1
|
Feng Y, Neme R, Beh LY, Chen X, Braun J, Lu MW, Landweber LF. Comparative genomics reveals insight into the evolutionary origin of massively scrambled genomes. eLife 2022; 11:e82979. [PMID: 36421078 PMCID: PMC9797194 DOI: 10.7554/elife.82979] [Citation(s) in RCA: 9] [Impact Index Per Article: 3.0] [Reference Citation Analysis] [Abstract] [Key Words] [MESH Headings] [Grants] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 08/25/2022] [Accepted: 11/03/2022] [Indexed: 11/25/2022] Open
Abstract
Ciliates are microbial eukaryotes that undergo extensive programmed genome rearrangement, a natural genome editing process that converts long germline chromosomes into smaller gene-rich somatic chromosomes. Three well-studied ciliates include Oxytricha trifallax, Tetrahymena thermophila, and Paramecium tetraurelia, but only the Oxytricha lineage has a massively scrambled genome, whose assembly during development requires hundreds of thousands of precisely programmed DNA joining events, representing the most complex genome dynamics of any known organism. Here we study the emergence of such complex genomes by examining the origin and evolution of discontinuous and scrambled genes in the Oxytricha lineage. This study compares six genomes from three species, the germline and somatic genomes for Euplotes woodruffi, Tetmemena sp., and the model ciliate O. trifallax. We sequenced, assembled, and annotated the germline and somatic genomes of E. woodruffi, which provides an outgroup, and the germline genome of Tetmemena sp. We find that the germline genome of Tetmemena is as massively scrambled and interrupted as Oxytricha's: 13.6% of its gene loci require programmed translocations and/or inversions, with some genes requiring hundreds of precise gene editing events during development. This study revealed that the earlier diverged spirotrich, E. woodruffi, also has a scrambled genome, but only roughly half as many loci (7.3%) are scrambled. Furthermore, its scrambled genes are less complex, together supporting the position of Euplotes as a possible evolutionary intermediate in this lineage, in the process of accumulating complex evolutionary genome rearrangements, all of which require extensive repair to assemble functional coding regions. Comparative analysis also reveals that scrambled loci are often associated with local duplications, supporting a gradual model for the origin of complex, scrambled genomes via many small events of DNA duplication and decay.
Collapse
Affiliation(s)
- Yi Feng
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Rafik Neme
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
- Department of Chemistry and Biology, Universidad del NorteBarranquillaColombia
| | - Leslie Y Beh
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Xiao Chen
- Pacific BiosciencesMenlo ParkUnited States
| | - Jasper Braun
- Department of Mathematics and Statistics, University of South FloridaTampaUnited States
| | - Michael W Lu
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| | - Laura F Landweber
- Departments of Biochemistry and Molecular Biophysics and Biological Sciences, Columbia UniversityNew YorkUnited States
| |
Collapse
|
2
|
Abstract
This paper presents a history of the changing meanings of the term "gene," over more than a century, and a discussion of why this word, so crucial to genetics, needs redefinition today. In this account, the first two phases of 20th century genetics are designated the "classical" and the "neoclassical" periods, and the current molecular-genetic era the "modern period." While the first two stages generated increasing clarity about the nature of the gene, the present period features complexity and confusion. Initially, the term "gene" was coined to denote an abstract "unit of inheritance," to which no specific material attributes were assigned. As the classical and neoclassical periods unfolded, the term became more concrete, first as a dimensionless point on a chromosome, then as a linear segment within a chromosome, and finally as a linear segment in the DNA molecule that encodes a polypeptide chain. This last definition, from the early 1960s, remains the one employed today, but developments since the 1970s have undermined its generality. Indeed, they raise questions about both the utility of the concept of a basic "unit of inheritance" and the long implicit belief that genes are autonomous agents. Here, we review findings that have made the classic molecular definition obsolete and propose a new one based on contemporary knowledge.
Collapse
Affiliation(s)
- Petter Portin
- Laboratory of Genetics, Department of Biology, University of Turku, 20014, Finland
| | - Adam Wilkins
- Institute of Theoretical Biology, Humboldt Universität zu Berlin, 10115, Germany
| |
Collapse
|
3
|
Abstract
The ciliate Oxytricha is a microbial eukaryote with two genomes, one of which experiences extensive genome remodeling during development. Each round of conjugation initiates a cascade of events that construct a transcriptionally active somatic genome from a scrambled germline genome, with considerable help from both long and small noncoding RNAs. This process of genome remodeling entails massive DNA deletion and reshuffling of remaining DNA segments to form functional genes from their interrupted and scrambled germline precursors. The use of Oxytricha as a model system provides an opportunity to study an exaggerated form of programmed genome rearrangement. Furthermore, studying the mechanisms that maintain nuclear dimorphism and mediate genome rearrangement has demonstrated a surprising plasticity and diversity of noncoding RNA pathways, with new roles that go beyond conventional gene silencing. Another aspect of ciliate genetics is their unorthodox patterns of RNA-mediated, epigenetic inheritance that rival Mendelian inheritance. This review takes the reader through the key experiments in a model eukaryote that led to fundamental discoveries in RNA biology and pushes the biological limits of DNA processing.
Collapse
|
4
|
Tyler-Smith C, Yang H, Landweber LF, Dunham I, Knoppers BM, Donnelly P, Mardis ER, Snyder M, McVean G. Where Next for Genetics and Genomics? PLoS Biol 2015. [PMID: 26225775 PMCID: PMC4520474 DOI: 10.1371/journal.pbio.1002216] [Citation(s) in RCA: 9] [Impact Index Per Article: 0.9] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 11/17/2022] Open
Abstract
The last few decades have utterly transformed genetics and genomics, but what might the next ten years bring? PLOS Biology asked eight leaders spanning a range of related areas to give us their predictions. Without exception, the predictions are for more data on a massive scale and of more diverse types. All are optimistic and predict enormous positive impact on scientific understanding, while a recurring theme is the benefit of such data for the transformation and personalization of medicine. Several also point out that the biggest changes will very likely be those that we don’t foresee, even now. The last few decades have utterly transformed genetics and genomics, but what might the next ten years bring? In this Perspective, eight leaders, spanning a range of related areas, give us their predictions.
Collapse
Affiliation(s)
- Chris Tyler-Smith
- The Wellcome Trust Sanger Institute, Wellcome Trust Genome Campus, Hinxton, Cambridgeshire, United Kingdom
| | - Huanming Yang
- BGI-Shenzen, Shenzen, China; James D Watson Institute of Genome Science, Hangzhou, China
| | - Laura F Landweber
- Department of Ecology and Evolutionary Biology, Princeton University, Princeton, New Jersey, United States of America
| | - Ian Dunham
- European Molecular Biology Laboratory, European Bioinformatics Institute (EMBL-EBI), Wellcome Trust Genome Campus, Hinxton, Cambridge, United Kingdom
| | - Bartha M Knoppers
- Centre of Genomics and Policy, McGill University, Montreal, Quebec, Canada
| | - Peter Donnelly
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom; Department of Statistics, University of Oxford, Oxford, United Kingdom
| | - Elaine R Mardis
- McDonnell Genome Institute, School of Medicine, Washington University, St. Louis, Missouri, United States of America
| | - Michael Snyder
- Department of Genetics, Stanford University, Stanford, California, United States of America
| | - Gil McVean
- The Wellcome Trust Centre for Human Genetics, University of Oxford, Oxford, United Kingdom
| |
Collapse
|
5
|
Soma A. Circularly permuted tRNA genes: their expression and implications for their physiological relevance and development. Front Genet 2014; 5:63. [PMID: 24744771 PMCID: PMC3978253 DOI: 10.3389/fgene.2014.00063] [Citation(s) in RCA: 13] [Impact Index Per Article: 1.2] [Reference Citation Analysis] [Abstract] [Key Words] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Received: 01/31/2014] [Accepted: 03/12/2014] [Indexed: 12/02/2022] Open
Abstract
A number of genome analyses and searches using programs that focus on the RNA-specific bulge-helix-bulge (BHB) motif have uncovered a wide variety of disrupted tRNA genes. The results of these analyses have shown that genetic information encoding functional RNAs is described in the genome cryptically and is retrieved using various strategies. One such strategy is represented by circularly permuted tRNA genes, in which the sequences encoding the 5′-half and 3′-half of the specific tRNA are separated and inverted on the genome. Biochemical analyses have defined a processing pathway in which the termini of tRNA precursors (pre-tRNAs) are ligated to form a characteristic circular RNA intermediate, which is then cleaved at the acceptor-stem to generate the typical cloverleaf structure with functional termini. The sequences adjacent to the processing site located between the 3′-half and the 5′-half of pre-tRNAs potentially form a BHB motif, which is the dominant recognition site for the tRNA-intron splicing endonuclease, suggesting that circularization of pre-tRNAs depends on the splicing machinery. Some permuted tRNAs contain a BHB-mediated intron in their 5′- or 3′-half, meaning that removal of an intron, as well as swapping of the 5′- and 3′-halves, are required during maturation of their pre-tRNAs. To date, 34 permuted tRNA genes have been identified from six species of unicellular algae and one archaeon. Although their physiological significance and mechanism of development remain unclear, the splicing system of BHB motifs seems to have played a key role in the formation of permuted tRNA genes. In this review, current knowledge of circularly permuted tRNA genes is presented and some unanswered questions regarding these species are discussed.
Collapse
Affiliation(s)
- Akiko Soma
- Graduate School of Horticulture, Chiba University Matsudo, Japan
| |
Collapse
|
6
|
Fuhrmann G, Swart E, Nowacki M, Lipps HJ. RNA-dependent genome processing during nuclear differentiation: the model systems of stichotrichous ciliates. Epigenomics 2013; 5:229-36. [PMID: 23566098 DOI: 10.2217/epi.13.15] [Citation(s) in RCA: 3] [Impact Index Per Article: 0.3] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/20/2022] Open
Abstract
We introduce ciliated protozoa, and more specifically the stichotrichous ciliates Oxytricha and Stylonychia, as biological model systems for the analysis of programmed DNA-reorganization processes during nuclear differentiation. These include DNA excision, DNA elimination, reordering of gene segments and specific gene amplification. We show that small nuclear RNAs specify DNA sequences to be excised or retained, but also discuss the need for a RNA template molecule derived from the parental nucleus for these processes. This RNA template guides reordering of gene segments to become functional genes and determines gene copy number in the differentiated nucleus. Since the template is derived from the parental macronucleus, gene reordering and DNA amplification are inherited in a non-Mendelian epigenetic manner.
Collapse
Affiliation(s)
- Gloria Fuhrmann
- Institute of Cell Biology, Centre for Biomedical Research & Education (ZBAF), Stockumer Str. 10, 58453 Witten, Germany
| | | | | | | |
Collapse
|
7
|
Shao R, Zhu XQ, Barker SC, Herd K. Evolution of extensively fragmented mitochondrial genomes in the lice of humans. Genome Biol Evol 2013; 4:1088-101. [PMID: 23042553 PMCID: PMC3514963 DOI: 10.1093/gbe/evs088] [Citation(s) in RCA: 84] [Impact Index Per Article: 7.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Download PDF] [Figures] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/28/2022] Open
Abstract
Bilateral animals are featured by an extremely compact mitochondrial (mt) genome with 37 genes on a single circular chromosome. The human body louse, Pediculus humanus, however, has its mt genes on 20 minichromosomes. We sequenced the mt genomes of two other human lice: the head louse, P. capitis, and the pubic louse, Pthirus pubis. Comparison among the three human lice revealed the presence of fragmented mt genomes in their most recent common ancestor, which lived ∼7 Ma. The head louse has exactly the same set of mt minichromosomes as the body louse, indicating that the number of minichromosomes, and the gene content and gene arrangement in each minichromosome have remained unchanged since the body louse evolved from the head louse ∼107,000 years ago. The pubic louse has the same pattern of one protein-coding or rRNA gene per minichromosome (except one minichromosome with two protein-coding genes, atp6 and atp8) as the head louse and the body louse. This pattern is apparently ancestral to all human lice and has been stable for at least 7 Myr. Most tRNA genes of the pubic louse, however, are on different minichromosomes when compared with their counterparts in the head louse and the body louse. It is evident that rearrangement of four tRNA genes (for leucine, arginine and glycine) was due to gene-identity switch by point mutation at the third anticodon position or by homologous recombination, whereas rearrangement of other tRNA genes was by gene translocation between minichromosomes, likely caused by minichromosome split via gene degeneration and deletion.
Collapse
Affiliation(s)
- Renfu Shao
- GeneCology Research Group, School of Science, Education and Engineering, University of the Sunshine Coast, Maroochydore, Queensland, Australia.
| | | | | | | |
Collapse
|
8
|
Nowacki M, Shetty K, Landweber LF. RNA-Mediated Epigenetic Programming of Genome Rearrangements. Annu Rev Genomics Hum Genet 2011; 12:367-89. [PMID: 21801022 DOI: 10.1146/annurev-genom-082410-101420] [Citation(s) in RCA: 56] [Impact Index Per Article: 4.0] [Reference Citation Analysis] [Abstract] [Track Full Text] [Journal Information] [Subscribe] [Scholar Register] [Indexed: 12/30/2022]
Abstract
RNA, normally thought of as a conduit in gene expression, has a novel mode of action in ciliated protozoa. Maternal RNA templates provide both an organizing guide for DNA rearrangements and a template that can transport somatic mutations to the next generation. This opportunity for RNA-mediated genome rearrangement and DNA repair is profound in the ciliate Oxytricha, which deletes 95% of its germline genome during development in a process that severely fragments its chromosomes and then sorts and reorders the hundreds of thousands of pieces remaining. Oxytricha's somatic nuclear genome is therefore an epigenome formed through RNA templates and signals arising from the previous generation. Furthermore, this mechanism of RNA-mediated epigenetic inheritance can function across multiple generations, and the discovery of maternal template RNA molecules has revealed new biological roles for RNA and has hinted at the power of RNA molecules to sculpt genomic information in cells.
Collapse
Affiliation(s)
- Mariusz Nowacki
- Institute of Cell Biology, University of Bern, CH-3012 Bern, Switzerland.
| | | | | |
Collapse
|
9
|
Abstract
In recent years geneticists have witnessed many significant observations which have seriously shaken the traditional concept of the gene. These specifically include the facts that (1) the boundaries of transcriptional units are far from clear; in fact, whole chromosomes if not the whole genome seem to be continuums of genetic transcription, (2) many examples of gene fusion are known, (3) likewise many examples of so-called encrypted genes are known in the organelle genomes of microbial eukaryotes and in prokaryotes, and (4) in addition to the structure of the gene, its functional status can also be inheritable, and, further, (5) epigenetic extra-genomic modes of inheritance, called genetic restoration, seem to be a rather common phenomenon, meaning that organisms can sometimes rewrite their DNA on the basis of RNA messages inherited from generations past. I will briefly review these observations and discuss the difficulties of defining the gene, and then formulate a new view, which is called the relational or systemic concept of the gene. It has to be noted that genes assume their information content characteristics in the Shannonian sense as nucleotide sequences of DNA (or RNA). However, on the basis of this we cannot say anything about their information content in the semantic sense. The semantic information content of genes is context-dependent. Genes namely assume their biochemical characteristics usually only within living cells, their developmental characteristics only within living organisms, and their evolutionary characteristics only within populations of living organisms.
Collapse
Affiliation(s)
- Petter Portin
- Laboratory of Genetics, Department of Biology, University of Turku, Turku, Finland.
| |
Collapse
|
10
|
Affiliation(s)
- David M Rand
- Department of Ecology and Evolutionary Biology, Brown University, Providence, RI 02912, USA.
| |
Collapse
|
11
|
|