1
|
Sánchez WN, Driessen AJM, Wilson CAM. Protein targeting to the ER membrane: multiple pathways and shared machinery. Crit Rev Biochem Mol Biol 2025:1-47. [PMID: 40377270 DOI: 10.1080/10409238.2025.2503746] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/03/2025] [Revised: 05/04/2025] [Accepted: 05/06/2025] [Indexed: 05/18/2025]
Abstract
The endoplasmic reticulum (ER) serves as a central hub for protein production and sorting in eukaryotic cells, processing approximately one-third of the cellular proteome. Protein targeting to the ER occurs through multiple pathways that operate both during and independent of translation. The classical translation-dependent pathway, mediated by cytosolic factors like signal recognition particle, recognizes signal peptides or transmembrane helices in nascent proteins, while translation-independent mechanisms utilize RNA-based targeting through specific sequence elements and RNA-binding proteins. At the core of these processes lies the Sec61 complex, which undergoes dynamic conformational changes and coordinates with numerous accessory factors to facilitate protein translocation and membrane insertion across and into the endoplasmic reticulum membrane. This review focuses on the molecular mechanisms of protein targeting to the ER, from the initial recognition of targeting signals to the dynamics of the translocation machinery, highlighting recent discoveries that have revealed unprecedented complexity in these cellular trafficking pathways.
Collapse
Affiliation(s)
- Wendy N Sánchez
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
- Institute of Biomedical Sciences, Faculty of Medicine, University of Chile, Santiago, Chile
| | - Arnold J M Driessen
- Department of Molecular Microbiology, Groningen Biomolecular Sciences and Biotechnology Institute, Faculty of Science and Engineering, University of Groningen, Groningen, The Netherlands
| | - Christian A M Wilson
- Biochemistry and Molecular Biology Department, Faculty of Chemistry and Pharmaceutical Sciences, Universidad de Chile, Santiago, Chile
| |
Collapse
|
2
|
Rabl L, Deuerling E. The nascent polypeptide-associated complex (NAC) as regulatory hub on ribosomes. Biol Chem 2025:hsz-2025-0114. [PMID: 40167342 DOI: 10.1515/hsz-2025-0114] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2025] [Accepted: 03/13/2025] [Indexed: 04/02/2025]
Abstract
The correct synthesis of new proteins is essential for maintaining a functional proteome and cell viability. This process is tightly regulated, with ribosomes and associated protein biogenesis factors ensuring proper protein production, modification, and targeting. In eukaryotes, the conserved nascent polypeptide-associated complex (NAC) plays a central role in coordinating early protein processing by regulating the ribosome access of multiple protein biogenesis factors. NAC recruits modifying enzymes to the ribosomal exit site to process the N-terminus of nascent proteins and directs secretory proteins into the SRP-mediated targeting pathway. In this review we will focus on these pathways, which are critical for proper protein production, and summarize recent advances in understanding the cotranslational functions and mechanisms of NAC in higher eukaryotes.
Collapse
Affiliation(s)
- Laurenz Rabl
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| | - Elke Deuerling
- Department of Biology, 26567 University of Konstanz , D-78457 Konstanz, Germany
| |
Collapse
|
3
|
DaRosa PA, Penchev I, Gumbin SC, Scavone F, Wąchalska M, Paulo JA, Ordureau A, Peter JJ, Kulathu Y, Harper JW, Becker T, Beckmann R, Kopito RR. UFM1 E3 ligase promotes recycling of 60S ribosomal subunits from the ER. Nature 2024; 627:445-452. [PMID: 38383785 PMCID: PMC11469336 DOI: 10.1038/s41586-024-07073-0] [Citation(s) in RCA: 17] [Impact Index Per Article: 17.0] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/13/2023] [Accepted: 01/15/2024] [Indexed: 02/23/2024]
Abstract
Reversible modification of target proteins by ubiquitin and ubiquitin-like proteins (UBLs) is widely used by eukaryotic cells to control protein fate and cell behaviour1. UFM1 is a UBL that predominantly modifies a single lysine residue on a single ribosomal protein, uL24 (also called RPL26), on ribosomes at the cytoplasmic surface of the endoplasmic reticulum (ER)2,3. UFM1 conjugation (UFMylation) facilitates the rescue of 60S ribosomal subunits (60S) that are released after ribosome-associated quality-control-mediated splitting of ribosomes that stall during co-translational translocation of secretory proteins into the ER3,4. Neither the molecular mechanism by which the UFMylation machinery achieves such precise target selection nor how this ribosomal modification promotes 60S rescue is known. Here we show that ribosome UFMylation in vivo occurs on free 60S and we present sequential cryo-electron microscopy snapshots of the heterotrimeric UFM1 E3 ligase (E3(UFM1)) engaging its substrate uL24. E3(UFM1) binds the L1 stalk, empty transfer RNA-binding sites and the peptidyl transferase centre through carboxy-terminal domains of UFL1, which results in uL24 modification more than 150 Å away. After catalysing UFM1 transfer, E3(UFM1) remains stably bound to its product, UFMylated 60S, forming a C-shaped clamp that extends all the way around the 60S from the transfer RNA-binding sites to the polypeptide tunnel exit. Our structural and biochemical analyses suggest a role for E3(UFM1) in post-termination release and recycling of the large ribosomal subunit from the ER membrane.
Collapse
Affiliation(s)
- Paul A DaRosa
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Ivan Penchev
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | | | | | - Magda Wąchalska
- Department of Biology, Stanford University, Stanford, CA, USA
| | - Joao A Paulo
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Alban Ordureau
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
- Cell Biology Program, Sloan Kettering Institute, Memorial Sloan Kettering Cancer Center, New York, NY, USA
| | - Joshua J Peter
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - Yogesh Kulathu
- Medical Research Council Protein Phosphorylation and Ubiquitylation Unit (MRC-PPU), School of Life Sciences, University of Dundee, Dundee, UK
| | - J Wade Harper
- Department of Cell Biology, Harvard Medical School, Boston, MA, USA
| | - Thomas Becker
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany
| | - Roland Beckmann
- Department of Biochemistry, Gene Center, University of Munich, Munich, Germany.
| | - Ron R Kopito
- Department of Biology, Stanford University, Stanford, CA, USA.
| |
Collapse
|
4
|
Fiedler SM, Graumann PL. B. subtilis Sec and Srp Systems Show Dynamic Adaptations to Different Conditions of Protein Secretion. Cells 2024; 13:377. [PMID: 38474341 PMCID: PMC10930709 DOI: 10.3390/cells13050377] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2024] [Revised: 02/04/2024] [Accepted: 02/16/2024] [Indexed: 03/14/2024] Open
Abstract
SecA is a widely conserved ATPase that drives the secretion of proteins across the cell membrane via the SecYEG translocon, while the SRP system is a key player in the insertion of membrane proteins via SecYEG. How SecA gains access to substrate proteins in Bacillus subtilis cells and copes with an increase in substrate availability during biotechnologically desired, high-level expression of secreted proteins is poorly understood. Using single molecule tracking, we found that SecA localization closely mimics that of ribosomes, and its molecule dynamics change similarly to those of ribosomes after inhibition of transcription or translation. These data suggest that B. subtilis SecA associates with signal peptides as they are synthesized at the ribosome, similar to the SRP system. In agreement with this, SecA is a largely mobile cytosolic protein; only a subset is statically associated with the cell membrane, i.e., likely with the Sec translocon. SecA dynamics were considerably different during the late exponential, transition, and stationary growth phases, revealing that single molecule dynamics considerably alter during different genetic programs in cells. During overproduction of a secretory protein, AmyE, SecA showed the strongest changes during the transition phase, i.e., where general protein secretion is high. To investigate whether the overproduction of AmyE also has an influence on other proteins that interact with SecYEG, we analyzed the dynamics of SecDF, YidC, and FtsY with and without AmyE overproduction. SecDF and YidC did not reveal considerable differences in single molecule dynamics during overexpression, while the SRP component FtsY changed markedly in its behavior and became more statically engaged. These findings indicate that the SRP pathway becomes involved in protein secretion upon an overload of proteins carrying a signal sequence. Thus, our data reveal high plasticity of the SecA and SRP systems in dealing with different needs for protein secretion.
Collapse
Affiliation(s)
| | - Peter L. Graumann
- Fachbereich Chemie und Zentrum für Synthetische Mikrobiologie, SYNMIKRO, Philipps-Universität Marburg, Hans-Meerwein Straße 4, 35043 Marburg, Germany;
| |
Collapse
|
5
|
Njenga R, Boele J, Öztürk Y, Koch HG. Coping with stress: How bacteria fine-tune protein synthesis and protein transport. J Biol Chem 2023; 299:105163. [PMID: 37586589 PMCID: PMC10502375 DOI: 10.1016/j.jbc.2023.105163] [Citation(s) in RCA: 11] [Impact Index Per Article: 5.5] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/17/2023] [Revised: 08/08/2023] [Accepted: 08/10/2023] [Indexed: 08/18/2023] Open
Abstract
Maintaining a functional proteome under different environmental conditions is challenging for every organism, in particular for unicellular organisms, such as bacteria. In order to cope with changing environments and stress conditions, bacteria depend on strictly coordinated proteostasis networks that control protein production, folding, trafficking, and degradation. Regulation of ribosome biogenesis and protein synthesis are cornerstones of this cellular adaptation in all domains of life, which is rationalized by the high energy demand of both processes and the increased resistance of translationally silent cells against internal or external poisons. Reduced protein synthesis ultimately also reduces the substrate load for protein transport systems, which are required for maintaining the periplasmic, inner, and outer membrane subproteomes. Consequences of impaired protein transport have been analyzed in several studies and generally induce a multifaceted response that includes the upregulation of chaperones and proteases and the simultaneous downregulation of protein synthesis. In contrast, generally less is known on how bacteria adjust the protein targeting and transport machineries to reduced protein synthesis, e.g., when cells encounter stress conditions or face nutrient deprivation. In the current review, which is mainly focused on studies using Escherichia coli as a model organism, we summarize basic concepts on how ribosome biogenesis and activity are regulated under stress conditions. In addition, we highlight some recent developments on how stress conditions directly impair protein targeting to the bacterial membrane. Finally, we describe mechanisms that allow bacteria to maintain the transport of stress-responsive proteins under conditions when the canonical protein targeting pathways are impaired.
Collapse
Affiliation(s)
- Robert Njenga
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany; Faculty of Biology, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Julian Boele
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Yavuz Öztürk
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Faculty of Medicine, Institute for Biochemistry and Molecular Biology, ZBMZ, Albert-Ludwigs University Freiburg, Freiburg, Germany.
| |
Collapse
|
6
|
Sarmah P, Shang W, Origi A, Licheva M, Kraft C, Ulbrich M, Lichtenberg E, Wilde A, Koch HG. mRNA targeting eliminates the need for the signal recognition particle during membrane protein insertion in bacteria. Cell Rep 2023; 42:112140. [PMID: 36842086 PMCID: PMC10066597 DOI: 10.1016/j.celrep.2023.112140] [Citation(s) in RCA: 10] [Impact Index Per Article: 5.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/13/2022] [Revised: 01/10/2023] [Accepted: 02/02/2023] [Indexed: 02/26/2023] Open
Abstract
Signal-sequence-dependent protein targeting is essential for the spatiotemporal organization of eukaryotic and prokaryotic cells and is facilitated by dedicated protein targeting factors such as the signal recognition particle (SRP). However, targeting signals are not exclusively contained within proteins but can also be present within mRNAs. By in vivo and in vitro assays, we show that mRNA targeting is controlled by the nucleotide content and by secondary structures within mRNAs. mRNA binding to bacterial membranes occurs independently of soluble targeting factors but is dependent on the SecYEG translocon and YidC. Importantly, membrane insertion of proteins translated from membrane-bound mRNAs occurs independently of the SRP pathway, while the latter is strictly required for proteins translated from cytosolic mRNAs. In summary, our data indicate that mRNA targeting acts in parallel to the canonical SRP-dependent protein targeting and serves as an alternative strategy for safeguarding membrane protein insertion when the SRP pathway is compromised.
Collapse
Affiliation(s)
- Pinku Sarmah
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wenkang Shang
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Mariya Licheva
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Claudine Kraft
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; CIBSS - Centre for Integrative Biological Signalling Studies, University Freiburg, 79104 Freiburg, Germany
| | - Maximilian Ulbrich
- Internal Medicine IV, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany; BIOSS Centre for Biological Signaling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | | | - Annegret Wilde
- Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, ZBMZ, Faculty of Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany.
| |
Collapse
|
7
|
Pool MR. Targeting of Proteins for Translocation at the Endoplasmic Reticulum. Int J Mol Sci 2022; 23:ijms23073773. [PMID: 35409131 PMCID: PMC8998515 DOI: 10.3390/ijms23073773] [Citation(s) in RCA: 17] [Impact Index Per Article: 5.7] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/24/2021] [Revised: 03/24/2022] [Accepted: 03/24/2022] [Indexed: 12/12/2022] Open
Abstract
The endoplasmic reticulum represents the gateway to the secretory pathway. Here, proteins destined for secretion, as well as soluble and membrane proteins that reside in the endomembrane system and plasma membrane, are triaged from proteins that will remain in the cytosol or be targeted to other cellular organelles. This process requires the faithful recognition of specific targeting signals and subsequent delivery mechanisms to then target them to the translocases present at the ER membrane, which can either translocate them into the ER lumen or insert them into the lipid bilayer. This review focuses on the current understanding of the first step in this process representing the targeting phase. Targeting is typically mediated by cleavable N-terminal hydrophobic signal sequences or internal membrane anchor sequences; these can either be captured co-translationally at the ribosome or recognised post-translationally and then delivered to the ER translocases. Location and features of the targeting sequence dictate which of several overlapping targeting pathway substrates will be used. Mutations in the targeting machinery or targeting signals can be linked to diseases.
Collapse
Affiliation(s)
- Martin R Pool
- School of Biological Science, Faculty of Biology, Medicine and Health, University of Manchester, Manchester M13 9PL, UK
| |
Collapse
|
8
|
Jomaa A, Eitzinger S, Zhu Z, Chandrasekar S, Kobayashi K, Shan SO, Ban N. Molecular mechanism of cargo recognition and handover by the mammalian signal recognition particle. Cell Rep 2021; 36:109350. [PMID: 34260909 PMCID: PMC8330425 DOI: 10.1016/j.celrep.2021.109350] [Citation(s) in RCA: 25] [Impact Index Per Article: 6.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/21/2020] [Revised: 04/23/2021] [Accepted: 06/15/2021] [Indexed: 11/26/2022] Open
Abstract
Co-translational protein targeting to membranes by the signal recognition particle (SRP) is a universally conserved pathway from bacteria to humans. In mammals, SRP and its receptor (SR) have many additional RNA features and protein components compared to the bacterial system, which were recently shown to play regulatory roles. Due to its complexity, the mammalian SRP targeting process is mechanistically not well understood. In particular, it is not clear how SRP recognizes translating ribosomes with exposed signal sequences and how the GTPase activity of SRP and SR is regulated. Here, we present electron cryo-microscopy structures of SRP and SRP·SR in complex with the translating ribosome. The structures reveal the specific molecular interactions between SRP and the emerging signal sequence and the elements that regulate GTPase activity of SRP·SR. Our results suggest the molecular mechanism of how eukaryote-specific elements regulate the early and late stages of SRP-dependent protein targeting. Jomaa et al. present cryo-EM structures of mammalian SRP, SRP receptor, and the translating ribosome. The structures reveal the role of eukaryotic-specific features involved in regulating early and late stages of co-translational protein targeting to the endoplasmic reticulum and suggest a model for cargo recognition and handover.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Simon Eitzinger
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Zikun Zhu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA
| | - Kan Kobayashi
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA, USA.
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| |
Collapse
|
9
|
Lee JH, Jomaa A, Chung S, Hwang Fu YH, Qian R, Sun X, Hsieh HH, Chandrasekar S, Bi X, Mattei S, Boehringer D, Weiss S, Ban N, Shan SO. Receptor compaction and GTPase rearrangement drive SRP-mediated cotranslational protein translocation into the ER. SCIENCE ADVANCES 2021; 7:eabg0942. [PMID: 34020957 PMCID: PMC8139590 DOI: 10.1126/sciadv.abg0942] [Citation(s) in RCA: 19] [Impact Index Per Article: 4.8] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 12/10/2020] [Accepted: 04/01/2021] [Indexed: 05/07/2023]
Abstract
The conserved signal recognition particle (SRP) cotranslationally delivers ~30% of the proteome to the eukaryotic endoplasmic reticulum (ER). The molecular mechanism by which eukaryotic SRP transitions from cargo recognition in the cytosol to protein translocation at the ER is not understood. Here, structural, biochemical, and single-molecule studies show that this transition requires multiple sequential conformational rearrangements in the targeting complex initiated by guanosine triphosphatase (GTPase)-driven compaction of the SRP receptor (SR). Disruption of these rearrangements, particularly in mutant SRP54G226E linked to severe congenital neutropenia, uncouples the SRP/SR GTPase cycle from protein translocation. Structures of targeting intermediates reveal the molecular basis of early SRP-SR recognition and emphasize the role of eukaryote-specific elements in regulating targeting. Our results provide a molecular model for the structural and functional transitions of SRP throughout the targeting cycle and show that these transitions provide important points for biological regulation that can be perturbed in genetic diseases.
Collapse
Affiliation(s)
- Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - SangYoon Chung
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
| | - Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Ruilin Qian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xuemeng Sun
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Hao-Hsuan Hsieh
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Xiaotian Bi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Simone Mattei
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland
- Cryo-EM Knowledge Hub, ETH Zurich, 8093 Zurich, Switzerland
| | - Shimon Weiss
- Department of Chemistry and Biochemistry, University of California, Los Angeles, Los Angeles, CA 90095, USA
- Department of Physics, Institute of Nanotechnology and Advanced Materials, Bar-Ilan University, 52900 Ramat-Gan, Israel
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, 8093 Zurich, Switzerland.
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
10
|
Oswald J, Njenga R, Natriashvili A, Sarmah P, Koch HG. The Dynamic SecYEG Translocon. Front Mol Biosci 2021; 8:664241. [PMID: 33937339 PMCID: PMC8082313 DOI: 10.3389/fmolb.2021.664241] [Citation(s) in RCA: 38] [Impact Index Per Article: 9.5] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/04/2021] [Accepted: 03/24/2021] [Indexed: 12/13/2022] Open
Abstract
The spatial and temporal coordination of protein transport is an essential cornerstone of the bacterial adaptation to different environmental conditions. By adjusting the protein composition of extra-cytosolic compartments, like the inner and outer membranes or the periplasmic space, protein transport mechanisms help shaping protein homeostasis in response to various metabolic cues. The universally conserved SecYEG translocon acts at the center of bacterial protein transport and mediates the translocation of newly synthesized proteins into and across the cytoplasmic membrane. The ability of the SecYEG translocon to transport an enormous variety of different substrates is in part determined by its ability to interact with multiple targeting factors, chaperones and accessory proteins. These interactions are crucial for the assisted passage of newly synthesized proteins from the cytosol into the different bacterial compartments. In this review, we summarize the current knowledge about SecYEG-mediated protein transport, primarily in the model organism Escherichia coli, and describe the dynamic interaction of the SecYEG translocon with its multiple partner proteins. We furthermore highlight how protein transport is regulated and explore recent developments in using the SecYEG translocon as an antimicrobial target.
Collapse
Affiliation(s)
- Julia Oswald
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Robert Njenga
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Ana Natriashvili
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Pinku Sarmah
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany.,Faculty of Biology, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Zentrum für Biochemie und Molekulare Medizin (ZMBZ), Faculty of Medicine, Albert Ludwigs Universität Freiburg, Freiburg, Germany
| |
Collapse
|
11
|
Abstract
More than a third of all bacterial polypeptides, comprising the 'exportome', are transported to extracytoplasmic locations. Most of the exportome is targeted and inserts into ('membranome') or crosses ('secretome') the plasma membrane. The membranome and secretome use distinct targeting signals and factors, and driving forces, but both use the ubiquitous and essential Sec translocase and its SecYEG protein-conducting channel. Membranome export is co-translational and uses highly hydrophobic N-terminal signal anchor sequences recognized by the signal recognition particle on the ribosome, that also targets C-tail anchor sequences. Translating ribosomes drive movement of these polypeptides through the lateral gate of SecY into the inner membrane. On the other hand, secretome export is post-translational and carries two types of targeting signals: cleavable N-terminal signal peptides and multiple short hydrophobic targeting signals in their mature domains. Secretome proteins remain translocation competent due to occupying loosely folded to completely non-folded states during targeting. This is accomplished mainly by the intrinsic properties of mature domains and assisted by signal peptides and/or chaperones. Secretome proteins bind to the dimeric SecA subunit of the translocase. SecA converts from a dimeric preprotein receptor to a monomeric ATPase motor and drives vectorial crossing of chains through SecY aided by the proton motive force. Signal peptides are removed by signal peptidases and translocated chains fold or follow subsequent trafficking.
Collapse
|
12
|
Wild K, Juaire KD, Soni K, Shanmuganathan V, Hendricks A, Segnitz B, Beckmann R, Sinning I. Reconstitution of the human SRP system and quantitative and systematic analysis of its ribosome interactions. Nucleic Acids Res 2019; 47:3184-3196. [PMID: 30649417 PMCID: PMC6451106 DOI: 10.1093/nar/gky1324] [Citation(s) in RCA: 26] [Impact Index Per Article: 4.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/10/2018] [Revised: 12/20/2018] [Accepted: 01/02/2019] [Indexed: 12/22/2022] Open
Abstract
Co-translational protein targeting to membranes depends on the regulated interaction of two ribonucleoprotein particles (RNPs): the ribosome and the signal recognition particle (SRP). Human SRP is composed of an SRP RNA and six proteins with the SRP GTPase SRP54 forming the targeting complex with the heterodimeric SRP receptor (SRαβ) at the endoplasmic reticulum membrane. While detailed structural and functional data are available especially for the bacterial homologs, the analysis of human SRP was impeded by the unavailability of recombinant SRP. Here, we describe the large-scale production of all human SRP components and the reconstitution of homogeneous SRP and SR complexes. Binding to human ribosomes is determined by microscale thermophoresis for individual components, assembly intermediates and entire SRP, and binding affinities are correlated with structural information available for all ribosomal contacts. We show that SRP RNA does not bind to the ribosome, while SRP binds with nanomolar affinity involving a two-step mechanism of the key-player SRP54. Ultrasensitive binding of SRP68/72 indicates avidity by multiple binding sites that are dominated by the C-terminus of SRP72. Our data extend the experimental basis to understand the mechanistic principles of co-translational targeting in mammals and may guide analyses of complex RNP–RNP interactions in general.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Keven D Juaire
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Komal Soni
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Vivekanandan Shanmuganathan
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Roland Beckmann
- Gene Center and Center for Integrated Protein Science Munich, Department of Biochemistry, University of Munich, Feodor-Lynen-Str. 25, D-81377 Munich, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
13
|
Hwang Fu YH, Chandrasekar S, Lee JH, Shan SO. A molecular recognition feature mediates ribosome-induced SRP-receptor assembly during protein targeting. J Cell Biol 2019; 218:3307-3319. [PMID: 31537711 PMCID: PMC6781444 DOI: 10.1083/jcb.201901001] [Citation(s) in RCA: 11] [Impact Index Per Article: 1.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/01/2019] [Revised: 06/28/2019] [Accepted: 08/26/2019] [Indexed: 12/21/2022] Open
Abstract
Molecular recognition features (MoRFs) provide interaction motifs in intrinsically disordered protein regions to mediate diverse cellular functions. Here we report that a MoRF element, located in the disordered linker domain of the mammalian signal recognition particle (SRP) receptor and conserved among eukaryotes, plays an essential role in sensing the ribosome during cotranslational protein targeting to the endoplasmic reticulum. Loss of the MoRF in the SRP receptor (SR) largely abolishes the ability of the ribosome to activate SRP-SR assembly and impairs cotranslational protein targeting. These results demonstrate a novel role for MoRF elements and provide a mechanism for the ribosome-induced activation of the mammalian SRP pathway. Kinetic analyses and comparison with the bacterial SRP further suggest that the SR MoRF functionally replaces the essential GNRA tetraloop in the bacterial SRP RNA, providing an example for the replacement of RNA function by proteins during the evolution of ancient ribonucleoprotein particles.
Collapse
Affiliation(s)
- Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA
| |
Collapse
|
14
|
Steinberg R, Knüpffer L, Origi A, Asti R, Koch HG. Co-translational protein targeting in bacteria. FEMS Microbiol Lett 2019; 365:4966980. [PMID: 29790984 DOI: 10.1093/femsle/fny095] [Citation(s) in RCA: 59] [Impact Index Per Article: 9.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/07/2018] [Accepted: 04/09/2018] [Indexed: 01/16/2023] Open
Abstract
About 30% of all bacterial proteins execute their function outside of the cytosol and have to be transported into or across the cytoplasmic membrane. Bacteria use multiple protein transport systems in parallel, but the majority of proteins engage two distinct targeting systems. One is the co-translational targeting by two universally conserved GTPases, the signal recognition particle (SRP) and its receptor FtsY, which deliver inner membrane proteins to either the SecYEG translocon or the YidC insertase for membrane insertion. The other targeting system depends on the ATPase SecA, which targets secretory proteins, i.e. periplasmic and outer membrane proteins, to SecYEG for their subsequent ATP-dependent translocation. While SRP selects its substrates already very early during their synthesis, the recognition of secretory proteins by SecA is believed to occur primarily after translation termination, i.e. post-translationally. In this review we highlight recent progress on how SRP recognizes its substrates at the ribosome and how the fidelity of the targeting reaction to SecYEG is maintained. We furthermore discuss similarities and differences in the SRP-dependent targeting to either SecYEG or YidC and summarize recent results that suggest that some membrane proteins are co-translationally targeted by SecA.
Collapse
Affiliation(s)
- Ruth Steinberg
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Lara Knüpffer
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Andrea Origi
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany.,Faculty of Biology, Albert-Ludwigs-University Freiburg, Schänzlestr. 1, Freiburg D-79104, Germany
| | - Rossella Asti
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs University Freiburg, Stefan Meier Str. 17, Freiburg D-79104, Germany
| |
Collapse
|
15
|
Wild K, Becker MM, Kempf G, Sinning I. Structure, dynamics and interactions of large SRP variants. Biol Chem 2019; 401:63-80. [DOI: 10.1515/hsz-2019-0282] [Citation(s) in RCA: 8] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 06/07/2019] [Accepted: 08/09/2019] [Indexed: 12/11/2022]
Abstract
Abstract
Co-translational protein targeting to membranes relies on the signal recognition particle (SRP) system consisting of a cytosolic ribonucleoprotein complex and its membrane-associated receptor. SRP recognizes N-terminal cleavable signals or signal anchor sequences, retards translation, and delivers ribosome-nascent chain complexes (RNCs) to vacant translocation channels in the target membrane. While our mechanistic understanding is well advanced for the small bacterial systems it lags behind for the large bacterial, archaeal and eukaryotic SRP variants including an Alu and an S domain. Here we describe recent advances on structural and functional insights in domain architecture, particle dynamics and interplay with RNCs and translocon and GTP-dependent regulation of co-translational protein targeting stimulated by SRP RNA.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Matthias M.M. Becker
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Georg Kempf
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH) , INF 328 , D-69120 Heidelberg , Germany
| |
Collapse
|
16
|
Nomura K, Yamaguchi T, Mori S, Fujikawa K, Nishiyama KI, Shimanouchi T, Tanimoto Y, Morigaki K, Shimamoto K. Alteration of Membrane Physicochemical Properties by Two Factors for Membrane Protein Integration. Biophys J 2019; 117:99-110. [PMID: 31164197 PMCID: PMC6626835 DOI: 10.1016/j.bpj.2019.05.014] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/13/2018] [Revised: 05/08/2019] [Accepted: 05/14/2019] [Indexed: 12/01/2022] Open
Abstract
After a nascent chain of a membrane protein emerges from the ribosomal tunnel, the protein is integrated into the cell membrane. This process is controlled by a series of proteinaceous molecular devices, such as signal recognition particles and Sec translocons. In addition to these proteins, we discovered two endogenous components regulating membrane protein integration in the inner membrane of Escherichia coli. The integration is blocked by diacylglycerol (DAG), whereas the blocking is relieved by a glycolipid named membrane protein integrase (MPIase). Here, we investigated the influence of these integration-blocking and integration-promoting factors on the physicochemical properties of membrane lipids via solid-state NMR and fluorescence measurements. These factors did not have destructive effects on membrane morphology because the membrane maintained its lamellar structure and did not fuse in the presence of DAG and/or MPIase at their effective concentrations. We next focused on membrane flexibility. DAG did not affect the mobility of the membrane surface, whereas the sugar chain in MPIase was highly mobile and enhanced the flexibility of membrane lipid headgroups. Comparison with a synthetic MPIase analog revealed the effects of the long sugar chain on membrane properties. The acyl chain order inside the membrane was increased by DAG, whereas the increase was cancelled by the addition of MPIase. MPIase also loosened the membrane lipid packing. Focusing on the transbilayer movement, MPIase reduced the rapid flip-flop motion of DAG. On the other hand, MPIase could not compensate for the diminished lateral diffusion by DAG. These results suggest that by manipulating the membrane lipids dynamics, DAG inhibits the protein from contacting the inner membrane, whereas the flexible long sugar chain of MPIase increases the opportunity for interaction between the membrane and the protein, leading to membrane integration of the newly formed protein.
Collapse
Affiliation(s)
- Kaoru Nomura
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| | - Toshiyuki Yamaguchi
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Shoko Mori
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Kohki Fujikawa
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan
| | - Ken-Ichi Nishiyama
- Department of Biological Chemistry and Food Sciences, Faculty of Agriculture, Iwate University, Morioka, Iwate, Japan
| | | | - Yasushi Tanimoto
- Graduate School of Agricultural Science, Kobe University, Kobe, Japan
| | | | - Keiko Shimamoto
- Bioorganic Research Institute, Suntory Foundation for Life Sciences, Kyoto, Japan.
| |
Collapse
|
17
|
Chitwood PJ, Hegde RS. The Role of EMC during Membrane Protein Biogenesis. Trends Cell Biol 2019; 29:371-384. [PMID: 30826214 DOI: 10.1016/j.tcb.2019.01.007] [Citation(s) in RCA: 53] [Impact Index Per Article: 8.8] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/03/2019] [Revised: 01/27/2019] [Accepted: 01/28/2019] [Indexed: 12/11/2022]
Abstract
Ten years ago, high-throughput genetic interaction analyses revealed an abundant and widely conserved protein complex residing in the endoplasmic reticulum (ER) membrane. Dubbed the ER membrane protein complex (EMC), its disruption has since been found to affect wide-ranging processes, including protein trafficking, organelle communication, ER stress, viral maturation, lipid homeostasis, and others. However, its molecular function has remained enigmatic. Recent studies suggest a role for EMC during membrane protein biogenesis. Biochemical reconstitution experiments show that EMC can directly mediate the insertion of transmembrane domains (TMDs) into the lipid bilayer. Given the large proportion of genes encoding membrane proteins, a central role for EMC as a TMD insertion factor can explain its high abundance, wide conservation, and pleiotropic phenotypes.
Collapse
Affiliation(s)
- Patrick J Chitwood
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK
| | - Ramanujan S Hegde
- MRC Laboratory of Molecular Biology, Francis Crick Avenue, Cambridge, CB20QH, UK.
| |
Collapse
|
18
|
Aviram N, Schuldiner M. Targeting and translocation of proteins to the endoplasmic reticulum at a glance. J Cell Sci 2018; 130:4079-4085. [PMID: 29246967 DOI: 10.1242/jcs.204396] [Citation(s) in RCA: 103] [Impact Index Per Article: 14.7] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/21/2022] Open
Abstract
The evolutionary emergence of organelles was a defining process in diversifying biochemical reactions within the cell and enabling multicellularity. However, compartmentalization also imposed a great challenge-the need to import proteins synthesized in the cytosol into their respective sites of function. For example, one-third of all genes encode for proteins that must be targeted and translocated into the endoplasmic reticulum (ER), which serves as the entry site to the majority of endomembrane compartments. Decades of research have set down the fundamental principles of how proteins get from the cytosol into the ER, and recent studies have brought forward new pathways and additional regulators enabling better definition of the rules governing substrate recognition. In this Cell Science at a Glance article and the accompanying poster, we give an overview of our current understanding of the multifaceted and regulated processes of protein targeting and translocation to the ER.
Collapse
Affiliation(s)
- Naama Aviram
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 7610001
| | - Maya Schuldiner
- Department of Molecular Genetics, Weizmann Institute of Science, Rehovot, Israel 7610001
| |
Collapse
|
19
|
Sequential activation of human signal recognition particle by the ribosome and signal sequence drives efficient protein targeting. Proc Natl Acad Sci U S A 2018; 115:E5487-E5496. [PMID: 29848629 DOI: 10.1073/pnas.1802252115] [Citation(s) in RCA: 23] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/09/2023] Open
Abstract
Signal recognition particle (SRP) is a universally conserved targeting machine that mediates the targeted delivery of ∼30% of the proteome. The molecular mechanism by which eukaryotic SRP achieves efficient and selective protein targeting remains elusive. Here, we describe quantitative analyses of completely reconstituted human SRP (hSRP) and SRP receptor (SR). Enzymatic and fluorescence analyses showed that the ribosome, together with a functional signal sequence on the nascent polypeptide, are required to activate SRP for rapid recruitment of the SR, thereby delivering translating ribosomes to the endoplasmic reticulum. Single-molecule fluorescence spectroscopy combined with cross-complementation analyses reveal a sequential mechanism of activation whereby the ribosome unlocks the hSRP from an autoinhibited state and primes SRP to sample a variety of conformations. The signal sequence further preorganizes the mammalian SRP into the optimal conformation for efficient recruitment of the SR. Finally, the use of a signal sequence to activate SRP for receptor recruitment is a universally conserved feature to enable efficient and selective protein targeting, and the eukaryote-specific components confer upon the mammalian SRP the ability to sense and respond to ribosomes.
Collapse
|
20
|
Kobayashi K, Jomaa A, Lee JH, Chandrasekar S, Boehringer D, Shan SO, Ban N. Structure of a prehandover mammalian ribosomal SRP·SRP receptor targeting complex. Science 2018; 360:323-327. [PMID: 29567807 PMCID: PMC6309883 DOI: 10.1126/science.aar7924] [Citation(s) in RCA: 51] [Impact Index Per Article: 7.3] [Reference Citation Analysis] [Abstract] [MESH Headings] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/18/2017] [Accepted: 03/12/2018] [Indexed: 01/13/2023]
Abstract
Signal recognition particle (SRP) targets proteins to the endoplasmic reticulum (ER). SRP recognizes the ribosome synthesizing a signal sequence and delivers it to the SRP receptor (SR) on the ER membrane followed by the transfer of the signal sequence to the translocon. Here, we present the cryo-electron microscopy structure of the mammalian translating ribosome in complex with SRP and SR in a conformation preceding signal sequence handover. The structure visualizes all eukaryotic-specific SRP and SR proteins and reveals their roles in stabilizing this conformation by forming a large protein assembly at the distal site of SRP RNA. We provide biochemical evidence that the guanosine triphosphate hydrolysis of SRP·SR is delayed at this stage, possibly to provide a time window for signal sequence handover to the translocon.
Collapse
Affiliation(s)
- Kan Kobayashi
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Jae Ho Lee
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Sowmya Chandrasekar
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, ETH Zurich, Otto-Stern-Weg 5, Zurich CH-8093, Switzerland.
| |
Collapse
|
21
|
Gao Y, Zhang Q, Lang Y, Liu Y, Dong X, Chen Z, Tian W, Tang J, Wu W, Tong Y, Chen Z. Human apo-SRP72 and SRP68/72 complex structures reveal the molecular basis of protein translocation. J Mol Cell Biol 2018; 9:220-230. [PMID: 28369529 PMCID: PMC5907831 DOI: 10.1093/jmcb/mjx010] [Citation(s) in RCA: 14] [Impact Index Per Article: 2.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/14/2016] [Accepted: 03/15/2017] [Indexed: 02/04/2023] Open
Abstract
The co-translational targeting or insertion of secretory and membrane proteins into the endoplasmic reticulum (ER) is a key biological process mediated by the signal recognition particle (SRP). In eukaryotes, the SRP68–SRP72 (SRP68/72) heterodimer plays an essential role in protein translocation. However, structural information on the two largest SRP proteins, SRP68 and SRP72, is limited, especially regarding their interaction. Herein, we report the first crystal structures of human apo-SRP72 and the SRP68/72 complex at 2.91Å and 1.7Å resolution, respectively. The SRP68-binding domain of SRP72 contains four atypical tetratricopeptide repeats (TPR) and a flexible C-terminal cap. Apo-SRP72 exists mainly as dimers in solution. To bind to SRP68, the SRP72 homodimer disassociates, and the indispensable C-terminal cap undergoes a pronounced conformational change to assist formation of the SRP68/72 heterodimer. A 23-residue polypeptide of SRP68 is sufficient for tight binding to SRP72 through its unusually hydrophobic and extended surface. Structural, biophysical, and mutagenesis analyses revealed that cancer-associated mutations disrupt the SRP68–SRP72 interaction and their co-localization with ER in mammalian cells. The results highlight the essential role of the SRP68–SRP72 interaction in SRP-mediated protein translocation and provide a structural basis for disease diagnosis, pathophysiology, and drug design.
Collapse
Affiliation(s)
- Yina Gao
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Qi Zhang
- Structural Genomics Consortium, Toronto, Ontario M5G 1L7, Canada
| | - Yue Lang
- College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Yang Liu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Xiaofei Dong
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Zhenhang Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Wenli Tian
- Institute of Apicultural Research, Chinese Academy of Agricultural Sciences, Beijing 100093, China
| | - Jun Tang
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China.,College of Veterinary Medicine, China Agricultural University, Beijing 100193, China
| | - Wei Wu
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| | - Yufeng Tong
- Structural Genomics Consortium, Toronto, Ontario M5G 1L7, Canada.,Department of Pharmacology and Toxicology, University of Toronto, Toronto, Ontario M5G 1L7, Canada
| | - Zhongzhou Chen
- Beijing Advanced Innovation Center for Food Nutrition and Human Health, State Key Laboratory of Agrobiotechnology, China Agricultural University, Beijing 100193, China
| |
Collapse
|
22
|
Shabash B, Wiese KC. Numerical integration methods and layout improvements in the context of dynamic RNA visualization. BMC Bioinformatics 2017; 18:282. [PMID: 28558664 PMCID: PMC5450055 DOI: 10.1186/s12859-017-1682-0] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.8] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 02/09/2017] [Accepted: 05/11/2017] [Indexed: 11/16/2022] Open
Abstract
BACKGROUND RNA visualization software tools have traditionally presented a static visualization of RNA molecules with limited ability for users to interact with the resulting image once it is complete. Only a few tools allowed for dynamic structures. One such tool is jViz.RNA. Currently, jViz.RNA employs a unique method for the creation of the RNA molecule layout by mapping the RNA nucleotides into vertexes in a graph, which we call the detailed graph, and then utilizes a Newtonian mechanics inspired system of forces to calculate a layout for the RNA molecule. The work presented here focuses on improvements to jViz.RNA that allow the drawing of RNA secondary structures according to common drawing conventions, as well as dramatic run-time performance improvements. This is done first by presenting an alternative method for mapping the RNA molecule into a graph, which we call the compressed graph, and then employing advanced numerical integration methods for the compressed graph representation. RESULTS Comparing the compressed graph and detailed graph implementations, we find that the compressed graph produces results more consistent with RNA drawing conventions. However, we also find that employing the compressed graph method requires a more sophisticated initial layout to produce visualizations that would require minimal user interference. Comparing the two numerical integration methods demonstrates the higher stability of the Backward Euler method, and its resulting ability to handle much larger time steps, a high priority feature for any software which entails user interaction. CONCLUSION The work in this manuscript presents the preferred use of compressed graphs to detailed ones, as well as the advantages of employing the Backward Euler method over the Forward Euler method. These improvements produce more stable as well as visually aesthetic representations of the RNA secondary structures. The results presented demonstrate that both the compressed graph representation, as well as the Backward Euler integrator, greatly enhance the run-time performance and usability. The newest iteration of jViz.RNA is available at https://jviz.cs.sfu.ca/download/download.html .
Collapse
Affiliation(s)
- Boris Shabash
- School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada
| | - Kay C Wiese
- School of Computing Science, Simon Fraser University, 8888 University Drive, Burnaby, BC, Canada.
| |
Collapse
|
23
|
Jomaa A, Fu YHH, Boehringer D, Leibundgut M, Shan SO, Ban N. Structure of the quaternary complex between SRP, SR, and translocon bound to the translating ribosome. Nat Commun 2017; 8:15470. [PMID: 28524878 PMCID: PMC5454536 DOI: 10.1038/ncomms15470] [Citation(s) in RCA: 45] [Impact Index Per Article: 5.6] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/25/2017] [Accepted: 03/29/2017] [Indexed: 01/05/2023] Open
Abstract
During co-translational protein targeting, the signal recognition particle (SRP) binds to the translating ribosome displaying the signal sequence to deliver it to the SRP receptor (SR) on the membrane, where the signal peptide is transferred to the translocon. Using electron cryo-microscopy, we have determined the structure of a quaternary complex of the translating Escherichia coli ribosome, the SRP–SR in the ‘activated' state and the translocon. Our structure, supported by biochemical experiments, reveals that the SRP RNA adopts a kinked and untwisted conformation to allow repositioning of the ‘activated' SRP–SR complex on the ribosome. In addition, we observe the translocon positioned through interactions with the SR in the vicinity of the ribosome exit tunnel where the signal sequence is extending beyond its hydrophobic binding groove of the SRP M domain towards the translocon. Our study provides new insights into the mechanism of signal sequence transfer from the SRP to the translocon. Membrane proteins are inserted co-transnationally through the association between ribosome, the signal recognition particle and its receptor, and the membrane-bound translocon. Here the authors present a cryo-EM reconstruction of this quaternary complex in the activated state and propose a model for signal sequence transfer to the translocon.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| | - Yu-Hsien Hwang Fu
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125, USA
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH, Zurich CH-8093, Switzerland
| |
Collapse
|
24
|
Abstract
The insertion and assembly of proteins into the inner membrane of bacteria are crucial for many cellular processes, including cellular respiration, signal transduction, and ion and pH homeostasis. This process requires efficient membrane targeting and insertion of proteins into the lipid bilayer in their correct orientation and proper conformation. Playing center stage in these events are the targeting components, signal recognition particle (SRP) and the SRP receptor FtsY, as well as the insertion components, the Sec translocon and the YidC insertase. Here, we will discuss new insights provided from the recent high-resolution structures of these proteins. In addition, we will review the mechanism by which a variety of proteins with different topologies are inserted into the inner membrane of Gram-negative bacteria. Finally, we report on the energetics of this process and provide information on how membrane insertion occurs in Gram-positive bacteria and Archaea. It should be noted that most of what we know about membrane protein assembly in bacteria is based on studies conducted in Escherichia coli.
Collapse
Affiliation(s)
- Andreas Kuhn
- Institute for Microbiology and Molecular Biology, University of Hohenheim, 70599 Stuttgart, Germany
| | - Hans-Georg Koch
- Institute for Biochemistry and Molecular Biology, Faculty of Medicine, Albert-Ludwigs-University of Freiburg, 79104, Freiburg, Germany
| | - Ross E Dalbey
- Department of Chemistry, The Ohio State University, Columbus, OH 43210
| |
Collapse
|
25
|
Becker MMM, Lapouge K, Segnitz B, Wild K, Sinning I. Structures of human SRP72 complexes provide insights into SRP RNA remodeling and ribosome interaction. Nucleic Acids Res 2016; 45:470-481. [PMID: 27899666 PMCID: PMC5224484 DOI: 10.1093/nar/gkw1124] [Citation(s) in RCA: 20] [Impact Index Per Article: 2.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 09/23/2016] [Revised: 10/21/2016] [Accepted: 10/28/2016] [Indexed: 12/30/2022] Open
Abstract
Co-translational protein targeting and membrane protein insertion is a fundamental process and depends on the signal recognition particle (SRP). In mammals, SRP is composed of the SRP RNA crucial for SRP assembly and function and six proteins. The two largest proteins SRP68 and SRP72 form a heterodimer and bind to a regulatory site of the SRP RNA. Despite their essential roles in the SRP pathway, structural information has been available only for the SRP68 RNA-binding domain (RBD). Here we present the crystal structures of the SRP68 protein-binding domain (PBD) in complex with SRP72-PBD and of the SRP72-RBD bound to the SRP S domain (SRP RNA, SRP19 and SRP68) detailing all interactions of SRP72 within SRP. The SRP72-PBD is a tetratricopeptide repeat, which binds an extended linear motif of SRP68 with high affinity. The SRP72-RBD is a flexible peptide crawling along the 5e- and 5f-loops of SRP RNA. A conserved tryptophan inserts into the 5e-loop forming a novel type of RNA kink-turn stabilized by a potassium ion, which we define as K+-turn. In addition, SRP72-RBD remodels the 5f-loop involved in ribosome binding and visualizes SRP RNA plasticity. Docking of the S domain structure into cryo-electron microscopy density maps reveals multiple contact sites between SRP68/72 and the ribosome, and explains the role of SRP72 in the SRP pathway.
Collapse
Affiliation(s)
- Matthias M M Becker
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Karine Lapouge
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), Im Neuenheimer Feld 328, D-69120 Heidelberg, Germany
| |
Collapse
|
26
|
Chen Y, Shen K, Shan SO, Kou SC. Analyzing Single-Molecule Protein Transportation Experiments via Hierarchical Hidden Markov Models. J Am Stat Assoc 2016; 111:951-966. [PMID: 28943680 PMCID: PMC5606165 DOI: 10.1080/01621459.2016.1140050] [Citation(s) in RCA: 6] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/01/2014] [Revised: 12/01/2015] [Indexed: 01/10/2023]
Abstract
To maintain proper cellular functions, over 50% of proteins encoded in the genome need to be transported to cellular membranes. The molecular mechanism behind such a process, often referred to as protein targeting, is not well understood. Single-molecule experiments are designed to unveil the detailed mechanisms and reveal the functions of different molecular machineries involved in the process. The experimental data consist of hundreds of stochastic time traces from the fluorescence recordings of the experimental system. We introduce a Bayesian hierarchical model on top of hidden Markov models (HMMs) to analyze these data and use the statistical results to answer the biological questions. In addition to resolving the biological puzzles and delineating the regulating roles of different molecular complexes, our statistical results enable us to propose a more detailed mechanism for the late stages of the protein targeting process.
Collapse
Affiliation(s)
- Yang Chen
- Ph.D. candidate, Department of Statistics, Harvard University, Cambridge, MA 02138
| | - Kuang Shen
- Pfizer fellow of the Life Sciences Research Foundation, Whitehead Institute for Biomedical Research, Cambridge, MA 02142
| | - Shu-Ou Shan
- Professor, Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - S C Kou
- Professor, Department of Statistics, Harvard University, Cambridge, MA 02138
| |
Collapse
|
27
|
Wild K, Bange G, Motiejunas D, Kribelbauer J, Hendricks A, Segnitz B, Wade RC, Sinning I. Structural Basis for Conserved Regulation and Adaptation of the Signal Recognition Particle Targeting Complex. J Mol Biol 2016; 428:2880-97. [PMID: 27241309 DOI: 10.1016/j.jmb.2016.05.015] [Citation(s) in RCA: 40] [Impact Index Per Article: 4.4] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/18/2016] [Revised: 05/13/2016] [Accepted: 05/18/2016] [Indexed: 12/25/2022]
Abstract
The signal recognition particle (SRP) is a ribonucleoprotein complex with a key role in targeting and insertion of membrane proteins. The two SRP GTPases, SRP54 (Ffh in bacteria) and FtsY (SRα in eukaryotes), form the core of the targeting complex (TC) regulating the SRP cycle. The architecture of the TC and its stimulation by RNA has been described for the bacterial SRP system while this information is lacking for other domains of life. Here, we present the crystal structures of the GTPase heterodimers of archaeal (Sulfolobus solfataricus), eukaryotic (Homo sapiens), and chloroplast (Arabidopsis thaliana) SRP systems. The comprehensive structural comparison combined with Brownian dynamics simulations of TC formation allows for the description of the general blueprint and of specific adaptations of the quasi-symmetric heterodimer. Our work defines conserved external nucleotide-binding sites for SRP GTPase activation by RNA. Structural analyses of the GDP-bound, post-hydrolysis states reveal a conserved, magnesium-sensitive switch within the I-box. Overall, we provide a general model for SRP cycle regulation by RNA.
Collapse
Affiliation(s)
- Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Gert Bange
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Domantas Motiejunas
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany
| | - Judith Kribelbauer
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Astrid Hendricks
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Bernd Segnitz
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Rebecca C Wade
- Molecular and Cellular Modeling Group, Heidelberg Institute for Theoretical Studies (HITS), Schloss-Wolfsbrunnenweg 35, D-69118 Heidelberg, Germany; Zentrum für Molekulare Biologie der Universität Heidelberg, DKFZ-ZMBH Alliance, INF 282, 69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany.
| |
Collapse
|
28
|
Kuhn P, Draycheva A, Vogt A, Petriman NA, Sturm L, Drepper F, Warscheid B, Wintermeyer W, Koch HG. Ribosome binding induces repositioning of the signal recognition particle receptor on the translocon. J Cell Biol 2016; 211:91-104. [PMID: 26459600 PMCID: PMC4602035 DOI: 10.1083/jcb.201502103] [Citation(s) in RCA: 37] [Impact Index Per Article: 4.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/13/2023] Open
Abstract
The cotranslational transfer of nascent membrane proteins to the SecYEG translocon is facilitated by a reorientation of the SecY-bound signal recognition particle (SRP) receptor, FtsY, which accompanies the formation of a quaternary targeting complex consisting of SecYEG, FtsY, SRP, and the ribosome. Cotranslational protein targeting delivers proteins to the bacterial cytoplasmic membrane or to the eukaryotic endoplasmic reticulum membrane. The signal recognition particle (SRP) binds to signal sequences emerging from the ribosomal tunnel and targets the ribosome-nascent-chain complex (RNC) to the SRP receptor, termed FtsY in bacteria. FtsY interacts with the fifth cytosolic loop of SecY in the SecYEG translocon, but the functional role of the interaction is unclear. By using photo-cross-linking and fluorescence resonance energy transfer measurements, we show that FtsY–SecY complex formation is guanosine triphosphate independent but requires a phospholipid environment. Binding of an SRP–RNC complex exposing a hydrophobic transmembrane segment induces a rearrangement of the SecY–FtsY complex, which allows the subsequent contact between SecY and ribosomal protein uL23. These results suggest that direct RNC transfer to the translocon is guided by the interaction between SRP and translocon-bound FtsY in a quaternary targeting complex.
Collapse
Affiliation(s)
- Patrick Kuhn
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Albena Draycheva
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Andreas Vogt
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Narcis-Adrian Petriman
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Faculty of Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Lukas Sturm
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Friedel Drepper
- Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Bettina Warscheid
- Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Department of Biochemistry and Functional Proteomics, Faculty of Biology and BIOSS Centre for Biological Signalling Studies, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| | - Wolfgang Wintermeyer
- Department of Physical Biochemistry, Max Planck Institute for Biophysical Chemistry, 37077 Göttingen, Germany
| | - Hans-Georg Koch
- Institute of Biochemistry and Molecular Biology, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany Spemann Graduate School of Biology and Medicine, Albert-Ludwigs-University Freiburg, 79104 Freiburg, Germany
| |
Collapse
|
29
|
Jomaa A, Boehringer D, Leibundgut M, Ban N. Structures of the E. coli translating ribosome with SRP and its receptor and with the translocon. Nat Commun 2016; 7:10471. [PMID: 26804923 PMCID: PMC4737761 DOI: 10.1038/ncomms10471] [Citation(s) in RCA: 83] [Impact Index Per Article: 9.2] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 10/12/2015] [Accepted: 12/14/2015] [Indexed: 12/17/2022] Open
Abstract
Co-translational protein targeting to membranes is a universally conserved process. Central steps include cargo recognition by the signal recognition particle and handover to the Sec translocon. Here we present snapshots of key co-translational-targeting complexes solved by cryo-electron microscopy at near-atomic resolution, establishing the molecular contacts between the Escherichia coli translating ribosome, the signal recognition particle and the translocon. Our results reveal the conformational changes that regulate the latching of the signal sequence, the release of the heterodimeric domains of the signal recognition particle and its receptor, and the handover of the signal sequence to the translocon. We also observe that the signal recognition particle and the translocon insert-specific structural elements into the ribosomal tunnel to remodel it, possibly to sense nascent chains. Our work provides structural evidence for a conformational state of the signal recognition particle and its receptor primed for translocon binding to the ribosome-nascent chain complex.
Collapse
Affiliation(s)
- Ahmad Jomaa
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Daniel Boehringer
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Marc Leibundgut
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| | - Nenad Ban
- Department of Biology, Institute of Molecular Biology and Biophysics, Otto-Stern-Weg 5, ETH Zurich CH-8093, Switzerland
| |
Collapse
|
30
|
Ahl V, Keller H, Schmidt S, Weichenrieder O. Retrotransposition and Crystal Structure of an Alu RNP in the Ribosome-Stalling Conformation. Mol Cell 2015; 60:715-727. [PMID: 26585389 DOI: 10.1016/j.molcel.2015.10.003] [Citation(s) in RCA: 61] [Impact Index Per Article: 6.1] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/15/2015] [Revised: 09/14/2015] [Accepted: 10/01/2015] [Indexed: 10/22/2022]
Abstract
The Alu element is the most successful human genomic parasite affecting development and causing disease. It originated as a retrotransposon during early primate evolution of the gene encoding the signal recognition particle (SRP) RNA. We defined a minimal Alu RNA sufficient for effective retrotransposition and determined a high-resolution structure of its complex with the SRP9/14 proteins. The RNA adopts a compact, closed conformation that matches the envelope of the SRP Alu domain in the ribosomal translation elongation factor-binding site. Conserved structural elements in SRP RNAs support an ancient function of the closed conformation that predates SRP9/14. Structure-based mutagenesis shows that retrotransposition requires the closed conformation of the Alu ribonucleoprotein particle and is consistent with the recognition of stalled ribosomes. We propose that ribosome stalling is a common cause for the cis-preference of the mammalian L1 retrotransposon and for the efficiency of the Alu RNA in hijacking nascent L1 reverse transcriptase.
Collapse
Affiliation(s)
- Valentina Ahl
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Heiko Keller
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Steffen Schmidt
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany
| | - Oliver Weichenrieder
- Department of Biochemistry, Max Planck Institute for Developmental Biology, Spemannstrasse 35, 72076 Tübingen, Germany.
| |
Collapse
|
31
|
Abstract
More than one third of the cellular proteome is destined for incorporation into cell membranes or export from the cell. In all domains of life, the signal recognition particle (SRP) delivers these proteins to the membrane and protein traffic falls apart without SRP logistics. With the aid of a topogenic transport signal, SRP retrieves its cargo right at the ribosome, from where they are sorted to the translocation channel. Mammalian SRP is a ribonucleoprotein complex consisting of an SRP RNA of 300 nucleotides and 6 proteins bound to it. Assembly occurs in a hierarchical manner mainly in the nucleolus and only SRP54, which recognizes the signal sequence and regulates the targeting process, is added as the last component in the cytosol. Here we present an update on recent insights in the structure, function and dynamics of SRP RNA in SRP assembly with focus on the S domain, and present SRP as an example for the complex biogenesis of a rather small ribonucleoprotein particle.
Collapse
Affiliation(s)
- Klemens Wild
- a Heidelberg University Biochemistry Center (BZH) ; Heidelberg , Germany
| | | |
Collapse
|
32
|
Kunze M, Berger J. The similarity between N-terminal targeting signals for protein import into different organelles and its evolutionary relevance. Front Physiol 2015; 6:259. [PMID: 26441678 PMCID: PMC4585086 DOI: 10.3389/fphys.2015.00259] [Citation(s) in RCA: 80] [Impact Index Per Article: 8.0] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/07/2015] [Accepted: 09/04/2015] [Indexed: 12/04/2022] Open
Abstract
The proper distribution of proteins between the cytosol and various membrane-bound compartments is crucial for the functionality of eukaryotic cells. This requires the cooperation between protein transport machineries that translocate diverse proteins from the cytosol into these compartments and targeting signal(s) encoded within the primary sequence of these proteins that define their cellular destination. The mechanisms exerting protein translocation differ remarkably between the compartments, but the predominant targeting signals for mitochondria, chloroplasts and the ER share the N-terminal position, an α-helical structural element and the removal from the core protein by intraorganellar cleavage. Interestingly, similar properties have been described for the peroxisomal targeting signal type 2 mediating the import of a fraction of soluble peroxisomal proteins, whereas other peroxisomal matrix proteins encode the type 1 targeting signal residing at the extreme C-terminus. The structural similarity of N-terminal targeting signals poses a challenge to the specificity of protein transport, but allows the generation of ambiguous targeting signals that mediate dual targeting of proteins into different compartments. Dual targeting might represent an advantage for adaptation processes that involve a redistribution of proteins, because it circumvents the hierarchy of targeting signals. Thus, the co-existence of two equally functional import pathways into peroxisomes might reflect a balance between evolutionary constant and flexible transport routes.
Collapse
Affiliation(s)
- Markus Kunze
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna Vienna, Austria
| | - Johannes Berger
- Department of Pathobiology of the Nervous System, Center for Brain Research, Medical University of Vienna Vienna, Austria
| |
Collapse
|
33
|
Translational arrest by a prokaryotic signal recognition particle is mediated by RNA interactions. Nat Struct Mol Biol 2015; 22:767-73. [PMID: 26344568 DOI: 10.1038/nsmb.3086] [Citation(s) in RCA: 27] [Impact Index Per Article: 2.7] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 11/28/2014] [Accepted: 08/13/2015] [Indexed: 12/25/2022]
Abstract
The signal recognition particle (SRP) recognizes signal sequences of nascent polypeptides and targets ribosome-nascent chain complexes to membrane translocation sites. In eukaryotes, translating ribosomes are slowed down by the Alu domain of SRP to allow efficient targeting. In prokaryotes, however, little is known about the structure and function of Alu domain-containing SRPs. Here, we report a complete molecular model of SRP from the Gram-positive bacterium Bacillus subtilis, based on cryo-EM. The SRP comprises two subunits, 6S RNA and SRP54 or Ffh, and it facilitates elongation slowdown similarly to its eukaryotic counterpart. However, protein contacts with the small ribosomal subunit observed for the mammalian Alu domain are substituted in bacteria by RNA-RNA interactions of 6S RNA with the α-sarcin-ricin loop and helices H43 and H44 of 23S rRNA. Our findings provide a structural basis for cotranslational targeting and RNA-driven elongation arrest in prokaryotes.
Collapse
|
34
|
Structure and Switch Cycle of SRβ as Ancestral Eukaryotic GTPase Associated with Secretory Membranes. Structure 2015; 23:1838-1847. [PMID: 26299945 DOI: 10.1016/j.str.2015.07.010] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 04/30/2015] [Revised: 07/15/2015] [Accepted: 07/19/2015] [Indexed: 11/22/2022]
Abstract
G proteins of the Ras-family of small GTPases trace the evolution of eukaryotes. The earliest branching involves the closely related Arf, Sar1, and SRβ GTPases associated with secretory membranes. SRβ is an integral membrane component of the signal recognition particle (SRP) receptor that targets ribosome-nascent chain complexes to the ER. How SRβ integrates into the regulation of SRP-dependent membrane protein biogenesis is not known. Here we show that SRβ-GTP interacts with ribosomes only in presence of SRα and present crystal structures of SRβ in complex with the SRX domain of SRα in the GTP-bound state at 3.2 Å, and of GDP- and GDP · Mg(2+)-bound SRβ at 1.9 Å and 2.4 Å, respectively. We define the GTPase switch cycle of SRβ and identify specific differences to the Arf and Sar1 families with implications for GTPase regulation. Our data allow a better integration of SRβ into the scheme of protein targeting.
Collapse
|
35
|
Mock JY, Clemons WM. Capturing the signal. eLife 2015; 4:e09315. [PMID: 26158505 PMCID: PMC4497382 DOI: 10.7554/elife.09315] [Citation(s) in RCA: 0] [Impact Index Per Article: 0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/30/2022] Open
Abstract
High-resolution structures provide new insights into how an RNA-protein complex recognizes the signal that targets membrane proteins to the endoplasmic reticulum before they aggregate.
Collapse
Affiliation(s)
- Jee-Young Mock
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| | - William M Clemons
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, United States
| |
Collapse
|
36
|
Gamerdinger M, Hanebuth MA, Frickey T, Deuerling E. The principle of antagonism ensures protein targeting specificity at the endoplasmic reticulum. Science 2015; 348:201-7. [PMID: 25859040 DOI: 10.1126/science.aaa5335] [Citation(s) in RCA: 109] [Impact Index Per Article: 10.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/22/2022]
Abstract
The sorting of proteins to the appropriate compartment is one of the most fundamental cellular processes. We found that in the model organism Caenorhabditis elegans, correct cotranslational endoplasmic reticulum (ER) transport required the suppressor activity of the nascent polypeptide-associated complex (NAC). NAC did not affect the accurate targeting of ribosomes to ER translocons mediated by the signal recognition particle (SRP) pathway but inhibited additional unspecific contacts between ribosomes and translocons by blocking their autonomous binding affinity. NAC depletion shortened the life span of Caenorhabditis elegans, caused global mistargeting of translating ribosomes to the ER, and provoked incorrect import of mitochondrial proteins into the ER lumen, resulting in a strong impairment of protein homeostasis in both compartments. Thus, the antagonistic targeting activity of NAC is important in vivo to preserve the robustness and specificity of cellular protein-sorting routes.
Collapse
Affiliation(s)
- Martin Gamerdinger
- Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Marie Anne Hanebuth
- Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany
| | - Tancred Frickey
- Department of Biology, Applied Bioinformatics Laboratory, University of Konstanz, 78457 Konstanz, Germany
| | - Elke Deuerling
- Department of Biology, Institute of Molecular Microbiology, University of Konstanz, 78457 Konstanz, Germany.
| |
Collapse
|
37
|
Abstract
The signal recognition particle (SRP)-dependent pathway is essential for correct targeting of proteins to the membrane and subsequent insertion in the membrane or secretion. In Escherichia coli, the SRP and its receptor FtsY bind to ribosome-nascent chain complexes with signal sequences and undergo a series of distinct conformational changes, which ensures accurate timing and fidelity of protein targeting. Initial recruitment of the SRP receptor FtsY to the SRP-RNC complex results in GTP-independent binding of the SRP-FtsY GTPases at the SRP RNA tetraloop. In the presence of GTP, a closed state is adopted by the SRP-FtsY complex. The cryo-EM structure of the closed state reveals an ordered SRP RNA and SRP M domain with a signal sequence-bound. Van der Waals interactions between the finger loop and ribosomal protein L24 lead to a constricted signal sequence-binding pocket possibly preventing premature release of the signal sequence. Conserved M-domain residues contact ribosomal RNA helices 24 and 59. The SRP-FtsY GTPases are detached from the RNA tetraloop and flexible, thus liberating the ribosomal exit site for binding of the translocation machinery.
Collapse
|
38
|
Bousset L, Mary C, Brooks MA, Scherrer A, Strub K, Cusack S. Crystal structure of a signal recognition particle Alu domain in the elongation arrest conformation. RNA (NEW YORK, N.Y.) 2014; 20:1955-1962. [PMID: 25336584 PMCID: PMC4238359 DOI: 10.1261/rna.047209.114] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 07/06/2014] [Accepted: 09/04/2014] [Indexed: 06/04/2023]
Abstract
The signal recognition particle (SRP) is a conserved ribonucleoprotein particle that targets membrane and secreted proteins to translocation channels in membranes. In eukaryotes, the Alu domain, which comprises the 5' and 3' extremities of the SRP RNA bound to the SRP9/14 heterodimer, is thought to interact with the ribosome to pause translation elongation during membrane docking. We present the 3.2 Å resolution crystal structure of a chimeric Alu domain, comprising Alu RNA from the archaeon Pyrococcus horikoshii bound to the human Alu binding proteins SRP9/14. The structure reveals how intricate tertiary interactions stabilize the RNA 5' domain structure and how an extra, archaeal-specific, terminal stem helps constrain the Alu RNA into the active closed conformation. In this conformation, highly conserved noncanonical base pairs allow unusually tight side-by-side packing of 5' and 3' RNA stems within the SRP9/14 RNA binding surface. The biological relevance of this structure is confirmed by showing that a reconstituted full-length chimeric archaeal-human SRP is competent to elicit elongation arrest in vitro. The structure will be useful in refining our understanding of how the SRP Alu domain interacts with the ribosome.
Collapse
Affiliation(s)
- Luc Bousset
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France
| | - Camille Mary
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Geneva 4, Switzerland
| | - Mark A Brooks
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France
| | - Anne Scherrer
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Geneva 4, Switzerland
| | - Katharina Strub
- Département de Biologie Cellulaire, Université de Genève, Sciences III, 1211 Geneva 4, Switzerland
| | - Stephen Cusack
- European Molecular Biology Laboratory, Grenoble Outstation, 38042 Grenoble Cedex 9, France
| |
Collapse
|
39
|
Abstract
The Alu domain of the signal recognition particle (SRP) arrests protein biosynthesis by competition with elongation factor binding on the ribosome. The mammalian Alu domain is a protein-RNA complex, while prokaryotic Alu domains are protein-free with significant extensions of the RNA. Here we report the crystal structure of the complete Alu domain of Bacillus subtilis SRP RNA at 2.5 Å resolution. The bacterial Alu RNA reveals a compact fold, which is stabilized by prokaryote-specific extensions and interactions. In this 'closed' conformation, the 5' and 3' regions are clamped together by the additional helix 1, the connecting 3-way junction and a novel minor groove interaction, which we term the 'minor-saddle motif' (MSM). The 5' region includes an extended loop-loop pseudoknot made of five consecutive Watson-Crick base pairs. Homology modeling with the human Alu domain in context of the ribosome shows that an additional lobe in the pseudoknot approaches the large subunit, while the absence of protein results in the detachment from the small subunit. Our findings provide the structural basis for purely RNA-driven elongation arrest in prokaryotes, and give insights into the structural adaption of SRP RNA during evolution.
Collapse
Affiliation(s)
- Georg Kempf
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Klemens Wild
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | - Irmgard Sinning
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| |
Collapse
|
40
|
Abstract
Accurate folding, assembly, localization, and maturation of newly synthesized proteins are essential to all cells and require high fidelity in the protein biogenesis machineries that mediate these processes. Here, we review our current understanding of how high fidelity is achieved in one of these processes, the cotranslational targeting of nascent membrane and secretory proteins by the signal recognition particle (SRP). Recent biochemical, biophysical, and structural studies have elucidated how the correct substrates drive a series of elaborate conformational rearrangements in the SRP and SRP receptor GTPases; these rearrangements provide effective fidelity checkpoints to reject incorrect substrates and enhance the fidelity of this essential cellular pathway. The mechanisms used by SRP to ensure fidelity share important conceptual analogies with those used by cellular machineries involved in DNA replication, transcription, and translation, and these mechanisms likely represent general principles for other complex cellular pathways.
Collapse
Affiliation(s)
- Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, California 91125;
| | | |
Collapse
|
41
|
Saraogi I, Akopian D, Shan SO. Regulation of cargo recognition, commitment, and unloading drives cotranslational protein targeting. ACTA ACUST UNITED AC 2014; 205:693-706. [PMID: 24914238 PMCID: PMC4050729 DOI: 10.1083/jcb.201311028] [Citation(s) in RCA: 31] [Impact Index Per Article: 2.8] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
Active and sequential regulation of the interaction of SRP with translating ribosomes drives efficient and faithful cotranslational protein targeting to the target membrane. Efficient and accurate protein localization is essential to cells and requires protein-targeting machineries to both effectively capture the cargo in the cytosol and productively unload the cargo at the membrane. To understand how these challenges are met, we followed the interaction of translating ribosomes during their targeting by the signal recognition particle (SRP) using a site-specific fluorescent probe in the nascent protein. We show that initial recruitment of SRP receptor (SR) selectively enhances the affinity of SRP for correct cargos, thus committing SRP-dependent substrates to the pathway. Real-time measurement of cargo transfer from the targeting to translocation machinery revealed multiple factors that drive this event, including GTPase rearrangement in the SRP–SR complex, stepwise displacement of SRP from the ribosome and signal sequence by SecYEG, and elongation of the nascent polypeptide. Our results elucidate how active and sequential regulation of the SRP–cargo interaction drives efficient and faithful protein targeting.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-Ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
42
|
Grotwinkel JT, Wild K, Segnitz B, Sinning I. SRP RNA remodeling by SRP68 explains its role in protein translocation. Science 2014; 344:101-4. [PMID: 24700861 DOI: 10.1126/science.1249094] [Citation(s) in RCA: 33] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/16/2022]
Abstract
The signal recognition particle (SRP) is central to membrane protein targeting; SRP RNA is essential for SRP assembly, elongation arrest, and activation of SRP guanosine triphosphatases. In eukaryotes, SRP function relies on the SRP68-SRP72 heterodimer. We present the crystal structures of the RNA-binding domain of SRP68 (SRP68-RBD) alone and in complex with SRP RNA and SRP19. SRP68-RBD is a tetratricopeptide-like module that binds to a RNA three-way junction, bends the RNA, and inserts an α-helical arginine-rich motif (ARM) into the major groove. The ARM opens the conserved 5f RNA loop, which in ribosome-bound SRP establishes a contact to ribosomal RNA. Our data provide the structural basis for eukaryote-specific, SRP68-driven RNA remodeling required for protein translocation.
Collapse
Affiliation(s)
- Jan Timo Grotwinkel
- Heidelberg University Biochemistry Center (BZH), INF 328, D-69120 Heidelberg, Germany
| | | | | | | |
Collapse
|
43
|
Rossi D, Galvão FC, Bellato HM, Boldrin PEG, Andrews BJ, Valentini SR, Zanelli CF. eIF5A has a function in the cotranslational translocation of proteins into the ER. Amino Acids 2014; 46:645-53. [PMID: 24306454 DOI: 10.1007/s00726-013-1618-6] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [MESH Headings] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Received: 05/06/2013] [Accepted: 11/01/2013] [Indexed: 10/25/2022]
Abstract
The putative eukaryotic translation initiation factor 5A (eIF5A) is a highly conserved and essential protein present in all organisms except bacteria. To be activated, eIF5A requires the conversion of a specific residue of lysine into hypusine. This hypusine modification occurs posttranslationally in two enzymatic steps, and the polyamine spermidine is the substrate. Despite having an essential function in translation elongation, the critical role played by eIF5A remains unclear. In addition to demonstrating genetic interactions with translation factors, eIF5A mutants genetically interact with mutations in YPT1, which encodes an essential protein involved in endoplasmic reticulum (ER)-to-Golgi vesicle transport. In this study, we investigated the correlation between the function of eIF5A in translation and secretion in yeast. The results of in vivo translocation assays and genetic interaction analyses suggest a specific role for eIF5A in the cotranslational translocation of proteins into the ER, but not in the posttranslational pathway. Additionally, we observed that a block in eIF5A activation up-regulates stress-induced chaperones, which also occurs when SRP function is lost. Finally, loss of eIF5A function affects binding of the ribosome-nascent chain complex to SRP. These results link eIF5A function in translation with a role of SRP in the cell and may help explain the dual effects of eIF5A in differential and general translation.
Collapse
Affiliation(s)
- Danuza Rossi
- Department of Biological Sciences, School of Pharmaceutical Sciences, Univ Estadual Paulista, UNESP, Araraquara, SP, Brazil
| | | | | | | | | | | | | |
Collapse
|
44
|
The structural basis of FtsY recruitment and GTPase activation by SRP RNA. Mol Cell 2013; 52:643-54. [PMID: 24211265 DOI: 10.1016/j.molcel.2013.10.005] [Citation(s) in RCA: 40] [Impact Index Per Article: 3.3] [Reference Citation Analysis] [Abstract] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/05/2013] [Revised: 08/27/2013] [Accepted: 10/04/2013] [Indexed: 01/22/2023]
Abstract
The universally conserved signal recognition particle (SRP) system mediates the targeting of membrane proteins to the translocon in a multistep process controlled by GTP hydrolysis. Here we present the 2.6 Å crystal structure of the GTPase domains of the E. coli SRP protein (Ffh) and its receptor (FtsY) in complex with the tetraloop and the distal region of SRP-RNA, trapped in the activated state in presence of GDP:AlF4. The structure reveals the atomic details of FtsY recruitment and, together with biochemical experiments, pinpoints G83 as the key RNA residue that stimulates GTP hydrolysis. Insertion of G83 into the FtsY active site orients a single glutamate residue provided by Ffh (E277), triggering GTP hydrolysis and complex disassembly at the end of the targeting cycle. The complete conservation of the key residues of the SRP-RNA and the SRP protein implies that the suggested chemical mechanism of GTPase activation is applicable across all kingdoms.
Collapse
|
45
|
Saraogi I, Shan SO. Co-translational protein targeting to the bacterial membrane. BIOCHIMICA ET BIOPHYSICA ACTA-MOLECULAR CELL RESEARCH 2013; 1843:1433-41. [PMID: 24513458 DOI: 10.1016/j.bbamcr.2013.10.013] [Citation(s) in RCA: 50] [Impact Index Per Article: 4.2] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Subscribe] [Scholar Register] [Received: 08/10/2013] [Revised: 10/09/2013] [Accepted: 10/16/2013] [Indexed: 12/18/2022]
Abstract
Co-translational protein targeting by the Signal Recognition Particle (SRP) is an essential cellular pathway that couples the synthesis of nascent proteins to their proper cellular localization. The bacterial SRP, which contains the minimal ribonucleoprotein core of this universally conserved targeting machine, has served as a paradigm for understanding the molecular basis of protein localization in all cells. In this review, we highlight recent biochemical and structural insights into the molecular mechanisms by which fundamental challenges faced by protein targeting machineries are met in the SRP pathway. Collectively, these studies elucidate how an essential SRP RNA and two regulatory GTPases in the SRP and SRP receptor (SR) enable this targeting machinery to recognize, sense and respond to its biological effectors, i.e. the cargo protein, the target membrane and the translocation machinery, thus driving efficient and faithful co-translational protein targeting. This article is part of a Special Issue entitled: Protein trafficking and secretion in bacteria. Guest Editors: Anastassios Economou and Ross Dalbey.
Collapse
Affiliation(s)
- Ishu Saraogi
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA.
| |
Collapse
|
46
|
Abstract
The signal recognition particle (SRP) and its receptor compose a universally conserved and essential cellular machinery that couples the synthesis of nascent proteins to their proper membrane localization. The past decade has witnessed an explosion in in-depth mechanistic investigations of this targeting machine at increasingly higher resolutions. In this review, we summarize recent work that elucidates how the SRP and SRP receptor interact with the cargo protein and the target membrane, respectively, and how these interactions are coupled to a novel GTPase cycle in the SRP·SRP receptor complex to provide the driving force and enhance the fidelity of this fundamental cellular pathway. We also discuss emerging frontiers in which important questions remain to be addressed.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Kuang Shen
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Xin Zhang
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| | - Shu-ou Shan
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125
| |
Collapse
|
47
|
Akopian D, Dalal K, Shen K, Duong F, Shan SO. SecYEG activates GTPases to drive the completion of cotranslational protein targeting. ACTA ACUST UNITED AC 2013; 200:397-405. [PMID: 23401005 PMCID: PMC3575545 DOI: 10.1083/jcb.201208045] [Citation(s) in RCA: 41] [Impact Index Per Article: 3.4] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/24/2023]
Abstract
SecYEG drives conformational changes in the cotranslational targeting complex to activate it for GTP hydrolysis and the handover of the translating ribosome. Signal recognition particle (SRP) and its receptor (SR) comprise a highly conserved cellular machine that cotranslationally targets proteins to a protein-conducting channel, the bacterial SecYEG or eukaryotic Sec61p complex, at the target membrane. Whether SecYEG is a passive recipient of the translating ribosome or actively regulates this targeting machinery remains unclear. Here we show that SecYEG drives conformational changes in the cargo-loaded SRP–SR targeting complex that activate it for GTP hydrolysis and for handover of the translating ribosome. These results provide the first evidence that SecYEG actively drives the efficient delivery and unloading of translating ribosomes at the target membrane.
Collapse
Affiliation(s)
- David Akopian
- Division of Chemistry and Chemical Engineering, California Institute of Technology, Pasadena, CA 91125, USA
| | | | | | | | | |
Collapse
|
48
|
Breaking on through to the other side: protein export through the bacterial Sec system. Biochem J 2013; 449:25-37. [PMID: 23216251 DOI: 10.1042/bj20121227] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.7] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 01/28/2023]
Abstract
More than one-third of cellular proteomes traffic into and across membranes. Bacteria have invented several sophisticated secretion systems that guide various proteins to extracytoplasmic locations and in some cases inject them directly into hosts. Of these, the Sec system is ubiquitous, essential and by far the best understood. Secretory polypeptides are sorted from cytoplasmic ones initially due to characteristic signal peptides. Then they are targeted to the plasma membrane by chaperones/pilots. The translocase, a dynamic nanomachine, lies at the centre of this process and acts as a protein-conducting channel with a unique property; allowing both forward transfer of secretory proteins but also lateral release into the lipid bilayer with high fidelity and efficiency. This process, tightly orchestrated at the expense of energy, ensures fundamental cell processes such as membrane biogenesis, cell division, motility, nutrient uptake and environmental sensing. In the present review, we examine this fascinating process, summarizing current knowledge on the structure, function and mechanics of the Sec pathway.
Collapse
|
49
|
The Not4 RING E3 Ligase: A Relevant Player in Cotranslational Quality Control. ISRN MOLECULAR BIOLOGY 2013; 2013:548359. [PMID: 27335678 PMCID: PMC4890865 DOI: 10.1155/2013/548359] [Citation(s) in RCA: 15] [Impact Index Per Article: 1.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Subscribe] [Scholar Register] [Received: 11/04/2012] [Accepted: 11/21/2012] [Indexed: 12/02/2022]
Abstract
The Not4 RING E3 ligase is a subunit of the evolutionarily conserved Ccr4-Not complex. Originally identified in yeast by mutations that increase transcription, it was subsequently defined as an ubiquitin ligase. Substrates for this ligase were characterized in yeast and in metazoans. Interestingly, some substrates for this ligase are targeted for polyubiquitination and degradation, while others instead are stable monoubiquitinated proteins. The former are mostly involved in transcription, while the latter are a ribosomal protein and a ribosome-associated chaperone. Consistently, Not4 and all other subunits of the Ccr4-Not complex are present in translating ribosomes. An important function for Not4 in cotranslational quality control has emerged. In the absence of Not4, the total level of polysomes is reduced. In addition, translationally arrested polypeptides, aggregated proteins, and polyubiquitinated proteins accumulate. Its role in quality control is likely to be related on one hand to its importance for the functional assembly of the proteasome and on the other hand to its association with the RNA degradation machines. Not4 is in an ideal position to signal to degradation mRNAs whose translation has been aborted, and this defines Not4 as a key player in the quality control of newly synthesized proteins.
Collapse
|
50
|
Activated GTPase movement on an RNA scaffold drives co-translational protein targeting. Nature 2012; 492:271-5. [PMID: 23235881 PMCID: PMC3531814 DOI: 10.1038/nature11726] [Citation(s) in RCA: 66] [Impact Index Per Article: 5.1] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 07/31/2012] [Accepted: 10/26/2012] [Indexed: 12/14/2022]
Abstract
Roughly one third of the proteome is initially destined for the eukaryotic endoplasmic reticulum or the bacterial plasma membrane1. The proper localization of these proteins is mediated by a universally conserved protein targeting machinery, the signal recognition particle (SRP), which recognizes ribosomes carrying signal sequences2–4 and, via interactions with the SRP receptor5,6, delivers them to the protein translocation machinery on the target membrane7. The SRP is an ancient ribonucleoprotein particle containing an essential, elongated SRP RNA whose precise functions have remained elusive. Here, we used single molecule fluorescence microscopy to demonstrate that the SRP-receptor GTPase complex, after initial assembly at the tetraloop end of SRP RNA, travels over 100 Å to the distal end of this RNA where rapid GTP hydrolysis occurs. This movement is negatively regulated by the translating ribosome and, at a later stage, positively regulated by the SecYEG translocon, providing an attractive mechanism to ensure the productive exchange of the targeting and translocation machineries at the ribosome exit site with exquisite spatial and temporal accuracy. Our results show that large RNAs can act as molecular scaffolds that enable the facile exchange of distinct factors and precise timing of molecular events in a complex cellular process; this concept may be extended to similar phenomena in other ribonucleoprotein complexes.
Collapse
|