1
|
Li C, de Pater I, Moeckel C, Sault RJ, Butler B, deBoer D, Zhang Z. Long-lasting, deep effect of Saturn's giant storms. SCIENCE ADVANCES 2023; 9:eadg9419. [PMID: 37566653 PMCID: PMC10421028 DOI: 10.1126/sciadv.adg9419] [Citation(s) in RCA: 1] [Impact Index Per Article: 0.5] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Received: 01/31/2023] [Accepted: 07/12/2023] [Indexed: 08/13/2023]
Abstract
Planetary-scale giant storms erupt on Saturn quasiperiodically. There have been at least six recorded occurrences of past eruptions, and the most recent one was in 2010, with its whole life span captured by the Cassini mission. In 2015, we used the Very Large Array to probe the deep response of Saturn's troposphere to the giant storms. In addition to the remnant effect of the storm in 2010, we have found long-lasting signatures of all mid-latitude giant storms, a mixture of equatorial storms up to hundreds of years old, and potentially an unreported older storm at 70°N. We derive an ammonia anomaly map that shows an extended meridional migration of the storm's aftermath and vertical transport of ammonia vapor by storm dynamics. Intriguingly, the last storm in 2010 splits into two distinct components that propagate in opposite meridional directions, leaving a gap at 43°N planetographic latitude.
Collapse
Affiliation(s)
- Cheng Li
- Climate and Space Sciences and Engineering, University of Michigan, Ann Arbor, MI, USA
| | - Imke de Pater
- Department of Astronomy, University of California, Berkeley, Berkeley, CA, USA
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - Chris Moeckel
- Department of Earth and Planetary Science, University of California, Berkeley, Berkeley, CA, USA
| | - R. J. Sault
- School of Physics, University of Melbourne, Victoria 3010, Australia
| | - Bryan Butler
- National Radio Astronomy Observatory, Socorro, NM, USA
| | - David deBoer
- Department of Astronomy, University of California, Berkeley, Berkeley, CA, USA
| | - Zhimeng Zhang
- Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA, USA
| |
Collapse
|
2
|
Moses JI, Cavalié T, Fletcher LN, Roman MT. Atmospheric chemistry on Uranus and Neptune. PHILOSOPHICAL TRANSACTIONS. SERIES A, MATHEMATICAL, PHYSICAL, AND ENGINEERING SCIENCES 2020; 378:20190477. [PMID: 33161866 PMCID: PMC7658780 DOI: 10.1098/rsta.2019.0477] [Citation(s) in RCA: 6] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Accepted: 06/16/2020] [Indexed: 05/04/2023]
Abstract
Comparatively little is known about atmospheric chemistry on Uranus and Neptune, because remote spectral observations of these cold, distant 'Ice Giants' are challenging, and each planet has only been visited by a single spacecraft during brief flybys in the 1980s. Thermochemical equilibrium is expected to control the composition in the deeper, hotter regions of the atmosphere on both planets, but disequilibrium chemical processes such as transport-induced quenching and photochemistry alter the composition in the upper atmospheric regions that can be probed remotely. Surprising disparities in the abundance of disequilibrium chemical products between the two planets point to significant differences in atmospheric transport. The atmospheric composition of Uranus and Neptune can provide critical clues for unravelling details of planet formation and evolution, but only if it is fully understood how and why atmospheric constituents vary in a three-dimensional sense and how material coming in from outside the planet affects observed abundances. Future mission planning should take into account the key outstanding questions that remain unanswered about atmospheric chemistry on Uranus and Neptune, particularly those questions that pertain to planet formation and evolution, and those that address the complex, coupled atmospheric processes that operate on Ice Giants within our solar system and beyond. This article is part of a discussion meeting issue 'Future exploration of ice giant systems'.
Collapse
Affiliation(s)
- J. I. Moses
- Space Science Institute, 4765 Walnut Street, Suite B, Boulder, CO 80301, USA
| | - T. Cavalié
- Laboratoire d’Astrophysique de Bordeaux, University of Bordeaux, CNRS, B18N, allée Geoffroy Saint-Hilaire, 33615 Pessac, France
- LESIA, Observatoire de Paris, 92195 Meudon, France
| | - L. N. Fletcher
- School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
| | - M. T. Roman
- School of Physics and Astronomy, University of Leicester, University Road, Leicester LE1 7RH, UK
| |
Collapse
|
3
|
Ingersoll AP. Cassini Exploration of the Planet Saturn: A Comprehensive Review. SPACE SCIENCE REVIEWS 2020; 216:122. [PMID: 35027776 PMCID: PMC8753610 DOI: 10.1007/s11214-020-00751-1] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.4] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Figures] [Subscribe] [Scholar Register] [Received: 10/10/2019] [Accepted: 10/10/2020] [Indexed: 06/14/2023]
Abstract
Before Cassini, scientists viewed Saturn's unique features only from Earth and from three spacecraft flying by. During more than a decade orbiting the gas giant, Cassini studied the planet from its interior to the top of the atmosphere. It observed the changing seasons, provided up-close observations of Saturn's exotic storms and jet streams, and heard Saturn's lightning, which cannot be detected from Earth. During the Grand Finale orbits, it dove through the gap between the planet and its rings and gathered valuable data on Saturn's interior structure and rotation. Key discoveries and events include: watching the eruption of a planet-encircling storm, which is a 20- or 30-year event, detection of gravity perturbations from winds 9000 km below the tops of the clouds, demonstration that eddies are supplying energy to the zonal jets, which are remarkably steady over the 25-year interval since the Voyager encounters, re-discovery of the north polar hexagon after 25 years, determination of elemental abundance ratios He/H, C/H, N/H, P/H, and As/H, which are clues to planet formation and evolution, characterization of the semiannual oscillation of the equatorial stratosphere, documentation of the mysteriously high temperatures of the thermosphere outside the auroral zone, and seeing the strange intermittency of lightning, which typically ceases to exist on the planet between outbursts every 1-2 years. These results and results from the Jupiter flyby are all discussed in this review.
Collapse
Affiliation(s)
- Andrew P Ingersoll
- Division of Geological and Planetary Sciences, California Institute of Technology, 1200 East California Blvd, Pasadena, CA 91125, USA
| |
Collapse
|
4
|
Abstract
Numerous land- and space-based observations have established that Saturn has a persistent hexagonal flow pattern near its north pole. While observations abound, the physics behind its formation is still uncertain. Although several phenomenological models have been able to reproduce this feature, a self-consistent model for how such a large-scale polygonal jet forms in the highly turbulent atmosphere of Saturn is lacking. Here, we present a three-dimensional (3D) fully nonlinear anelastic simulation of deep thermal convection in the outer layers of gas giant planets that spontaneously generates giant polar cyclones, fierce alternating zonal flows, and a high-latitude eastward jet with a polygonal pattern. The analysis of the simulation suggests that self-organized turbulence in the form of giant vortices pinches the eastward jet, forming polygonal shapes. We argue that a similar mechanism is responsible for exciting Saturn's hexagonal flow pattern.
Collapse
|
5
|
Sánchez-Lavega A, García-Muñoz A, Del Río-Gaztelurrutia T, Pérez-Hoyos S, Sanz-Requena JF, Hueso R, Guerlet S, Peralta J. Multilayer hazes over Saturn's hexagon from Cassini ISS limb images. Nat Commun 2020; 11:2281. [PMID: 32385300 PMCID: PMC7210256 DOI: 10.1038/s41467-020-16110-1] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.6] [Reference Citation Analysis] [Abstract] [Key Words] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 12/17/2019] [Accepted: 04/06/2020] [Indexed: 11/09/2022] Open
Abstract
In June 2015, Cassini high-resolution images of Saturn's limb southwards of the planet's hexagonal wave revealed a system of at least six stacked haze layers above the upper cloud deck. Here, we characterize those haze layers and discuss their nature. Vertical thickness of layers ranged from 7 to 18 km, and they extended in altitude ∼130 km, from pressure level 0.5 bar to 0.01 bar. Above them, a thin but extended aerosol layer reached altitude ∼340 km (0.4 mbar). Radiative transfer modeling of spectral reflectivity shows that haze properties are consistent with particles of diameter 0.07-1.4 μm and number density 100-500 cm-3. The nature of the hazes is compatible with their formation by condensation of hydrocarbon ices, including acetylene and benzene at higher altitudes. Their vertical distribution could be due to upward propagating gravity waves generated by dynamical forcing by the hexagon and its associated eastward jet.
Collapse
Affiliation(s)
- A Sánchez-Lavega
- Departamento Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV/EHU, Bilbao, Spain.
| | - A García-Muñoz
- Zentrum für Astronomie und Astrophysik, Technische Universität Berlin, Berlin, Germany
| | - T Del Río-Gaztelurrutia
- Departamento Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - S Pérez-Hoyos
- Departamento Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - J F Sanz-Requena
- Departamento de Física Teórica, Atómica y Optica, Universidad de Valladolid, Valladolid, Spain
| | - R Hueso
- Departamento Física Aplicada I, Escuela de Ingeniería de Bilbao, Universidad del País Vasco UPV/EHU, Bilbao, Spain
| | - S Guerlet
- Laboratoire de Meteorologie Dynamique/Institut Pierre-Simon Laplace (LMD/IPSL), Sorbonne Universite, Centre National de la Recherche Scientifique (CNRS), Ecole Polytechnique, Ecole Normale Superieure (ENS), Paris, France
| | - J Peralta
- Institute of Space and Astronautical Science, Japan Aerospace Exploration Agency, Kanagawa, Japan
| |
Collapse
|
6
|
Abstract
The Cassini-Huygens mission to Saturn provided a close-up study of the gas giant planet, as well as its rings, moons, and magnetosphere. The Cassini spacecraft arrived at Saturn in 2004, dropped the Huygens probe to study the atmosphere and surface of Saturn's planet-sized moon Titan, and orbited Saturn for the next 13 years. In 2017, when it was running low on fuel, Cassini was intentionally vaporized in Saturn's atmosphere to protect the ocean moons, Enceladus and Titan, where it had discovered habitats potentially suitable for life. Mission findings include Enceladus' south polar geysers, the source of Saturn's E ring; Titan's methane cycle, including rain that creates hydrocarbon lakes; dynamic rings containing ice, silicates, and organics; and Saturn's differential rotation. This Review discusses highlights of Cassini's investigations, including the mission's final year.
Collapse
Affiliation(s)
- Linda Spilker
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA 91109, USA
| |
Collapse
|
7
|
Fletcher LN, Orton GS, Sinclair JA, Guerlet S, Read PL, Antuñano A, Achterberg RK, Flasar FM, Irwin PGJ, Bjoraker GL, Hurley J, Hesman BE, Segura M, Gorius N, Mamoutkine A, Calcutt SB. A hexagon in Saturn's northern stratosphere surrounding the emerging summertime polar vortex. Nat Commun 2018; 9:3564. [PMID: 30177694 PMCID: PMC6120878 DOI: 10.1038/s41467-018-06017-3] [Citation(s) in RCA: 17] [Impact Index Per Article: 2.4] [Reference Citation Analysis] [Abstract] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 03/24/2018] [Accepted: 08/01/2018] [Indexed: 11/30/2022] Open
Abstract
Saturn's polar stratosphere exhibits the seasonal growth and dissipation of broad, warm vortices poleward of ~75° latitude, which are strongest in the summer and absent in winter. The longevity of the exploration of the Saturn system by Cassini allows the use of infrared spectroscopy to trace the formation of the North Polar Stratospheric Vortex (NPSV), a region of enhanced temperatures and elevated hydrocarbon abundances at millibar pressures. We constrain the timescales of stratospheric vortex formation and dissipation in both hemispheres. Although the NPSV formed during late northern spring, by the end of Cassini's reconnaissance (shortly after northern summer solstice), it still did not display the contrasts in temperature and composition that were evident at the south pole during southern summer. The newly formed NPSV was bounded by a strengthening stratospheric thermal gradient near 78°N. The emergent boundary was hexagonal, suggesting that the Rossby wave responsible for Saturn's long-lived polar hexagon-which was previously expected to be trapped in the troposphere-can influence the stratospheric temperatures some 300 km above Saturn's clouds.
Collapse
Affiliation(s)
- L N Fletcher
- Department of Physics & Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK.
| | - G S Orton
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - J A Sinclair
- Jet Propulsion Laboratory, California Institute of Technology, 4800 Oak Grove Drive, Pasadena, CA, 91109, USA
| | - S Guerlet
- Laboratoire de Meteorologie Dynamique/IPSL, Sorbonne Université, École Normale Supérieure, PSL Research University, École Polytechnique, CNRS, F-75005, Paris, France
| | - P L Read
- Department of Physics (Atmospheric, Oceanic and Planetary Physics), University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - A Antuñano
- Department of Physics & Astronomy, University of Leicester, University Road, Leicester, LE1 7RH, UK
| | - R K Achterberg
- Department of Astronomy, University of Maryland, College Park, MD, 20742, USA
| | - F M Flasar
- NASA/Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - P G J Irwin
- Department of Physics (Atmospheric, Oceanic and Planetary Physics), University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| | - G L Bjoraker
- NASA/Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - J Hurley
- STFC Rutherford Appleton Laboratory, Harwell Science and Innovation Campus, Didcot, OX11 0QX, UK
| | - B E Hesman
- Space Telescope Science Institute (STScI), 3700 San Martin Drive, Baltimore, MD, 21218, USA
| | - M Segura
- NASA/Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - N Gorius
- Department of Physics, The Catholic University of America, Washington, DC, 20064, USA
| | - A Mamoutkine
- NASA/Goddard Space Flight Center, Greenbelt, MD, 20771, USA
| | - S B Calcutt
- Department of Physics (Atmospheric, Oceanic and Planetary Physics), University of Oxford, Parks Road, Oxford, OX1 3PU, UK
| |
Collapse
|
8
|
Mickelin O, Słomka J, Burns KJ, Lecoanet D, Vasil GM, Faria LM, Dunkel J. Anomalous Chained Turbulence in Actively Driven Flows on Spheres. PHYSICAL REVIEW LETTERS 2018; 120:164503. [PMID: 29756929 DOI: 10.1103/physrevlett.120.164503] [Citation(s) in RCA: 2] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Subscribe] [Scholar Register] [Received: 10/16/2017] [Indexed: 06/08/2023]
Abstract
Recent experiments demonstrate the importance of substrate curvature for actively forced fluid dynamics. Yet, the covariant formulation and analysis of continuum models for nonequilibrium flows on curved surfaces still poses theoretical challenges. Here, we introduce and study a generalized covariant Navier-Stokes model for fluid flows driven by active stresses in nonplanar geometries. The analytical tractability of the theory is demonstrated through exact stationary solutions for the case of a spherical bubble geometry. Direct numerical simulations reveal a curvature-induced transition from a burst phase to an anomalous turbulent phase that differs distinctly from externally forced classical 2D Kolmogorov turbulence. This new type of active turbulence is characterized by the self-assembly of finite-size vortices into linked chains of antiferromagnetic order, which percolate through the entire fluid domain, forming an active dynamic network. The coherent motion of the vortex chain network provides an efficient mechanism for upward energy transfer from smaller to larger scales, presenting an alternative to the conventional energy cascade in classical 2D turbulence.
Collapse
Affiliation(s)
- Oscar Mickelin
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Jonasz Słomka
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Keaton J Burns
- Department of Physics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Daniel Lecoanet
- Princeton Center for Theoretical Science, Princeton University, Princeton, New Jersey 08544, USA
| | - Geoffrey M Vasil
- School of Mathematics and Statistics, University of Sydney, Sydney, New South Wales 2006, Australia
| | - Luiz M Faria
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| | - Jörn Dunkel
- Department of Mathematics, Massachusetts Institute of Technology, Cambridge, Massachusetts 02139-4307, USA
| |
Collapse
|
9
|
Moses JI, Armstrong ES, Fletcher LN, Friedson AJ, Irwin PGJ, Sinclair JA, Hesman BE. Evolution of Stratospheric Chemistry in the Saturn Storm Beacon Region. ICARUS 2015; 261:149-168. [PMID: 30842685 PMCID: PMC6398963 DOI: 10.1016/j.icarus.2015.08.012] [Citation(s) in RCA: 7] [Impact Index Per Article: 0.7] [Reference Citation Analysis] [Abstract] [Key Words] [Grants] [Track Full Text] [Subscribe] [Scholar Register] [Indexed: 05/20/2023]
Abstract
The giant northern-hemisphere storm that erupted on Saturn in December 2010 triggered significant changes in stratospheric temperatures and species abundances that persisted for more than a year after the original outburst. The stratospheric regions affected by the storm have been nicknamed "beacons" due to their prominent infrared-emission signatures (Fletcher, L.N. et al. [2011]. Science 332, 1413). The two beacon regions that were present initially merged in April 2011 to form a single, large, anticyclonic vortex (Fletcher, L.N. et al. [2012]. Icarus 221, 560). We model the expected photochemical evolution of the stratospheric constituents in the beacons from the initial storm onset through the merger and on out to March 2012. The results are compared with longitudinally resolved Cassini/CIRS spectra from May 2011. If we ignore potential changes due to vertical winds within the beacon, we find that C2H2, C2H6, and C3H8 remain unaffected by the increased stratospheric temperatures in the beacon, the abundance of the shorter-lived CH3C2H decreases, and the abundance of C2H4 increases significantly due to the elevated temperatures, the latter most notably in a secondary mixing-ratio peak located near mbar pressures. The C4H2 abundance in the model decreases by a factor of a few in the 0.01-10 mbar region but has a significant increase in the 10-30 mbar region due to evaporation of the previously condensed phase. The column abundances of C6H6 and H2O above ~30 mbar also increase due to aerosol evaporation. Model-data comparisons show that models that consider temperature changes alone underpredict the abundance of C2H x species by a factor of 2-7 in the beacon core in May 2011, suggesting that other processes not considered by the models, such as downwelling winds in the vortex, are affecting the species profiles. Additional calculations indicate that downwelling winds of order -10 cm s -1 near ~0.1 mbar need to be included in the photochemical models in order to explain the inferred C2H x abundances in the beacon core, indicating that both strong subsiding winds and chemistry at elevated temperatures are affecting the vertical profiles of atmospheric constituents in the beacon. We (i) discuss the general chemical behavior of stratospheric species in the beacon region, (ii) demonstrate how the evolving beacon environment affects the species vertical profiles and emission characteristics (both with and without the presence of vertical winds), (iii) make predictions with respect to compositional changes that can be tested against Cassini and Herschel data, and higher-spectral-resolution ground-based observations of the beacon region, and (iv) discuss future measurements and modeling that could further our understanding of the dynamical origin, evolution, and chemical processing within these unexpected stratospheric vortices that were generated after the 2010 convective event.
Collapse
Affiliation(s)
- Julianne I Moses
- Space Science Institute, 4750 Walnut Street, Suite 205, Boulder, CO 80301, USA
| | - Eleanor S Armstrong
- Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | - Leigh N Fletcher
- Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | | | - Patrick G J Irwin
- Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | - James A Sinclair
- Atmospheric, Oceanic & Planetary Physics, Department of Physics, University of Oxford, Clarendon Laboratory, Parks Road, Oxford, OX1 3PU, UK
| | - Brigette E Hesman
- Department of Astronomy, University of Maryland, College Park, MD, 20742, USA
| |
Collapse
|
10
|
Affiliation(s)
- Tamas I. Gombosi
- Department of Atmospheric, Oceanic, and Space Sciences, University of Michigan, Ann Arbor, MI 48109, USA
| | - Andrew P. Ingersoll
- Division of Geological and Planetary Sciences, California Institute of Technology, Pasadena, CA 91125, USA
| |
Collapse
|
11
|
Dyudina UA, Ingersoll AP, Ewald SP, Vasavada AR, West RA, Del Genio AD, Barbara JM, Porco CC, Achterberg RK, Flasar FM, Simon-Miller AA, Fletcher LN. Dynamics of Saturn's South Polar Vortex. Science 2008; 319:1801. [DOI: 10.1126/science.1153633] [Citation(s) in RCA: 45] [Impact Index Per Article: 2.6] [Reference Citation Analysis] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/03/2022]
|