/2022] Open
Abstract
The transcriptional regulator Taf14 is a component of multiple protein complexes involved in transcription initiation and chromatin remodeling in yeast cells. Although Taf14 is not required for cell viability, it becomes essential in conditions where the formation of the transcription preinitiation complex is hampered. The specific role of Taf14 in mediating transcription initiation and preinitiation complex formation is unclear. Here, we explored its role in the general transcription factor IID by mapping Taf14 genetic and proteomic interactions and found that it was needed for the function of the complex if Htz1, the yeast homolog of histone H2A.Z, was absent from chromatin. Dissecting the functional domains of Taf14 revealed that the linker region between the YEATS and ET domains was required for cell viability in the absence of Htz1 protein. We further show that the linker region of Taf14 interacts with DNA. We propose that providing additional DNA binding capacity might be a general role of Taf14 in the recruitment of protein complexes to DNA and chromatin.
Collapse
Affiliation(s)
- Kadri Peil
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Signe Värv
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Ivar Ilves
- Institute of Technology, University of Tartu; Nooruse 1, Tartu 50411, Estonia
| | - Kersti Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Henel Jürgens
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia
| | - Arnold Kristjuhan
- Institute of Molecular and Cell Biology, University of Tartu; Riia 23, Tartu 51010, Estonia.
| |
Collapse
|
48
|
Carcamo CC, Poyton MF, Ranjan A, Park G, Louder RK, Feng XA, Kim JM, Dzu T, Wu C, Ha T. ATP binding facilitates target search of SWR1 chromatin remodeler by promoting one-dimensional diffusion on DNA. eLife 2022; 11:e77352. [PMID: 35876491 PMCID: PMC9365391 DOI: 10.7554/elife.77352] [Citation(s) in RCA: 15] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2022] [Accepted: 07/22/2022] [Indexed: 12/01/2022] Open
Abstract
One-dimensional (1D) target search is a well-characterized phenomenon for many DNA-binding proteins but is poorly understood for chromatin remodelers. Herein, we characterize the 1D scanning properties of SWR1, a conserved yeast chromatin remodeler that performs histone exchange on +1 nucleosomes adjacent to a nucleosome-depleted region (NDR) at gene promoters. We demonstrate that SWR1 has a kinetic binding preference for DNA of NDR length as opposed to gene-body linker length DNA. Using single and dual color single-particle tracking on DNA stretched with optical tweezers, we directly observe SWR1 diffusion on DNA. We found that various factors impact SWR1 scanning, including ATP which promotes diffusion through nucleotide binding rather than ATP hydrolysis. A DNA-binding subunit, Swc2, plays an important role in the overall diffusive behavior of the complex, as the subunit in isolation retains similar, although faster, scanning properties as the whole remodeler. ATP-bound SWR1 slides until it encounters a protein roadblock, of which we tested dCas9 and nucleosomes. The median diffusion coefficient, 0.024 μm2/s, in the regime of helical sliding, would mediate rapid encounter of NDR-flanking nucleosomes at length scales found in cellular chromatin.
Collapse
Affiliation(s)
- Claudia C Carcamo
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Matthew F Poyton
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Anand Ranjan
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Giho Park
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Robert K Louder
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Xinyu A Feng
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
| | - Jee Min Kim
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Thuc Dzu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Carl Wu
- Department of Biology, Johns Hopkins UniversityBaltimoreUnited States
| | - Taekjip Ha
- Department of Biophysics and Biophysical Chemistry, Johns Hopkins UniversityBaltimoreUnited States
- Howard Hughes Medical InstituteBaltimoreUnited States
- Johns Hopkins University, Department of Biomedical EngineeringBaltimoreUnited States
- Johns Hopkins University, Department of BiophysicsBaltimoreUnited States
| |
Collapse
|
49
|
Pholtaisong J, Chaiyaratana N, Aporntewan C, Mutirangura A. Mononucleotide A-repeats may Play a Regulatory Role in Endothermic Housekeeping Genes. Evol Bioinform Online 2022; 18:11769343221110656. [PMID: 35860694 PMCID: PMC9290108 DOI: 10.1177/11769343221110656] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/22/2021] [Accepted: 07/02/2022] [Indexed: 11/24/2022] Open
Abstract
Background: Coding and non-coding short tandem repeats (STRs) facilitate a great diversity of phenotypic traits. The imbalance of mononucleotide A-repeats around transcription start sites (TSSs) was found in 3 mammals: H. sapiens, M. musculus, and R. norvegicus. Principal Findings: We found that the imbalance pattern originated in some vertebrates. A similar pattern was observed in mammals and birds, but not in amphibians and reptiles. We proposed that the enriched A-repeats upstream of TSSs is a novel hallmark of endotherms or warm-blooded animals. Gene ontology analysis indicates that the primary function of upstream A-repeats involves metabolism, cellular transportation, and sensory perception (smell and chemical stimulus) through housekeeping genes. Conclusions: Upstream A-repeats may play a regulatory role in the metabolic process of endothermic animals.
Collapse
Affiliation(s)
- Jatuphol Pholtaisong
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Nachol Chaiyaratana
- Department of Electrical and Computer Engineering, Faculty of Engineering, King Mongkut's University of Technology North Bangkok, Bangkok, Thailand.,Division of Medical Genetics Research and Laboratory, Research Department, Faculty of Medicine Siriraj Hospital, Mahidol University, Bangkok, Thailand
| | - Chatchawit Aporntewan
- Program in Bioinformatics and Computational Biology, Graduate School, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Department of Mathematics and Computer Science, Faculty of Science, Chulalongkorn University, Pathumwan, Bangkok, Thailand.,Omics Sciences and Bioinformatics Center, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| | - Apiwat Mutirangura
- Center of Excellence in Molecular Genetics of Cancer and Human Diseases, Department of Anatomy, Faculty of Medicine, Chulalongkorn University, Pathumwan, Bangkok, Thailand
| |
Collapse
|
50
|
Huang Y, Wang B, Liu J. NucleoMap: A computational tool for identifying nucleosomes in ultra-high resolution contact maps. PLoS Comput Biol 2022; 18:e1010265. [PMID: 35834552 PMCID: PMC9321407 DOI: 10.1371/journal.pcbi.1010265] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/17/2022] [Revised: 07/26/2022] [Accepted: 05/30/2022] [Indexed: 11/18/2022] Open
Abstract
Although poorly positioned nucleosomes are ubiquitous in the eukaryotic genome, they are difficult to identify with existing nucleosome identification methods. Recently available enhanced high-throughput chromatin conformation capture techniques such as Micro-C, DNase Hi-C, and Hi-CO characterize nucleosome-level chromatin proximity, probing the positions of mono-nucleosomes and the spacing between nucleosome pairs at the same time, enabling nucleosome profiling in poorly positioned regions. Here we develop a novel computational approach, NucleoMap, to identify nucleosome positioning from ultra-high resolution chromatin contact maps. By integrating nucleosome read density, contact distances, and binding preferences, NucleoMap precisely locates nucleosomes in both prokaryotic and eukaryotic genomes and outperforms existing nucleosome identification methods in both precision and recall. We rigorously characterize genome-wide association in eukaryotes between the spatial organization of mono-nucleosomes and their corresponding histone modifications, protein binding activities, and higher-order chromatin functions. We also find evidence of two tetra-nucleosome folding structures in human embryonic stem cells and analyze their association with multiple structural and functional regions. Based on the identified nucleosomes, nucleosome contact maps are constructed, reflecting the inter-nucleosome distances and preserving the contact distance profiles in original contact maps.
Collapse
Affiliation(s)
- Yuanhao Huang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Bingjiang Wang
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
| | - Jie Liu
- Department of Computational Medicine & Bioinformatics, University of Michigan, Ann Arbor, Michigan, United States of America
- Department of Computer Science & Engineering, University of Michigan, Ann Arbor, Michigan, United States of America
- * E-mail:
| |
Collapse
|